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COMPUTING SENSITIVITIES IN EVOLUTIONARY SYSTEMS: A
REAL-TIME REDUCED ORDER MODELING STRATEGY\ast 
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Abstract. We present a new methodology for computing sensitivities in evolutionary systems
using a model-driven low-rank approximation. To this end, we formulate a variational principle
that seeks to minimize the distance between the time derivative of the reduced approximation and
sensitivity dynamics. The first order optimality condition of the variational principle leads to a system
of closed form evolution equations for an orthonormal basis and corresponding sensitivity coefficients.
This approach allows for the computation of sensitivities with respect to a large number of parameters
in an accurate and tractable manner by extracting correlations between different sensitivities on the
fly. The presented method requires solving forward evolution equations, sidestepping the restrictions
imposed by the forward/backward workflow of adjoint sensitivities. For example, the presented
method, unlike the adjoint equation, does not impose any input/output load and can be used in
applications in which real-time sensitivities are of interest. We demonstrate the utility of the method
for three test cases: (1) computing sensitivity with respect to model parameters in the R\"ossler system,
(2) computing sensitivity with respect to an infinite-dimensional forcing parameter in the chaotic
Kuramoto--Sivashinsky equation, and (3) computing sensitivity with respect to reaction parameters
for species transport in a turbulent reacting flow.
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1. Introduction. Sensitivity analysis is required in a diverse set of evolution-
ary systems that are governed by differential equations in the form of \.v = g(v;\bfitalpha ),

where \.(\sim ) = d(\sim )/dt, v \in \BbbR n is the state space variable and \bfitalpha \in \BbbR d is the de-
sign space. These sensitivities, denoted by v\prime 

i = \partial v/\partial \alpha i, i = 1, . . . , d, are needed
in numerous applications such as gradient based optimization [1, 2], optimal control
[3], grid adaptivity [4], and parameter identification [5], to name a few. The sensi-
tivities are commonly computed via finite difference or by directly solving a forward
sensitivity equation. The computational cost of using finite difference or a sensitivity
equation scales linearly with the number of parameters---making them impracticable
when sensitivities with respect to a large number of parameters are needed. On the
other hand, an adjoint equation (AE) can be solved for computing the sensitivity of
an objective function that depends on the forward sensitivity, v\prime 

i. The computational
cost of solving an AE is independent of the number of parameters, and it requires
solving a single ordinary/partial differential equation (ODE/PDE) for each objective
function of interest.

While AE is certainly a preferred approach for computing sensitivities for sta-
tionary problems, for time-dependent problems, the forward-backward workflow of
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the adjoint solver can pose several challenges. In particular, solving an AE im-
poses a significant storage cost as the AE must be solved backward in time. On
the other hand, the adjoint operator utilizes the forward time-resolved solution of
the nonlinear dynamical system, i.e., v. As a result, the dynamical system must be
solved forward in time, and its time-resolved solution must be stored. The adjoint
solver is then solved backward in time, in which the nonlinear state is read from
the disk at every time step. This workflow is not adequate for problems where real-
time sensitivities are required, e.g., grid adaptivity for time-dependent problems [4].
Moreover, for high-dimensional dynamical systems, i.e., n \sim \scrO (1010), the imposed
input/output (I/O) operations in the AE workflow could lead to insurmountable
limitations.

The I/O limitations will become more restrictive in future high performance com-
puting architectures, and it is one of the major challenges in the transition from cur-
rent sub-petascale and petascale computing to exascale computing [6]. For example,
in high fidelity simulations of turbulent reactive flows, the solution can only be stored
at every 400th time step in order to maintain I/O overhead at a reasonable level,
while important events such as the ignition kernel occur rapidly on the order of 10
simulation time steps [7]. Storing the time-resolved solution for these problems is
required for AE, and it is currently exceeding the acceptable I/O levels; this trend
continues to become even more unfavorable for exascale computing. This alone gives
rise to a growing need for algorithms that can accurately compute sensitivities while
minimizing or eliminating I/O requirements, and this is one of the motivations of the
method presented in this paper.

Sensitivities of a dynamical system with respect to different parameters are of-
ten highly correlated, and therefore they are amenable to low-rank approximations.
To this end, a new low-dimensional model was recently presented in [8] that can de-
scribe transient instabilities in high-dimensional nonlinear dynamical systems. This
approach is based on a time-dependent basis known as the optimally time-dependent
(OTD) modes. The evolution equation for the OTD modes is obtained by minimizing
the functional

(1.1) \scrF ( \.u1, \.u2, . . . , \.ur) =

r\sum 
i=1

\bigm\| \bigm\| \.ui  - L(v(t), t)ui(t)
\bigm\| \bigm\| 2

subject to the orthonormality of the OTD modes, i.e., uT
i uj = \delta ij , where ui \in \BbbR n, i =

1, . . . , r, are the OTD modes. In the above functional, \| u\| 2 = uTu and L(v(t), t) :=
\nabla \bfv g is the instantaneous linearized operator. The optimality condition of the above
variational principle leads to a closed form evolution equation for the OTD subspace:
\.U = (I - UUT )LU, where U = [u1| u2| . . . | ur] \in \BbbR n\times r and I \in \BbbR n\times n is the identity
matrix. It was shown later that the OTD subspace converges exponentially fast to the
eigendirections of the Cauchy--Green tensor associated with the most intense finite-
time instabilities [9]. In this sense, the OTD reduction can be interpreted as a low-
rank subspace that approximates the evolution of the perturbed initial condition in all
directions of the phase space. One of the computational advantages of OTD is that it
only requires solving forward equations. Moreover, the computational complexity of
solving OTD reduction scales linearly with respect to the number of modes. The OTD
reduction has also been used for flow control [10], building precursors for bursting
phenomena [11], and detection of edge manifolds in infinite-dimensional dynamical
systems [12]. We also note that time-dependent bases have been developed in the
context of stochastic reduced order modeling (see, for example, [13, 14, 15, 16, 17])
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and for reduced order modeling of passive and reactive species transport equations
[18] as well as skeletal kinetic model reduction [19].

Our objective in this paper is to approximate sensitivities with respect to a large
number of parameters using forward low-rank systems similar to OTD. In particular,
we seek to reduce the computational cost of solving forward sensitivity equations by
exploiting the real-time correlations between various sensitivities. However, OTD
is not adequate when applied to systems subject to perturbations in a parametric
space. These perturbations are governed by the forced linear sensitivity equation,
\partial v\prime 

i/\partial t = Lv\prime 
i+\partial g/\partial \alpha i, and in general, the OTD subspace is not an optimal basis for

the evolution of v\prime 
i. To this end, we present a new approach based on a time-dependent

basis for solving reduced order models (ROMs) of time-varying linear systems forced
by a high-dimensional function.

The contributions of this paper are twofold: (i) We present a new variational
principle, whose optimality conditions lead to forward real-time low-rank evolution
equations for the approximation of the forced sensitivity equation. We name this
approach ``forced OTD,"" which we will simply refer to as f-OTD. (ii) We extend the
application of the presented method to compute tensor-like sensitivities. An example
of tensor-like sensitivities is in reactive flows where the goal is to compute the sen-
sitivity of ns species with respect to nr reaction parameters. In these systems, the
full sensitivities can be represented as a third order tensor, where the first dimension
is the number of grid points, the second dimension represents species (ns), and the
third dimension represents the parameters (nr). We show that with a single set of or-
thonormal modes, we can approximate sensitivities by exploiting correlations between
all sensitivities. We compare the computational cost of f-OTD against adjoint based
sensitivities where one adjoint variable for each species must be solved [20, 21, 22] for
each objective function of interest. We show how the presented approach can be used
for computing sensitivities with respect to a large number of parameters by solving
forward low-rank evolution equations without the need to store the state variables.
Unlike AE, the sensitivities we compute are not tied to an objective function and can
be used to directly evaluate sensitivities of any derived quantity of interest.

In the sections that follow, we present the formulation of the f-OTD method
and demonstrate a number of outcomes. We start in section 2 with the variational
principle whose optimality conditions lead to a set of closed form evolution equations
for a low-rank approximation of the forced sensitivity equation. In section 3, we
present three demonstration cases: (1) sensitivity with respect to model parameters
in the R\"ossler system, (2) sensitivity with respect to an infinite-dimensional forcing
parameter in the chaotic Kuramoto--Sivashinsky equation, and (3) sensitivity with
respect to reaction parameters for species transport in a turbulent reacting flow. In
section 4, we present the conclusions and implications of our work.

2. Methodology.

2.1. Preliminaries. We denote u(x, t) to be a time-dependent field variable. We
denote the spatial domain as D \subset \BbbR m, where m = 1, 2, or 3. The spatial coordinate is
denoted by x \in D, and the function is evaluated at time t. We introduce a quasimatrix
notation to represent a set of functions in matrix form and denote the quasimatrix
U(x, t) \in \BbbR \infty \times r as [23]

U(x, t) =

\biggl[ 
u1(x, t)

\bigm| \bigm| \bigm| u2(x, t)
\bigm| \bigm| \bigm| . . .

