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Abstract— To support sustainable infrastructure on the
Moon, NASA must leverage robots to extract lunar resources
for in-situ processing and construction. As part of this effort,
NASA is launching the in-situ resource utilization (ISRU)
Pilot Excavator later this decade to validate a robotic regolith
excavator based on the Regolith Advanced Surface Systems
Operations Robot (RASSOR). RASSOR is designed to extract
and transport regolith to meet the needs of ISRU architectures.
During its mission, Pilot Excavator will be tasked with driving
in test patterns to demonstrate the operational concept. One
of these tests is a circular trajectory around the lander
while avoiding miscellaneous surface hazards such as lunar
rocks. To this end, we utilize dynamic movement primitives to
represent navigation sequences as primitive trajectories. Here,
we introduce a novel obstacle avoidance parameter, which is
configured to avoid rocks throughout testing exercises. We
demonstrate the effectiveness our method in a newly developed
simulation tool called the Simulated Excavation Environment
for Lunar Operations (SEELO) using models based on the
NASA RASSOR 2.0 excavator. After making key changes to the
obstacle avoidance formulation, our results show that the robot
is able to safety and robustly navigate the lunar surface with
densely populated rock obstacles while retaining the desired
circle pattern behavior.

Index Terms— Space Robotics and Automation; Learning
from Demonstration; Mining Robots

I. INTRODUCTION

Establishing an affordable and sustainable human presence
on the Moon necessitates using the resources available on
the lunar surface. In-situ resource utilization (ISRU) is the
practice of making use of these local resources [1]. From the
lunar soil, also referred to as regolith, many vital resources
can be extracted to sustain a habitat such as oxygen for rocket
propellant and human breathing [2], [3], or using the soil
as a construction material [4]. Advanced technologies such
as additive manufacturing [5], [6] have been proposed for
the construction of lunar habitat structures including landing
pads, berms [7], [8], trenches [9], and radiation shields to
name a few. Many of these technologies will utilize robots
to improve operational efficiency [10].

Although robots will be extremely useful for lunar op-
erations, there exists the following fundamental difficulties
in robot operations on the lunar surface: (i) the presence of
rocks [11] poses navigational hazards; (ii) limited communi-
cation bandwidth and high latency hinders the practicality of
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Fig. 1: The SEELO simulation tool depicting a scaled model of
RASSOR 2.0 executing a circular dynamic movement primitive
with obstacle avoidance. Multiple viewports are depicted.

Earth-based teleoperation [12]; (iii) the abrasive properties of
lunar dust accelerates wear-and-tear on mechanical systems
[13], [14], [15]; and (iv) limited ability for the astronauts to
directly interface with robots on the surface means that robots
cannot rely on persistent real-time human supervision [16].
Consequently, ISRU robots must be designed to withstand
these harsh conditions and continuously operate to fulfill
mission goals for mining and construction [9], [10], [17].

As part of robotic precursor missions, excavators such as
the ISRU Pilot Excavator (IPEx) will need to undergo testing
in their relevant environments. This may include driving in
specific patterns on the surface, various excavation geome-
tries, and other tests to verify and validate the functionality
of the excavator. The representation of these tests must be
carefully considered due to limited on-board computational
capability and the need to account for uncontrolled variables
of the unstructured environment during the execution of the
tests. To this end, we use dynamic movement primitives
(DMPs) to represent the class of trajectories these robots
will perform as part of their testing and performance duties.
Specifically, we investigate circle pattern driving since it is
part of the IPEx mission objectives.

Complex sequences of muscle movements have long been
theorized by neuro-biologists to be composed of ‘build-
ing block’ movements known as motor primitives [18].
DMPs attempt to present this theory of motor primitives
within an elegant mathematical framework. Robot learning
from demonstration (LfD) is focused on enabling robots
to autonomously acquire skills to complete tasks via hu-



man observation [19], [20]. Yet, one of the challenges in
LfD is devising learning methods that can generalize, from
demonstrations, and thus enable robots to perform tasks in
dynamic environments. DMPs have been used within LfD
frameworks with great success as they provide the means
of generalizing from a demonstration such that trajectories
can be adapted to new starting and goal locations, and even
adapted mid-execution to account for secondary goals (e.g.,
obstacle avoidance).

In this work, we apply DMPs to a mobile robotic platform
based on the Regolith Advanced Surface Systems Operations
Robot (RASSOR) excavator. Furthermore, we demonstrate
the method in our new Simulated Excavation Environment
for Lunar Operations (SEELO) ISRU simulation tool, Fig. 1.
We focus on circular pattern driving with obstacle avoidance
to represent one of the potential test driving procedures for
NASA’s ISRU Pilot Excavator mission. To the best of our
knowledge, this is the first paper to evaluate the use of DMPs
on a mobile ground vehicle in a simulated representative
environment.