\bigm| \bigm| \bigm| ud(x, t)

\biggr] 
\infty \times r

,
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where the first dimension is infinite and represents the continuous state space con-
tained by D and the second dimension is discrete. Similarly, we use the term qua-
sitensor for tensors whose first dimension is infinity. For example, \bfscrT \in \BbbR \infty \times r1\times r2 is a
third order quasitensor. We define the columnwise inner product of two quasimatrices
U(x, t) \in \BbbR \infty \times r and V(x, t) \in \BbbR \infty \times d as

S(t) =
\bigl\langle 
U(x, t),V(x, t)

\bigr\rangle 
,

where S(t) \in \BbbR r\times d is a matrix with components

Sij(t) =

\int 
D

ui(x, t)vj(x, t)dx,

where ui(x, t) and vj(x, t) are the ith and jth columns of U(x, t) and V(x, t), re-
spectively. The discrete analogue of this operation is the matrix multiplication,
U(t)TWV(t), where U(t) \in \BbbR n\times r and V(t) \in \BbbR n\times d are space discrete with n grid
points and W \in \BbbR n\times n is a diagonal weight matrix. For the case of single-column
quasimatrices u(x, t) \in \BbbR \infty \times 1 and v(x, t) \in \BbbR \infty \times 1, i.e., functions, the above defini-
tion reduces to an inner product between two functions, which induces an L2 norm:\bigl\langle 

u(x, t),v(x, t)
\bigr\rangle 
=

\int 
D

u(x, t)v(x, t)dx, \| u(x, t)\| 2 =
\bigl\langle 
u(x, t),u(x, t)

\bigr\rangle 1
2 .

The Frobenius norm of a quasimatrix is defined as\bigm\| \bigm\| \bigm\| U(x, t)
\bigm\| \bigm\| \bigm\| 
F
=

\sqrt{} 
trace

\bigl\langle 
U(x, t),U(x, t)

\bigr\rangle 
.

Finally, we define multiplication between a quasimatrix and a vector:

c(x, t) = U(x, t)b(t),

where b(t) = (b1(t), b2(t), . . . , br(t))
T \in \BbbR r\times 1 is an arbitrary vector and c(x, t) \in 

\BbbR \infty \times 1 is a function given by c(x, t) = bi(t)ui(x, t). We use index notation, and the
same indices imply summation.

We consider the nonlinear PDE for the evolution of v(x, t):

(2.1)
\partial v(x, t)

\partial t
= \scrN ((v(x, t);\bfitalpha ) , t \in [0, Tf ],

where \scrN is in general a nonlinear differential operator. Our goal is to compute the
sensitivity of v(x, t) with respect to the design parameters \bfitalpha , which can be either
infinite-dimensional, i.e., a function \bfitalpha = \bfitalpha (x, t), or finite-dimensional, i.e., a vector
\bfitalpha = (\alpha 1, \alpha 2, . . . , \alpha d). For the sake of simplicity in the exposition we consider the finite-
dimensional parametric space. Differentiating (2.1) with respect to design parameter
\alpha i leads to an evolution equation for the sensitivity of the dynamical system:

(2.2)
\partial v\prime 

i(x, t)

\partial t
= \scrL (v\prime 

i(x, t)) + f \prime i(x, t;\bfitalpha ),

where v\prime 
i = \partial v/\partial \alpha i is the sensitivity of v(x, t) with respect to \alpha i, \scrL (\sim ) = \partial \scrN /\partial v(\sim )

is the linearized operator, and f \prime i = \partial \scrN /\partial \alpha i is the forcing term.
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2.2. Variational principle for reduced order modeling. Different sensi-
tivities in a dynamical system tend to be highly correlated at any given time, and
therefore, these sensitivities can potentially be approximated effectively by a low-rank
time-dependent subspace. In this section, we present a real-time reduced order mod-
eling strategy that aims to extract this subspace and utilize it for building sensitivity
ROMs. In particular, we present a variational principle, whose first order optimal-
ity conditions lead to the evolution equations of a time-dependent subspace and its
coefficients. We estimate the sensitivities using the low-rank decomposition:

(2.3) V\prime (x, t) = U(x, t)Y(t)T +E(x, t),

where V\prime (x, t)= [v\prime 
1(x, t) | v\prime 

2(x, t)| . . . | v\prime 
d(x, t)]\infty \times d is the sensitivities quasimatrix,

U(x, t) = [u1(x, t) | u2(x, t) | . . . | ur(x, t)]\infty \times r is a quasimatrix representing a
rank-r time-dependent orthonormal basis in which

\bigl\langle 
ui(x, t),uj(x, t)

\bigr\rangle 
= \delta ij , Y(t) =

[y1(t) | y2(t) | . . . | yr(t)]d\times r is the coefficient matrix, and E(x, t) \in \BbbR \infty \times d is the
approximation error. The f-OTD decomposition is shown schematically in Figure 1.

We formulate a variational principle with control parameters \.U(x, t) and \.Y(t)
that seeks to optimally update the subspace U(x, t) and its coefficients Y(t) by min-
imizing the distance between the time derivative of the low-rank approximation and
the full-dimensional sensitivity dynamics:

(2.4) \scrF ( \.U(x, t), \.Y(t)) =

\bigm\| \bigm\| \bigm\| \bigm\| \partial (U(x, t)Y(t)T )

\partial t
 - \scrL 

\bigl( 
U(x, t)Y(t)T

\bigr) 
 - F\prime (x, t;\bfitalpha )

\bigm\| \bigm\| \bigm\| \bigm\| 2
F

,

u1(t)
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Dimension Reduction: 
Extract correlations on the fly
from model 

v′ 1(x
,t)

v′ 2(x
,t)

v′ d(x
,t)

r ≪ d
reduced parametric space 
full parametric space

r →
d →

Fig. 1. Overview of the reduced order modeling strategy. Shown on left in blue is the full-
dimensional system of sensitivities that we seek to model using the f-OTD low-rank approximation.
Shown on right is the low-rank approximation which consists of a set of temporally evolving orthonor-
mal modes (red) and hidden design variables (gray). The hidden design variables are coefficients that
map the orthonormal basis to each sensitivity in the full-dimensional system. That is, each of the d
sensitivities are approximated as a linear combination of the r orthonormal modes, where r \ll d. It
is important to note that the orthonormal basis and hidden design variables are model-driven and
evolve based on the linear sensitivity dynamics. Thus, the proposed method only requires solving a
system of r PDEs and r ODEs for the modes and coefficients, respectively.
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where F\prime (x, t) =
\bigl[ 
f \prime 1(x, t)

\bigm| \bigm| f \prime 2(x, t) \bigm| \bigm| . . .
\bigm| \bigm| f \prime d(x, t)\bigr] \infty \times d

. Taking the time derivative of
the orthonormality condition leads to the following constraint for the minimization
problem:

(2.5)
\bigl\langle 
\.ui(x, t),uj(x, t)

\bigr\rangle 
+
\bigl\langle 
ui(x, t), \.uj(x, t)

\bigr\rangle 
= 0.

We denote \bfitphi ij(t) =
\bigl\langle 
ui(x, t), \.uj(x, t)

\bigr\rangle 
, in which \Phi (t) = [\phi ij(t)] \in \BbbR r\times r. It is easy

to see that \Phi (t) must be a skew-symmetric matrix in order to satisfy (2.5), i.e.,
\bfitphi ji(t) =  - \bfitphi ij(t). Incorporating this constraint leads to the following unconstrained
optimization problem functional:

\scrG ( \.U(x, t), \.Y(t), \lambda (t)) =

\bigm\| \bigm\| \bigm\| \bigm\| \partial (U(x, t)Y(t)T )

\partial t
 - \scrL (U(x, t))Y(t)T  - F\prime (x, t;\bfitalpha )

\bigm\| \bigm\| \bigm\| \bigm\| 2
F

(2.6)

+

r\sum 
i,j=1

\lambda ij(t)
\bigl( \bigl\langle 
ui(x, t), \.uj(x, t)

\bigr\rangle 
 - \bfitphi ij(t)

\bigr) 
,

where \lambda (t) = [\lambda ij(t)] \in \BbbR r\times r are Lagrange multipliers. To derive the optimality
conditions, we follow a procedure similar to the one that was recently presented in [24].
In Appendix A, we show that minimizing the above functional with respect to \.U(x, t)
and \.Y(t) leads to closed form evolution equations for the modes and corresponding
sensitivity coefficients (ROM):

\partial ui(x, t)

\partial t
= \scrL (ui) - 

\bigl\langle 
uj ,\scrL (ui)

\bigr\rangle 
uj +

\bigl[ 
F\prime yk  - 

\bigl\langle 
uj ,F

\prime yk

\bigr\rangle 
uj

\bigr] 
C - 1

ik  - \phi ijuj ,(2.7)

dyi(t)

dt
=

\bigl\langle 
ui,\scrL (uj)

\bigr\rangle 
yj +

\bigl\langle 
F\prime ,ui

\bigr\rangle 
 - \phi ijyj ,(2.8)

where C(t) = [Cik(t)] \in \BbbR r\times r is the low-rank correlation matrix, in which Cik(t) =
yi(t)

Tyk(t). These equations are initialized by solving (2.2) for a single time step
and computing the singular value decomposition (SVD) of V\prime (x, t = \Delta t) such that
U(x, t = \Delta t) contains the first r left singular vectors and Y(t = \Delta t) is the matrix
multiplication of the first r right singular vectors and singular values; see section 2.4.
We show in section 2.3 that the skew-symmetric matrix \phi ij can be taken to be zero,
i.e., \phi ij = 0.

In the following, we make several observations about (2.7) and (2.8): (i) (2.7)
determines the evolution of the f-OTD subspace. For \phi ij = 0, the right-hand side of
(2.7) is equal to the projection of \scrL (U) +FYC - 1 onto the complement of the space
spanned by U. Therefore, if \scrL (U)+FYC - 1 is in the span of U, the f-OTD subspace
does not evolve, i.e., \.U = 0. However, when \scrL (U) + FYC - 1 is not in the span of
U, the f-OTD subspace evolves optimally to follow the right-hand side. Equation
(2.8) is the f-OTD ROM that determines the evolution of the sensitivities within the
f-OTD subspace. (ii) We observe that if we set F\prime (x, t) = 0 in the above equations,
we recover the OTD evolution equations presented in [8]. However, unlike the OTD
equations, where the evolution of the OTD modes are independent of the evolution
of the coefficients (Y), there is a two-way nonlinear coupling between the f-OTD
evolution equations for U and Y. (iii) From the above equations, it is clear to see
that f-OTD extracts the low-rank approximation directly from the sensitivity evolu-
tion equation. In that sense, it is different from data-driven low-rank approximations
such as proper orthogonal decomposition [25, 26, 27] or dynamic mode decomposition
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A134 M. DONELLO, M. H. CARPENTER, AND H. BABAEE

[28, 29], in which the low-rank subspace is extracted from preexisting data. The need
to generate data simply does not exist in the f-OTD workflow. (iv) The computational
cost of solving the f-OTD (2.7) and (2.8) is roughly equivalent to that of solving r
forward sensitivity equations. This is because the evolution of the f-OTD modes de-
scribed by (2.7) inherits the same differential operators from the sensitivity equation.
In fact, (2.7) can be formulated as a forced linear system \partial ui/\partial t = \scrL (ui) + gi. As-
suming the discrete f-OTD modes have the size of U \in \BbbR n\times r and also assuming that
\scrL represents differential operators that can be represented discretely with a matrix
of size n \times n, for implicit time integration, the cost of solving a linear system often
exceeds that of computing gi. Evaluating gi involves computing (i) the low-rank ma-
trix Lrij =

\bigl\langle 
uj ,\scrL (ui)

\bigr\rangle 
, which has the computational complexity of \scrO (r2n), when \scrL 

is sparse and \scrO (r2n2) when \scrL is a full matrix; (ii)
\bigl\langle 
uj ,F

\prime yk

\bigr\rangle 
=

\bigl\langle 
uj ,F

\prime \bigr\rangle yk which
has computational complexity \scrO (nrd+dr2), and (iii) the correlation matrix inversion
C - 1 which has computational complexity \scrO (r3). Since r is often much smaller than
n, the cost of inverting C is negligible. Equation (2.8) is an ODE, and therefore its
computational cost is negligible compared to the f-OTD modes, which are governed
by a PDE. The cost of computing the terms that appear on the right-hand side of
(2.8) is already accounted for in (2.7). Also, the computational storage requirement of
solving r f-OTD modes is equivalent to that of solving r forward sensitivity equations,
as the storage cost of each f-OTD mode is equivalent to a single sensitivity field and
the storage cost of Y is negligible.

2.3. Equivalence. It is important to note that the choice of \phi ij in (2.7) and (2.8)
is not unique, and any skew-symmetric matrix yields an equivalent reduction. Similar
to the OTD equations [8], we choose \phi ij = 0, which corresponds to the dynamically
orthogonal condition. This property is summarized in the theorem below.

Theorem 2.1. Let \{ U(x, t),Y(t)\} and \{ \~U(x, t), \~Y(t)\} represent two reductions
that satisfy (2.7) and (2.8) with corresponding skew-symmetric matrices \Phi (t) and
\~\Phi (t), respectively. If the reductions are equivalent at t = 0, i.e., they are initially
related by an orthogonal rotation matrix R0 \in \BbbR r\times r as U(x, 0) = \~U(x, 0)R0 and
Y(0) = \~Y(0)R0, then the two reductions will remain equivalent for t > 0 with rotation
matrix R(t) governed by \.R = R\Phi  - \~\Phi R.

For proof of the above theorem see Appendix B.

2.4. Approximation error. The approximation error of estimating sensitivi-
ties using f-OTD can be expressed as e(t) = \| V\prime (x, t)  - U(x, t)Y(t)T \| F . This error
can be properly analyzed and better understood by considering two types of error: (i)
the resolved error denoted by er(t) and (ii) the unresolved error denoted by eu(t). The
resolved error is the discrepancy between approximating the sensitivities with rank-r f-
OTD and the optimal rank-r approximation: er(t) = \| U(x, t)Y(t)T - \~U(x, t) \~Y(t)T \| F ,
where \~U(x, t) \in \BbbR \infty \times r and \~Y(t) \in \BbbR d\times r are the optimal rank-r orthonormal modes
and their coefficients, respectively. The unresolved error is the error of the optimal
rank-r approximation: eu(t) = \| \~U(x, t) \~Y(t)T  - V\prime (x, t)\| F , which is a direct result of
truncating the d - r least energetic modes. Thus, the optimal rank-r approximation
is obtained by minimizing

(2.9) \scrE u( \~U(x, t), \~Y(t)) =
\bigm\| \bigm\| \bigm\| \~U(x, t) \~Y(t)T  - V\prime (x, t)

\bigm\| \bigm\| \bigm\| 
F

subject to the orthonormality condition of \~U(x, t) modes. The optimal decomposition
can be obtained by performing instantaneous SVD of the sensitivity matrix, where
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COMPUTING SENSITIVITIES IN EVOLUTIONARY SYSTEMS A135

\~U(x, t) is the matrix of r most dominant left singular vectors of V\prime (x, t) and \~Y(t) =
\~Z(t) \~\Sigma (t), where \~Z(t) \in \BbbR d\times r and \~\Sigma (t) = diag(\~\sigma 1(t), \~\sigma 2(t), . . . , \~\sigma r(t)) are the matrix
of the r most dominant right singular vectors and the matrix of singular values,
respectively. It is straightforward to show that eu(t) = (

\sum d
i=r+1 \~\sigma 

2
i (t))

1/2. The error
eu(t) represents the minimum error that any rank-r approximation can achieve, and
therefore, it amounts to a lower bound for the f-OTD error: e(t) \geq eu(t). On the
other hand, as with any ROM of a time-dependent system, the unresolved subspace
induces a memory error in the f-OTD approximation. This means that the unresolved
error drives the resolved error er(t), and under appropriate conditions, it has been
shown that for similar time-dependent basis low-rank approximations, er(t) can be

bounded by er(t) \leq c1e
c2t

\int t

t0
eu(s)ds [30] for c1, c2 > 0. The interplay between eu(t)

and er(t) can be more rigorously studied within Mori--Zwanzig formalism [31]. These
error estimates can guide an adaptive f-OTD, in which modes are added or removed to
maintain the error below some threshold value [16]; however, these aspects are not in
the scope of this paper and are not explored any further here. Since sensitivities can
either be very small or very large with errors following the same trend, we compute
the relative error percentages as shown here:

(2.10) \% Error =
e(t)

\| V\prime (x, t)\| F
\times 100.

Similar quantities are computed for eu(t) and er(t).

2.5. Mode ranking. In this section we present a procedure to rank the f-OTD
modes and their coefficients according to their significance. To this end, we start by
considering the reduced correlation matrixC(t), which is in general a full matrix. This
implies that the sensitivity coefficients are correlated and there exists a linear mapping
from the correlated coefficients, Y(t), to the uncorrelated coefficients, \^Y(t)\Sigma (t), where
\^Y(t) are the orthonormal coefficients and \Sigma (t) = diag(\sigma 1(t), \sigma 2(t), . . . , \sigma r(t)) is a
diagonal matrix of singular values. To find such a mapping, we consider the eigen-
decomposition of C(t) as follows:

(2.11) C(t)R(t) = R(t)\Lambda (t),

where R(t) \in \BbbR r\times r is a matrix whose columns contain the eigenvectors of C(t) and
\Lambda (t) = diag(\lambda 1(t), \lambda 2(t), . . . , \lambda r(t)) is a diagonal matrix containing the eigenvalues of
C(t). Since C(t) is a symmetric positive matrix, the matrix R(t) is an orthonormal
matrix, i.e., R(t)TR(t) = I, and the eigenvalues are all nonnegative and can be sorted
as \lambda 1(t) > \lambda 2(t) > \cdot \cdot \cdot > \lambda r(t) \geq 0. It is also straightforward to show that the singular
values of the f-OTD low-rank approximation are \sigma i(t) = \lambda i(t)

1/2 for i = 1, 2, . . . , r.
The ranked f-OTD components can be defined as

\^Y(t) = Y(t)R(t)\Sigma  - 1(t), \^U(x, t) = U(x, t)R(t),

where the columns of \^Y(t) and \^U(x, t) are ranked by energy (\sigma 2
i ) in descending order.

We shall refer to \{ \^Y(t)\Sigma (t), \^U(x, t)\} as the bi-orthonormal form of the reduction.