The rest of the paper is structured as follows. We provide
an overview of related research on obstacle avoidance (in-
cluding DMPs) and lunar simulation tools in Section II. The
specifics of the RASSOR excavator along with the mathe-
matical properties of DMPs are described in Section III. In
Section IV, the details of our methodology are presented. The
experimental setup and results are discussed in Section V.
We conclude and provide directions for future work in
Section VI.

II. RELATED WORK

A. Obstacle Avoidance with Movement Primitives

In related work, a bio-inspired approach to obstacle
avoidance called the steering angle [21] has been used in
conjunction with DMPs. The steering angle approach models
human behavior of obstacle avoidance with a differential
equation that relates the angle between a human’s velocity
and obstacle heading to a steering velocity to avoid col-
liding with the obstacle. In prior work, the steering angle
method for obstacle avoidance was applied to DMPs for
robotic applications [22], [23]. These works focused on
obstacle avoidance via robotic manipulators with point-to-
point trajectories using distinct start and goal locations. In
[24], DMPs were applied with the steering angle obstacle
avoidance formulation to a 2D grid-world mobile robotics
simulation. In contrast, we apply obstacle avoidance to a
more sophisticated 3D environment with circular trajectories,
which required key changes not applicable to discrete point-
to-point trajectories.

B. Lunar Rock Obstacle Avoidance

Various obstacle avoidance methods have been proposed
over the years to address navigation around rocks on the
lunar surface. Many of these methods have been tested in
Earth-based field environments with vision-based sensing
[25], [26], [27] to perform reactive obstacle avoidance and
path planning. For conventional vision-based methods, these

Fig. 2: The SEELO simulation depicting RASSOR excavating the
lunar surface. As the robot grates the surface it leaves scoop tracks
similar to the physical platform. We are able to replicate physical
phenomena such as the depletion of on-board batteries and the
increase in mass of the robot when excavating material.

systems are tuned to work with path planners to assess the
traversability of a trajectory. Consequently, these methods do
not adhere to a particular pattern or “type” of trajectory as
planning is based on gross waypoint navigation. Conversely,
our primitive-based method allows us to retain the functional
behavior of the trajectory and govern (via tuning the con-
trollers) the obstacle avoidance term’s strength in perturbing
the primitive trajectory online during navigation.

In other work, an end-to-end reinforcement learning tech-
nique [28] has been demonstrated on lunar rock obstacle
avoidance using vision data as input. End-to-end methods
have the capacity to resolve non-trivial relationships between
states and actions. However, the lack of explainability at
the module-level means that these models are difficult to
audit when they fail [29]. In contrast, using movement
primitive-based trajectories means we know the structure of
the executable behavior and we can modify its parameters in
a deterministic fashion.

Developing a comprehensive lunar robotic simulation is
a challenging problem since fidelity comes at the cost of
performance and both must be carefully balanced. Several
robotic lunar simulation tools are currently under active
development [30], [31]. Nevertheless, to the best of our
knowledge, none support terrain deformation, which is a
unique feature of both SEELO (Fig. 2) and our precursor
simulation developed in prior work [32]. Previously, RAS-
SOR was simulated using Gazebo [33], an open-source 3D
robotics simulation. Gazebo has been used in other works to
simulate the lunar environment (e.g., [30], [31]).

Despite widespread use in the robotics community, Gazebo
lacks the configuration flexibility offered by some game
physics engines such as Unity, thus rendering it unsuitable
for higher fidelity work. In particular, Gazebo does not
natively support terrain deformation whereas SEELO is
designed with this capability in mind. Moreover, Gazebo



Fig. 3: RASSOR 2.0 in the ‘Big Bin’ at NASA’s Kennedy Space
Granular Mechanics & Regolith Operations Laboratory. Here, sen-
sor data was gathered to inform the modeling of our simulation.

is not designed to render photorealistic scenes so it cannot
generate dust or other effects that align with our simulation
goals. We developed SEELO to address the need for a high-
fidelity ISRU excavation simulation. SEELO’s capability also
enables us to explore the use of movement primitives since
our implementation allows us to tightly couple robot control
and physical modeling in a more realistic manner.