Since the above equations are simply an in-subspace rotation, \{ \^Y(t)\Sigma (t), \^U(x, t)\} 
and \{ Y(t),U(x, t)\} yield equivalent low-rank approximations of the full-dimensional
dynamics. This is easily verified by considering the bi-orthonormal form of the low-
rank approximation as \^U(x, t)\Sigma (t) \^Y(t)T = U(x, t)Y(t)T , where we have made use

of the identity R(t)TR(t) = I. We refer to \^Y as the hidden parametric space, as
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A136 M. DONELLO, M. H. CARPENTER, AND H. BABAEE

each column of matrix \^Y can be taken as a new ranked parameter that represents
the contribution of all parameters (\bfitalpha ). In the following sections, all figures will be
presented in bi-orthonormal form.

3. Demonstration cases.

3.1. R\"ossler system. We first present a simple demonstration of f-OTD by
computing sensitivities of the R\"ossler system. The R\"ossler system is governed by

(3.1)
dv1
dt

=  - v2  - v3,
dv2
dt

= v1 + \alpha 1v2,
dv3
dt

= \alpha 2 + v3(v1  - \alpha 3).

In the above equations, we set \alpha 1 = \alpha 2 = 0.1 and \alpha 3 = 14, which are common
values used to study the chaotic behavior of the attractor. The goal is to calculate
the sensitivity of v with respect to the model parameters \bfitalpha = (\alpha 1, \alpha 2, \alpha 3) as \partial v/\partial \bfitalpha .
To this end, we take the derivative of the above system of equations with respect to
model parameter \alpha i to obtain the sensitivity equation

(3.2)
dV\prime 

dt
= LV\prime + F\prime ,

where

L =

\left[  0  - 1  - 1
1 \alpha 1 0
v3 0 v1  - \alpha 3

\right]  , V\prime =

\left[  v\prime 
1 v\prime 

2 v\prime 
3

\right]  , F\prime =

\left[  0 0 0
v2 0 0
0 1  - v3

\right]  ,

and v\prime 
i is the sensitivity of the position with respect to \alpha i and L \in \BbbR n\times n and F\prime \in 

\BbbR n\times d. We choose a subspace with dimension r = 2 for the low-rank approximation
of the three-dimensional (d = 3) sensitivities (V\prime ). Although it is obvious that OTD
modes are not based on parametric sensitivities and they are based on perturbations in
the initial condition (IC) in all directions of the phase space, we believe it is instructive
to contrast the OTD versus f-OTD to better understand f-OTD. To this end, we build
two real-time ROMs using OTD modes and f-OTD modes. In the case of OTD, we
solve the OTD evolution equation, and we project the forced sensitivity equation (3.2)
onto the OTD modes, resulting in

dUotd

dt
= (I - UotdU

T
otd)LUotd and

dYotd

dt
= YotdU

T
otdL

TUotd + F\prime TUotd.

We also solved the f-OTD evolution equations (2.7) and (2.8) for the finite-dimensional
system. Both OTD and f-OTD modes are initialized with the same subspace, and the
evolution equations are solved for Tf = 10 units of time. These subspaces are initial-
ized by first solving the full-dimensional sensitivity equation (3.2) for one \Delta t = 10 - 2

and then computing the OTD and f-OTD subspaces as the first two left singular vec-
tors of V\prime (x, t = \Delta t). In Figure 2(a), both OTD and f-OTD subspaces are visualized
along with the attractor of the R\"ossler system. The OTD subspace is shown at only
one instant for clarity, and that point corresponds to the case where the nonlinear
dynamics is in the v1  - v2 plane. At this point, the OTD subspace is oriented such
that it nearly coincides with the v1  - v2 plane. This result is to be expected since
the OTD subspace follows the sensitivities associated with the perturbations in the
IC and we know that the IC-perturbed solutions will lie on the same attractor. On
the other hand, the f-OTD subspace is correctly oriented along the most sensitive
subspace for perturbations in the model parameters, i.e., \delta \bfitalpha = (\delta \alpha 1, \delta \alpha 2, \delta \alpha 3), which
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COMPUTING SENSITIVITIES IN EVOLUTIONARY SYSTEMS A137

(a) (b)

Fig. 2. (a) Chaotic R\"ossler attractor with optimal f-OTD subspace shown in green and OTD
subspace shown in black for r = 2. Red arrows depict the orthonormal sensitivity vectors that define
each subspace. (b) Percent error for e(t) plotted versus time for the f-OTD and OTD subspaces.

lead to perturbations in the attractor itself. That is, the perturbed solutions lie on
different attractors which can readily be seen as \delta \bfitalpha results in nonzero \delta v3, despite
v3 \simeq 0. This results in the f-OTD subspace having a large out-of-plane component in
the v3 direction, which the OTD subspace fails to capture in Figure 2(a). In Figure
2(b), the percent errors of e(t) are shown for OTD and f-OTD, which confirms that
f-OTD performs significantly better than OTD. This simple example demonstrates
that the OTD basis is not optimal and may be inaccurate for reduced order modeling
of the forced sensitivity equation.

3.2. Chaotic Kuramoto-Sivashinsky equation. The objective of this exam-
ple is to evaluate the performance of f-OTD in computing sensitivities of a chaotic
system with many positive Lyapunov exponents and a high-dimensional parametric
space. The intent of this example is not to compute the gradient of a time-averaged
quantity for a chaotic system but rather to compute the solution of the sensitivity
equation for a chaotic system with much larger unstable directions than the rank of
the f-OTD subspace. For computing sensitivities of time-averaged quantities, one can
use f-OTD in conjunction with Ruelle's linear response formula [32, 33] to compute
ensemble sensitivities. We also refer the reader to references for methods related to
long-term sensitivities in chaotic systems [34, 35]. To this end, we consider the sensi-
tivity of the Kuramoto--Sivashinsky (KS) equation with respect to a time-dependent
forcing parameter \alpha (t). The KS equation is a fourth order PDE given by

\partial v

\partial t
+

1

2

\partial v2

\partial x
+

\partial 2v

\partial x2
+ \nu 

\partial 4v

\partial x4
= \alpha (t) sin (2\pi x/L), x \in [0, L],(3.3)

where v = v(x, t). Approximately 110 positive Lyapunov exponents exist for the
parameters used in this study: \nu = 1 and L = 1000. Here \alpha (t) represents an infinite-
dimensional parametric space.

To compute the sensitivities numerically, we consider a discrete representation of
\alpha (t) in the interval ti \in [0, Ts], where Ts \leq Tf is a subset of the full integration time
Tf and ti is a discrete instance in time. To this end, we consider the value of \alpha (t) at
discrete time ti = (i  - 1) \times \Delta t, where \Delta t is the time step. This results in a vector,
\bfitalpha = (\alpha 1, \alpha 2, . . . , \alpha d), where \alpha i = \alpha (ti) and d = Ts/\Delta t is the number of instances
in time (i.e., number of parameters). In general, \Delta t can be chosen independently
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of the numerical time integration step size; however, for simplicity, we use the same
value of \Delta t for both the parametric discretization and numerical integration of the
nonlinear solver and f-OTD equations. In this example, we consider \Delta t = 10 - 2 and
Ts = 10, which results in d = 1000 parameters. This leads to the sensitivity of v with
respect to the value of \alpha (t) at 1000 evenly spaced instances in time. We evolve these
sensitivities over the interval t \in [0, Tf ] with Tf = 100. We also choose \alpha (t) = 0 for
ti \in [0, Tf ], and therefore, the nonlinear solver v(t) is the solution of the unforced KS
equation.

We consider the time-discrete form of (3.3) and differentiate with respect to design
parameter \alpha i. This leads to an evolution equation for the sensitivity of v with respect
to \alpha i, in which the linear operator and forcing terms are

(3.4)

\scrL (v\prime 
i) =  - 

\biggl[ 
\partial (vv\prime 

i)

\partial x
+

\partial 2v\prime 
i

\partial x2
+ \nu 

\partial 4v\prime 
i

\partial x4

\biggr] 
and f \prime i = \delta (t - ti) sin (2\pi x/L) , i = 1, 2, . . . , d,

where \delta (t  - ti) = 0 for t \not = ti and \delta (t  - ti) = 1 for t = ti. Our goal is to solve
(3.4) using f-OTD. We discretize the KS equation and the f-OTD equations using
n = 213 = 8192 Fourier modes and use an exponential time-differencing Runge--Kutta
fourth order time stepping scheme [36]. We verify our solution by directly solving
(3.4) for all 1000 sensitivities. Further decreasing \Delta t and increasing the number of
Fourier modes did not change our results. We also compare the f-OTD error with that
of optimal instantaneous same-rank approximation of the full sensitivities, which is
obtained by computing the SVD of V\prime (x, t) at each time. In Figure 3(a), we compare
the reconstruction error of f-OTD (e(t)) with the reconstruction error of same-rank
SVD (eu(t)). We also show the resolved error er(t), which measures the discrepancy
between the f-OTD approximation and the optimal same-rank approximation. We
compute these errors for r = 1, 3, and 5. While the optimal low-rank approximation
with a single mode captures approximately 99\% of the system energy of the full
sensitivity (see Figure 3(b)), the f-OTD approximation performs poorly with only a
single mode, i.e., a dramatic reduction for 1000 sensitivities. This is a direct result of
the memory effect from the lost interactions with the unresolved modes (er(t)) that
ultimately dominate the error for long-term integration. By increasing the number
of f-OTD modes, both e(t) and er(t) decrease. It is possible to control the error in
real time through an adaptive strategy that adds/removes modes with an appropriate
criterion. For example, a candidate criterion could be p = \sigma 2

r(t)/
\sum r

i=1 \sigma 
2
i (t), where

for p < pth the last mode can be removed and for p > pth a new mode can be added.
See [16] for similar strategies for adaptive mode addition and removal.

In Figure 3(b), we compare the 15 largest instantaneous singular values of quasi-
matrix V\prime (x, t) with those obtained from f-OTD with rank r = 5, which shows that
f-OTD closely captures the most dominant subspace. In Figure 4(a) and (b) the or-
thonormalized coefficients of the first two dominant f-OTD modes for the case of r = 5
are compared to the right singular vectors from the instantaneous SVD of V\prime (x, t).
These coefficients represent the hidden parametric space: for example, \^y1 is a series
of weights that represent the contribution of each of the d = 1000 sensitivities to the
most dominant direction of the full sensitivity matrix, \^u1. Due to the chaotic na-
ture of this problem, we observe that these coefficients can be highly time-dependent,
especially for the lower energy modes; see \^y2. Nevertheless, we have demonstrated
that f-OTD extracts the most dominant subspace and associated coefficients of the
sensitivity matrix for a chaotic system with large number of unstable directions and
parameters.
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(a) (b)

Fig. 3. (a) Comparison of the reconstruction error between f-OTD approximation (e(t)) and
optimal rank-r approximation (eu(t)) for different reduction sizes. Resolved error, er(t), dominates
the f-OTD error for long-term integration. Error decreases as the number of modes increases. (b)
Comparison of singular values between f-OTD and optimal low-rank decomposition for r = 5.

(a) (b)

Fig. 4. KS The first two columns of the orthonormalized design variable matrix shown at
different instances in time: (a) \^y1(t), (b) \^y2(t). The horizontal axis corresponds to the ith design
parameter \alpha i.

3.3. Species transport equation: Turbulent reactive flow. In this exam-
ple, we show how a single set of f-OTD modes can lead to significant computational
gains for computing sensitivities in problems with multiple coupled field variables,
where each field variable has a different linear operator. We consider a species trans-
port problem, where parameter identification via sensitivity analysis plays an impor-
tant role in allocating computational and experimental resources to reduce parameter
uncertainty. Moreover, the sensitivity analysis is used to create reduced reaction
mechanisms for complex chemical systems involving a large number of species and
reactions. See [20, 21, 22].

3.3.1. Problem setup. To this end, we consider a 2D incompressible turbulent
reactive flow:

(3.5)
\partial vi

\partial t
+ (w \cdot \nabla )vi = \~\kappa ik\nabla 2vk + si,
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x1

x2

outflow

L

H

vi at inlet vi = 0

Fig. 5. Schematic of the flow visualized with a passive scalar.

where w = (wx1
(x1, x2, t),wx2

(x1, x2, t)) is the velocity field from the 2D incom-
pressible Navier--Stokes equations, vi = vi(x1, x2, t) is the concentration of species
i, \~\kappa ik \in \BbbR ns\times ns is the diffusion coefficient matrix, and si = si(v1,v2, . . . ,vns ;\bfitalpha ) is
the nonlinear reactive source term. We choose a diagonal diffusion coefficient matrix,
where the ith diagonal entry is the diffusion coefficient of the ith species, and ns is
the number of species. For the reactive source term si, we consider the biological
reactions used in [37]. These terms are listed in Table 1 in Appendix C for refer-
ence. A schematic of the flow is shown in Figure 5, where L and H are the channel
length and height, respectively. The no-slip boundary condition is enforced at the
top and bottom walls while the outflow boundary condition is enforced downstream.
At the inlet a parabolic velocity with the average inlet velocity of w is prescribed.
The Reynolds number, based on a reference length of half the height (H/2) and
the kinematic viscosity, \nu is Re = wH/2\nu = 1000. The inlet boundary condition
is vi(0, x2, t) = 1/2

\bigl( 
tanh (x2 +H/2)/\delta  - tanh (x2  - H/2)/\delta 

\bigr) 
for all species, where

\delta = 0.1.
The velocity field is governed by a 2D incompressible Navier--Stokes equation. We

solved the velocity field once as it is independent from the species using the spectral/hp
element method with 4008 quadrilateral elements and polynomial order 5. For more
details on the spectral element method see, for example, [38, 39, 40]. We then solve
the species transport equations and f-OTD equations in the rectangular domain shown
by dashed lines in Figure 5. In the rectangular domain, we used structured spectral
elements with 50 elements in the x1 direction and 15 elements in the x2 direction.
We used spectral polynomial of order 5 in each direction. The velocity field was
interpolated onto this grid. The f-OTD equations, which are presented in the next
sections, and the species transport equation are integrated forward in time using
fourth order Runge--Kutta with \Delta t = 5\times 10 - 4.

3.3.2. f-OTD formulation. Our goal is to calculate sensitivity of the species
concentration with respect to the reaction parameters \bfitalpha = (\alpha 1, \alpha 2, . . . , \alpha nr ), where
nr is the number of reaction parameters. To this end, we take the derivative of the
above equation with respect to reaction parameter \alpha j to obtain an evolution equation
for the sensitivity:

(3.6)
\partial \~v\prime 

ij

\partial t
+ (w \cdot \nabla ) \~v\prime 

ij = \~\kappa ik\nabla 2\~v\prime 
kj + \~\scrL \bfs ik \~v

\prime 
kj + \~s\prime ij ,

where \~v\prime 
ij = \partial vi/\partial \alpha j \in \BbbR \infty \times 1 is the sensitivity of the concentration of species vi with

respect to reaction parameter \alpha j , \~\scrL \bfs ik = \partial si/\partial vk is the linearized reactive source

term, and \~s\prime ij = \partial si/\partial \alpha j . In the above equation, \~\scrL \bfs ik \~v
\prime 
kj should be interpreted as

a matrix-matrix multiplication for any (x1, x2) point in the physical space. In this
notation, sensitivities are represented by a quasitensor, i.e., \~V\prime = [v\prime 

ij ] with i =

1, 2, . . . , ns and j = 1, 2, . . . , nr, where \~V\prime \in \BbbR \infty \times ns\times nr is the third order quasitensor
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Fig. 6. Schematic of the tensor flattening from a 3D quasitensor to a 2D quasimatrix.

depicted in the left-hand side of Figure 6. Here \~\cdot denotes terms associated with the
tensor equation. In the discrete representation of \~V\prime , the dimension \infty is replaced
with the number of grid points.

Solving for sensitivities involving \~v\prime 
ij using an adjoint approach would require

solving ns AEs: one adjoint field for each species. See, for example, [20, 21, 22].
However, it is important to note that these AEs are tied to a specific objective function
and do not directly compute \~v\prime 

ij . Consequently, each subsequent objective function
would require solving another ns AEs. To directly solve for \~v\prime 

ij using f-OTD, one
could also solve for ns sets of f-OTD modes, i.e., one set of f-OTD modes for each
species. This straightforward approach would only exploit the correlation between
sensitivities of each species separately, i.e., correlations between v\prime 

ij for a fixed i, while
leaving the correlations between sensitivities of different species unexploited. In this
example, we demonstrate how a single set of f-OTD modes can be used to accurately
model the entire sensitivity tensor. Therefore, the compression ratio both in terms
of memory and computational cost in comparison to the full sensitivity equation is
r/d. In comparison to AE, the compression ratio is r/ns. Also, the f-OTD is a
forward system and does not impose any I/O operation. To this end, we flatten the
sensitivity tensor, as shown in Figure 6, which results in a quasimatrix of size \infty \times d.
Here, d = ns \times nr, where ns = 23 and nr = 34. This leads to a total of d = 782
sensitivity equations that we seek to compute. In Appendix D, we show that the
flattened sensitivity evolution equation is

(3.7)
\partial v\prime 

m

\partial t
+ (w \cdot \nabla )v\prime 

m = \kappa mn\nabla 2v\prime 
n + \scrL \bfs mn

v\prime 
n + s\prime m,

wherem(i, j) = j+(i - 1)nr and n(i\prime , j\prime ) = j\prime +(i\prime  - 1)nr, resulting inm,n = 1, 2, . . . , d.
Equation (3.6) is a tensor evolution equation, whereas (3.7) is the equivalent matrix
evolution equation. The tensor flattening carried out here is similar to the unfolding
carried out in the Tucker tensor decomposition [41]. However, unlike Tucker tensor
decomposition, we do not consider flattening the tensor in the other two dimensions
of species and parameters. Each yk(t) is a vector of size (nsnr) \times 1 and contains
coefficients for species and parameters. Once the sensitivity tensor is flattened to a
quasimatrix, we use f-OTD to extract a low-rank structure from the quasimatrix. In
(3.7), the linear operator changes from one species to the other due to the different
diffusion coefficients \kappa mn. In Appendix D we show how f-OTD evolution equations
can be derived for this case, which is different from the previous demonstration cases.

We solve (D.2) and (D.3) for different f-OTD ranks along with the species trans-
port equation (3.5). In Figure 7(a) the f-OTD error (e(t)) and optimal low-rank
approximation error (eu(t)) are shown using three different ranks of r = 2, 5, and 8.
Again, we observe that the growth of e(t) surpasses eu(t) for long-term integration as
a direct result of the lost interactions with the unresolved modes. However, with only
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5--8 modes, we have shown that f-OTD can approximate 782 sensitivities with error on
the order of 0.1\%. These results can be explained by studying Figure 7(b), where we
observe that more than 99\% of the system energy is captured by the reduction. The
\% energy is calculated from the singular values as \% En. =

\sum r
i=1 \sigma 

2
i /

\sum d
i=1 \sigma 

2
i \times 100

and can be used to get a sense of the dimensionality of the system when expressed
in the time-dependent basis. Since the system is truly low-dimensional in the time-
dependent basis, the f-OTD algorithm is able to extract the latent features associated
with the most dominant singular values and successfully approximate the full sensi-
tivity tensor with a high degree of accuracy.

In Figure 8, the time-dependent evolution of the three most dominant f-OTD
modes is shown. These modes are energetically ranked where low mode numbers
correspond to larger (higher energy) structures and high mode numbers correspond
to finer (lower energy) structures in the flow. As opposed to static bases, such as
proper orthogonal decomposition (POD) or dynamic mode decomposition (DMD),
the f-OTD modes evolve with the flow and exploit the instantaneous correlations
between sensitivities. While this system is low-dimensional in the time-dependent

(a) (b)

Fig. 7. (a) Percent error plotted as a function of time. Error decreases as the number of modes
r increases. (b) Singular values plotted as a function of time for r = 8.
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Fig. 8. First three orthonormal f-OTD modes shown for r = 8. Each row shows the modes at
a different instance in time.

D
ow

nl
oa

de
d 

09
/1

6/
22

 to
 1

32
.1

74
.2

55
.1

16
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPUTING SENSITIVITIES IN EVOLUTIONARY SYSTEMS A143

<latexit sha1_base64="m6anBtknFIfHWWeOXDG/7Zz/EYQ=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFW5F0EYI2lhGNCaQHGFvs5cs2ds7dueEEPITbCwUxNY/ZOe/cZNcoYkPBh7vzTAzL0yVtOj7315hZXVtfaO4Wdra3tndK+8fPNokM1w0eKIS0wqZFUpq0UCJSrRSI1gcKtEMhzdTv/kkjJWJfsBRKoKY9bWMJGfopHu8ot1yxa/6M5BlQnNSgRz1bvmr00t4FguNXDFr29RPMRgzg5IrMSl1MitSxoesL9qOahYLG4xnp07IiVN6JEqMK41kpv6eGLPY2lEcus6Y4cAuelPxP6+dYXQZjKVOMxSazxdFmSKYkOnfpCeN4KhGjjBupLuV8AEzjKNLp+RCoIsvL5PmWZWeVym9O6/UrvM8inAEx3AKFC6gBrdQhwZw6MMzvMKbp7wX7937mLcWvHzmEP7A+/wBaGuNsw==</latexit> t
=

1
<latexit sha1_base64="So/IDZa5gxTkHyYIjKGNTupSMRc=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oBeh6MVjRWsLbSib7aZdutmE3YlQQn+CFw8K4tU/5M1/47bNQVsfDDzem2FmXpBIYdB1v53Cyura+kZxs7S1vbO7V94/eDRxqhlvsljGuh1Qw6VQvIkCJW8nmtMokLwVjG6mfuuJayNi9YDjhPsRHSgRCkbRSvd4dd4rV9yqOwNZJl5OKpCj0St/dfsxSyOukElqTMdzE/QzqlEwySelbmp4QtmIDnjHUkUjbvxsduqEnFilT8JY21JIZurviYxGxoyjwHZGFIdm0ZuK/3mdFMNLPxMqSZErNl8UppJgTKZ/k77QnKEcW0KZFvZWwoZUU4Y2nZINwVt8eZm0zqperep5d7VK/TrPowhHcAyn4MEF1OEWGtAEBgN4hld4c6Tz4rw7H/PWgpPPHMIfOJ8/a3WNtQ==</latexit> t
=

3
<latexit sha1_base64="vw9RbJzuRpawNq3V0ysAoniuHD8=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoheh6MVjRWsLbSib7aZdutmE3YlQQn+CFw8K4tU/5M1/47bNQVsfDDzem2FmXpBIYdB1v53Cyura+kZxs7S1vbO7V94/eDRxqhlvsljGuh1Qw6VQvIkCJW8nmtMokLwVjG6mfuuJayNi9YDjhPsRHSgRCkbRSvd4dd4rV9yqOwNZJl5OKpCj0St/dfsxSyOukElqTMdzE/QzqlEwySelbmp4QtmIDnjHUkUjbvxsduqEnFilT8JY21JIZurviYxGxoyjwHZGFIdm0ZuK/3mdFMNLPxMqSZErNl8UppJgTKZ/k77QnKEcW0KZFvZWwoZUU4Y2nZINwVt8eZm0zqperep5d7VK/TrPowhHcAyn4MEF1OEWGtAEBgN4hld4c6Tz4rw7H/PWgpPPHMIfOJ8/bn+Ntw==</latexit> t
=

5

α1 α2 … α34 α1 α2 … α34

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

<latexit sha1_base64="ZJeJzeLwauME9FlDd8CWERCRgdc=">AAAB/nicbVDLSsNAFJ3UV62vqLhyEyxC3ZREFF0W3bisYB/QhDCZTtqhk0mYuRFKCPgrblwo4tbvcOffOGmz0NYDA4dz7uWeOUHCmQLb/jYqK6tr6xvVzdrW9s7unrl/0FVxKgntkJjHsh9gRTkTtAMMOO0nkuIo4LQXTG4Lv/dIpWKxeIBpQr0IjwQLGcGgJd88cscYMjfCMA7CbJrnvtOAM9+s2017BmuZOCWpoxJt3/xyhzFJIyqAcKzUwLET8DIsgRFO85qbKppgMsEjOtBU4IgqL5vFz61TrQytMJb6CbBm6u+NDEdKTaNATxY51aJXiP95gxTCay9jIkmBCjI/FKbcgtgqurCGTFICfKoJJpLprBYZY4kJ6MZqugRn8cvLpHvedC6b9v1FvXVT1lFFx+gENZCDrlAL3aE26iCCMvSMXtGb8WS8GO/Gx3y0YpQ7h+gPjM8fPHqVpg==</latexit>
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Fig. 9. Orthonormalized f-OTD coefficients \^y1(t) and \^y2(t) visualized as a matrix with rows
corresponding to species concentration and columns corresponding to reaction parameters. Color
map shows most dominant sensitivities at different time instances.

basis, when expressed in a POD or DMD basis, the system is high-dimensional and
many modes are needed to capture the complex spatiotemporal evolution of V\prime . See
[24] for comparison between a time-dependent basis versus POD and DMD, and see
[42] for a recent review of ROM techniques.

To demonstrate the interpretability of the f-OTD decomposition, we show how
the hidden parameter space represented by \^Y(t) can be used to identify the most
important reaction parameters. In this context, importance refers to a parameter
for which a small change in its value elicits a large change in the response of the
system (i.e., highly sensitive). To demonstrate this capability of f-OTD, the first
two sensitivity coefficients are visualized as matrices in Figure 9, where each \^yi is a
d\times 1 vector that has been reshaped into an ns \times nr matrix. In this form, each v\prime 

ij is
visualized using a heat map of the sensitivity coefficients, with rows corresponding to
species i and columns corresponding to reaction parameter j. Using this heat map,
Figure 9 shows that only a handful of sensitivities are nonzero, while the majority
have zero contribution for the entire duration of the simulation.

4. Conclusions. We present a real-time reduced order modeling approach for
the computation of sensitivities in evolutionary systems governed by time-dependent
ODEs/PDEs. The computational cost of solving the f-OTD equations of rank r is
roughly equivalent to that of solving r forward sensitivity equations. We demonstrated
that the rank of f-OTD for two diverse applications is much smaller than the number
of sensitivity fields. In contrast to adjoint based methods, f-OTD is not tied to an
objective function and requires solving a system of forward equations that does not
require any I/O operation. We showed that a single set of f-OTD modes can be
formulated to compress the sensitivities of multivariable PDEs. We demonstrated

D
ow

nl
oa

de
d 

09
/1

6/
22

 to
 1

32
.1

74
.2

55
.1

16
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A144 M. DONELLO, M. H. CARPENTER, AND H. BABAEE

this capability by computing sensitivities of multiple species with respect to reaction
parameters in a turbulent reactive flow.

We have contrasted the f-OTD with OTD and demonstrated why OTD is not ap-
propriate for parametric/forced sensitivity analysis. In contrast to traditional ROM
approaches, f-OTD extracts the low-rank approximation directly from the sensitivity
equations as opposed to a data-driven approach, such as POD or DMD, which requires
the full-dimensional sensitivity data. The data-driven techniques have the computa-
tional advantage that the modes are computed once and the cost of solving ROM is
usually insignificant. However, the low-rank subspace in the data-driven approach
is fine-tuned to particular operating conditions, whereas the f-OTD subspace evolves
with the dynamics of the system and does not require such fine-tuning. As such, f-
OTD is an on the fly model compression that is achieved by extracting instantaneous
correlated structures in the solution.

We conclude with a word of caution for using the presented approach to compute
sensitivities for a generic system. Although we have only dealt with multivariable
PDEs with homogeneous fields and homogeneous parameters, special care must be
taken when dealing with heterogeneous fields and/or parameters in order for (2.7)--
(2.8) and (D.2)--(D.3) to remain dimensionally consistent. Therefore, we make the
following recommendations: (i) when dealing with sensitivities with respect to het-
erogeneous parameters (i.e., parameters with different physical dimension), a weighted
inner product in the parametric space should be applied to appropriately scale the sen-
sitivity fields and extract meaningful correlations between different parameters, and
(ii) when dealing with multivariable PDEs with heterogeneous fields, the PDE should
be nondimensionalized and normalized so that the above tensor unfolding remains
valid and correlations can be extracted across sensitivities of different field variables.

Appendix A. Optimality conditions of the variational principle. For
the sake of brevity, we forgo the explicit written dependencies on x, t, and \bfitalpha in the
following derivation. Using index notation, we start by expanding (2.6):

\scrG ( \.U, \.Y, \lambda ) =
\bigl\langle 
\.ui, \.uj

\bigr\rangle \bigl( 
yT
i yj

\bigr) 
+
\bigl\langle 
ui,uj

\bigr\rangle \bigl( 
\.yT
i \.yj

\bigr) 
+ 2

\bigl\langle 
\.ui,uj

\bigr\rangle \bigl( 
yT
i \.yj

\bigr) 
 - 2

\bigl\langle 
\.ui,\scrL (uj)

\bigr\rangle \bigl( 
yT
i yj

\bigr) 
 - 2

\bigl\langle 
ui,\scrL (uj)

\bigr\rangle \bigl( 
\.yT
i yj

\bigr) 
+
\bigl\langle 
\scrL (ui),\scrL (uj)

\bigr\rangle \bigl( 
yT
i yj

\bigr) 
 - 2

\bigl\langle 
\.ui,F

\prime yi

\bigr\rangle 
 - 2

\bigl\langle 
ui,F

\prime \.yi

\bigr\rangle 
+ 2

\bigl\langle 
\scrL (ui),F

\prime yi

\bigr\rangle 
+
\bigm\| \bigm\| F\prime \bigm\| \bigm\| 2

F
+ \lambda ij

\bigl( \bigl\langle 
ui, \.uj

\bigr\rangle 
 - \phi ij

\bigr) 
.

The first order optimality condition requires that the derivative of \scrG with respect to
\.U, \.Y, and \lambda vanish. The derivative of \scrG with respect to \lambda produces the time derivative
of the orthonormality constraint given by (2.5). Provided that the f-OTD modes are
orthonormal at t = 0, the time integration of (2.5) reproduces the orthonormality
condition of the f-OTD modes for t > 0:

\bigl\langle 
ui,uj

\bigr\rangle 
= \delta ij . To take the derivative of \scrG 

with respect to \~\.uk we use the Fr\'echet differential as follows:

\scrG \prime | \.\bfU \triangleq lim
\epsilon \rightarrow 0

\scrG ( \.U+ \epsilon \.U\prime , \.Y, \lambda ) - \scrG ( \.U, \.Y, \lambda )

\epsilon 
.

Using the above definition we have

\scrG \prime | \.\bfu k
= 2

\bigl\langle 
\.u\prime , \.uj

\bigr\rangle \bigl( 
yT
k yj

\bigr) 
+ 2

\bigl\langle 
\.u\prime ,uj

\bigr\rangle \bigl( 
yT
k \.yj

\bigr) 
 - 2

\bigl\langle 
\.u\prime ,\scrL (uj)

\bigr\rangle \bigl( 
yT
k yj

\bigr) 
 - 2

\bigl\langle 
\.u\prime ,F\prime yk

\bigr\rangle 
+ \lambda jk

\bigl\langle 
\.u\prime ,uj

\bigr\rangle 
= 0.
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The above equation can be written as
\bigl\langle 
\.u\prime ,\nabla \.\bfu k

\scrG 
\bigr\rangle 
, and we observe that for any arbi-

trary direction \.u\prime , we must satisfy \nabla \.\bfu k
\scrG = 0. This leads to the following condition:

(A.1) \nabla \.\bfu k
\scrG = 2 \.uj

\bigl( 
yT
k yj

\bigr) 
+ 2uj

\bigl( 
yT
k \.yj

\bigr) 
 - 2\scrL (uj)

\bigl( 
yT
k yj

\bigr) 
 - 2F\prime yk + \lambda jkuj = 0.

To eliminate \lambda jk, we take the inner product of ul with (A.1) to obtain

\langle ul,\nabla \.\bfu k
\scrG \rangle = 2\phi lj(y

T
k yj) + 2\delta lj

\bigl( 
yT
k \.yj

\bigr) 
 - 2

\bigl\langle 
ul,\scrL (uj)

\bigr\rangle \bigl( 
yT
k yj

\bigr) 
 - 2

\bigl\langle 
ul,F

\prime yk

\bigr\rangle 
+ \lambda jk\delta lj = 0,

where we have used
\bigl\langle 
ul, \.uj

\bigr\rangle 
= \phi lj and

\bigl\langle 
ul,uj

\bigr\rangle 
= \delta lj . Rearranging for \lambda lk gives

\lambda lk = 2
\bigl[ 
 - \phi lj(y

T
k yj) - 

\bigl( 
yT
k \.yl

\bigr) 
+
\bigl\langle 
ul,\scrL (uj)

\bigr\rangle \bigl( 
yT
k yj

\bigr) 
+

\bigl\langle 
ul,F

\prime yk

\bigr\rangle \bigr] 
.

Dividing (A.1) by 2 and substituting \lambda lk gives\bigl[ 
\.uj  - \scrL (uj) +

\bigl\langle 
ul,\scrL (uj

\bigr\rangle 
)ul  - \phi ljul

\bigr] \bigl( 
yT
k yj

\bigr) 
 - F\prime yk +

\bigl\langle 
ul,F

\prime yk

\bigr\rangle 
ul = 0.

Rearranging the above equation for \.uj we get

\.uj = \scrL (uj) - 
\bigl\langle 
ul,\scrL (uj)

\bigr\rangle 
ul +

\bigl[ 
F\prime yk  - 

\bigl\langle 
ul,F

\prime yk

\bigr\rangle 
ul

\bigr] 
C - 1

kj + \phi ljul,

where Ckj = yT
k yj . Similarly, the first order optimality condition of \scrG with respect

to \.yk requires that

\partial \scrG 
\partial \.yk

=
\bigl\langle 
uk,uj

\bigr\rangle 
\.yj +

\bigl\langle 
\.uj ,uk

\bigr\rangle 
yj  - 

\bigl\langle 
uk,\scrL (uj)

\bigr\rangle 
yj  - 

\bigl\langle 
F\prime ,uk

\bigr\rangle 
= 0.

Again, we use
\bigl\langle 
uk,uj

\bigr\rangle 
= \delta kj and

\bigl\langle 
\.uj ,uk

\bigr\rangle 
=  - \phi jk. Rearranging for \.yk gives

\.yk =
\bigl\langle 
uk,\scrL (uj)

\bigr\rangle 
yj +

\bigl\langle 
F\prime ,uk

\bigr\rangle 
+ \phi jkyj .

Appendix B. Equivalence of reductions.

Proof. We prove the equivalence by using the evolution equation for U,Y and
using the matrix differential equation for the rotation matrix R and recovering the
evolution equations for \~U, \~Y. To this end, we substitute U = \~UR and Y = \~YR into
the quasimatrix form of (2.7) and (2.8). The evolution equation for the orthonormal
modes becomes

\.U = \.\~UR+ \~U \.R

= \scrL ( \~U)R - \~UR
\bigl\langle 
\~UR,\scrL ( \~U)R

\bigr\rangle 
+ [F\prime \~YR - \~UR

\bigl\langle 
\~UR,F\prime \~YR

\bigr\rangle 
] + \~UR\Phi .

Substituting \.R = R\Phi  - \~\Phi R and solving for \.\~U yields

\.\~U =
\bigl[ 
\scrL ( \~U)R - \~UR

\bigl\langle 
\~UR,\scrL ( \~U)R

\bigr\rangle 
+ [F\prime \~YR - \~UR

\bigl\langle 
\~UR,F\prime \~YR

\bigr\rangle 
]

+ \~UR\Phi  - \~U[R\Phi  - \~\Phi R
\bigr] 
RT .

Simplifying the above equation and using
\bigl\langle 
\~UR, \cdot 

\bigr\rangle 
= RT

\bigl\langle 
\~U, \cdot 

\bigr\rangle 
and R - 1 = RT , since

R is an orthonormal matrix, results in

\.\~U = \scrL ( \~U) - \~U
\bigl\langle 
\~U,\scrL ( \~U)

\bigr\rangle 
+ [F\prime \~Y  - \~U

\bigl\langle 
\~U,F\prime \~Y

\bigr\rangle 
] \~C - 1 + \~U \~\Phi ,
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where \~C = RCRT and \~C - 1 = RC - 1RT , where C and \~C are similar matrices and
thus have the same eigenvalues. Following a similar procedure, the evolution equation
for the coefficients becomes

\.Y = \.\~YR+ \~Y \.R

= \~YR
\bigl\langle 
\scrL ( \~U)R, \~U

\bigr\rangle 
R+

\bigl\langle 
F\prime , \~U

\bigr\rangle 
R+ \~YR\Phi .

Substituting \.R = R\Phi  - \~\Phi R and solving for \.\~Y yields

\.\~Y =
\bigl[ 
\~YRRT

\bigl\langle 
\scrL ( \~U), \~U

\bigr\rangle 
R+

\bigl\langle 
F\prime , \~U

\bigr\rangle 
R+ \~YR\Phi  - \~Y[R\Phi  - \~\Phi R]

\bigr] 
RT

= \~Y
\bigl\langle 
\scrL ( \~U), \~U

\bigr\rangle 
+
\bigl\langle 
F\prime , \~U

\bigr\rangle 
+ \~Y \~\Phi .

Thus, we have shown that the evolutions of \{ U(x, t),Y(t)\} and \{ \~U(x, t), \~Y(t)\} ac-
cording to (2.7) and (2.8) are equivalent.

Appendix C. Reactive source term specification.

Table 1
Reactive source terms with species concentration denoted by [\cdot ]. Each si is scaled by 102 for time

scale adjustment with the flow and the parameter values are assigned as follows: \alpha 1 = 2.54\times 10 - 2,
\alpha 2 = 160, \alpha 3 = 3.74 \times 10 - 5, \alpha 4 = 0.449, \alpha 5 = 1.12 \times 105, \alpha 6 = 5.13 \times 10 - 4, \alpha 7 = 2.36 \times 10 - 2,
\alpha 8 = 14.6, \alpha 9 = 6.24 \times 10 - 2, \alpha 10 = 140.5, \alpha 11 = 3.93 \times 10 - 4, \alpha 12 = 2.36 \times 10 - 2, \alpha 13 = 14.6,
\alpha 14 = 5.523, \alpha 15 = 160, \alpha 16 = 8.01 \times 10 - 4, \alpha 17 = 1.11 \times 10 - 3, \alpha 18 = 3.105, \alpha 19 = 1060,
\alpha 20 = 1.65 \times 10 - 3, \alpha 21 = 8.177, \alpha 22 = 3160, \alpha 23 = 3.456, \alpha 24 = 2.50 \times 105, \alpha 25 = 1.80 \times 10 - 5,
\alpha 26 = 50, \alpha 27 = 3.70\times 10 - 6, \alpha 28 = 3.00\times 10 - 8, \alpha 29 = 9.01\times 10 - 2, \alpha 30 = 3190, \alpha 31 = 1.52\times 10 - 9,
\alpha 32 = 2.77\times 10 - 2, \alpha 33 = 18, and \alpha 34 = 2.22\times 10 - 4.

s1 = (\alpha 1[13][2])/(\alpha 2 + [2]) - \alpha 3[1][15]

s2 =  - (\alpha 1[13][2]/(\alpha 2 + [2])

s3 = (\alpha 4[9][4]/(\alpha 5 + [4]) - \alpha 6[3] - (\alpha 7[17][3])/(\alpha 8 + [3])

s4 = (\alpha 4[9][4])/(\alpha 5 + [4])

s5 = (\alpha 9[9][6])/(\alpha 10 + [6]) - \alpha 11[5] - (\alpha 12[17][5])/(\alpha 13 + [5])

s6 =  - (\alpha 9[9][6]/(\alpha 10 + [6])

s7 = (\alpha 14[24][8])/(\alpha 15 + [8]) - \alpha 16[7][15] - \alpha 17[16][7]

s8 =  - (\alpha 14[24][8])/(\alpha 15 + [8])

s9 = (\alpha 18[25][10])/(\alpha 19 + [10]) - \alpha 20[9][15]

s10 =  - (\alpha 18[25][10])/(\alpha 19 + [10])

s11 = (\alpha 21[9][12])/(\alpha 22 + [12]) - (\alpha 23[21][11])/(\alpha 24 + [11])

s12 =  - (\alpha 21[9][12])/(\alpha 22 + [12])

s13 = (\alpha 25[9][14])/(\alpha 26 + [14]) - \alpha 27[13][15] - \alpha 28[13][19]

s14 =  - (\alpha 25[9][14])/(\alpha 26 + [14])

s15 =  - (\alpha 3[1] + \alpha 16[7] + \alpha 20[9] + \alpha 27[13])[15]

s16 =  - \alpha 17[16][7]

s17 = (\alpha 29[9][18])/(\alpha 30 + [18]) - \alpha 31[17][19]

s18 =  - (\alpha 29[9][18])/(\alpha 30 + [18])

s19 =  - \alpha 31[17][19] - \alpha 28[13][19]

s20 = 0

s21 = (\alpha 32[20][22])/(\alpha 33 + [22]) - \alpha 34[21][23]

s22 =  - (\alpha 32[20][22])/(\alpha 33 + [22])

s23 =  - \alpha 34[21][23]

D
ow

nl
oa

de
d 

09
/1

6/
22

 to
 1

32
.1

74
.2

55
.1

16
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPUTING SENSITIVITIES IN EVOLUTIONARY SYSTEMS A147

Appendix D. f-OTD derivation for tensor sensitivities. We start by
considering the third order quasitensor \~V\prime = [\~v\prime 

ij ] \in \BbbR \infty \times ns\times nr that we seek to

flatten into a quasimatrix V\prime = [v\prime 
m] \in \BbbR \infty \times d. For ease of reference, we rewrite the

tensor evolution equation (3.6) below:

\partial \~v\prime 
ij

\partial t
+ (u \cdot \nabla ) \~v\prime 

ij = \~\kappa ik\nabla 2\~v\prime 
kj + \~\scrL \bfs ik \~v

\prime 
kj + \~s\prime ij ,

where i, k = 1, 2, . . . , ns and j = 1, 2, . . . , nr. We define the indices m(i, j) = j + (i - 
1)nr and n(i\prime , j\prime ) = j\prime + (i\prime  - 1)nr, where i\prime = 1, 2, . . . , ns and j\prime = 1, 2, . . . , nr. In
the above equation, the terms \~v\prime 

ij and \~s\prime ij are flattened by replacing the index pair
ij with the single index m: v\prime 

m(i,j) = \~v\prime 
ij and s\prime m(i,j) = \~s\prime ij . Next, we define a new

diffusion coefficient matrix \kappa mn \in \BbbR d\times d such that the mth diagonal entry is equal to
the diffusion coefficient of the ith species. That is, \kappa mn is independent of parameter
index j and remains constant across all sensitivities of a given species i. Finally, the
linearized reactive source term is defined as \scrL \bfs m(i,j)n(i\prime ,j\prime ) =

\~\scrL \bfs ii\prime \delta jj\prime , where \delta jj\prime is the

Kronecker delta and n is a dummy index corresponding to v\prime 
n. From this definition,

\delta jj\prime results in nonzero contribution to the summation over n only for sensitivities
with respect to parameter j\prime = j. Putting this all together, the above equation can
be written as

(D.1)
\partial v\prime 

m

\partial t
+ (w \cdot \nabla )v\prime 

m = \kappa mn\nabla 2v\prime 
n + \scrL \bfs mnv

\prime 
n + s\prime m,

where \scrL \bfs mn
v\prime 
n should be interpreted as a matrix-vector multiplication for any (x1, x2)

point in the physical space. As a result of the parametric dependence of the linear
operator, (2.7) and (2.8) do not hold for the tensor flattened equation. Therefore,
we must derive new evolution equations for the f-OTD modes and coefficients for
tensor flattened quantities. Substituting the approximation v\prime 

m =
\sum r

i=1 uiYmi into
the above equation, it is straightforward to show that the evolution equations for the
f-OTD modes and coefficients are

\.ui = - 
\bigl[ 
(w \cdot \nabla )ui  - uj

\bigl\langle 
uj , (w \cdot \nabla )ui

\bigr\rangle \bigr] 
+
\bigl[ 
\nabla 2uk  - uj

\bigl\langle 
uj ,\nabla 2uk

\bigr\rangle \bigr] 
Ynk\kappa mnYmlC

 - 1
il

+
\bigl[ 
\scrL \bfs mnuk  - uj

\bigl\langle 
uj ,\scrL \bfs mnuk

\bigr\rangle \bigr] 
YnkYmlC

 - 1
il +

\bigl[ 
s\prime m  - uj

\bigl\langle 
uj , s

\prime 
m

\bigr\rangle \bigr] 
YmlC

 - 1
il

(D.2)

and

\.Ymj = - 
\bigl\langle 
uj , (w \cdot \nabla )ui

\bigr\rangle 
Ymi +

\bigl\langle 
uj ,\nabla 2ui

\bigr\rangle 
Yni\kappa mn

+
\bigl\langle 
uj ,\scrL \bfs mnui

\bigr\rangle 
Yni +

\bigl\langle 
uj , s

\prime 
m

\bigr\rangle 
,(D.3)

where Y = [Ymi] and the indices m,n = 1, 2, . . . , d and i, j, k, l = 1, 2, . . . , r.
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