III. BACKGROUND

A. RASSOR Excavator

RASSOR 2.0 (also referred to as RASSOR) is a Technol-
ogy Readiness Level 4 (i.e., component/subsystem validation
in a laboratory environment) planetary excavation robot
approximately 2 m in length and 66 kg of mass, Fig 3. Its
counter-rotating bucket drum design enables operation in low
gravity environments where it can efficiently perform deep
regolith excavation and slot trenching. RASSOR’s mechan-
ical design consists of four wheels, two arms, and two sets
of bucket drums, which excavate and store regolith material
[34]. Additionally, RASSOR has on-board vision and inertial
measurement sensors. Each of the robot’s actuators includes
high-fidelity encoders for precise angular measurements. Our
SEELO simulation also possesses similar sensing capabili-
ties. In SEELO, we use a scaled-down model of the RASSOR
excavator to approximate the dimensions of the ISRU Pilot
Excavator as it is under active development.

B. Dynamic Movement Primitives

A DMP is derived from a non-linear spring-damper system
with gains selected to render it critically damped. It is
perturbed with additional forcing terms that generate the
novel behavior captured in a task demonstration. To do this,
the forcing term must be learned from the demonstration
represented as a trajectory. For example, the robot could be
kinesthetically moved to demonstrate the task as the joint
positions are recorded throughout the demonstration. The
forcing term is estimated from the demonstration and then
learned by performing locally-weighted regression. In our

work with mobile robots, we use Cartesian trajectories to
represent robot motion.

The major advantage of DMPs is their generalizability.
Intuitively, executing a basic motor behavior is localized in
space and should be flexible in velocity, along with where the
motion starts and ends, while maintaining the fundamental
behavior. DMPs possess this property as both the start and
goal locations can be adjusted and a separate temporal scalar
can be used to adapt the speed of execution [35]. Another
important characteristic of DMPs is their ability to perform
online adaptation, i.e., the robot can react to environmental
changes mid-execution. This includes obstacle avoidance
[22] and the adaptation based on force feedback [36]. For
instance, this can be seen within exoskeletons where forces
imparted by an operator help tune rhythmic DMPs such that
the suit learns to minimize human effort [37].

The classical one-dimensional DMP is represented as [38]

τ v̇ = K(g − x)−Dv + (g − x0)f(s),

τ ẋ = v, (1)

where x, v ∈ R are the position and velocity, x0, g ∈ R are
the initial and goal positions, and K,D ∈ R+ are constants
for the spring and damping terms. In (1), D = 2

√
K to

render system critically damped, τ is a positive speed scaling
factor, and f is the s dependent forcing function to be
learned. Given the decay term, α, s abstracts away time using
the canonical system and exponentially decays from 1 to 0,
i.e.,

τ ṡ = −αs. (2)

The forcing term is defined as

f(s) =

∑N
i=0 ωi ψi(s)∑N
i=0 ψi(s)

s, (3)

where N Gaussian basis functions, represented by ψi, are
sum weighted against the learned weights ω. With this, (1)
can be rewritten to calculate the target forces. Then, the
weights can be computed using locally weighted regression.

This formulation can be extended to vector form to handle
multiple degrees of freedom [39]. One of the issues in this
formulation is that start and goal locations that are close to
each other will limit the influence of the forcing term. Later
work [22] resolved this by separating the constant g − x0
from the forcing term and dissipating it using s, i.e.,

τ v̇ = K(g − x)−Dv −K(g − x0)s+Kf(s) (4)

In (4), K and D are d×d diagonal matrices for d-dimensional
trajectories. The other notable change is that the contribution
of the constant g − x0 is phased out with s such that the
forcing term is no longer dependent on it.

C. Steering Angle Obstacle Avoidance with DMPs

Building upon the formulation of DMPs in (4), we can
append additional forcing terms to further perturb the behav-
ior of the primitive. For instance, in [23] obstacle avoidance
functionality was extended to DMPs and demonstrated on a
robotic manipulator by incorporating a steering angle term.



This is accomplished by modeling the relationship between
the steering velocity corresponding to the angle between the
velocity of the end-effector, and a vector pointing in the
direction of the obstacle with respect to the current position
of the end-effector. Concretely,

φ̇ = γφ exp(−β|φ|), (5)

where γ is the gain that determines the force the obstacle
avoidance term on the DMP spring-damper system, φ is
the steering angle (described below), and β determines the
acceleration of steering.

When the angle between the current velocity and the
direction to the obstacle is close, we want to steer hard in
a direction away and eventually around the obstacle. Other-
wise, if the robot is moving with a velocity orthogonal to
obstacle heading, no perturbation is necessary. We calculate
the steering angle, φ as

φ = cos−1

(
(o− x)⊤v

|o− x||v|

)
, (6)

where x is the position of the robot, o is the position of
the obstacle, and v is the current velocity of the robot. With
φ, we can then use (5) to calculate the steering velocity to
drive the robot away from the obstacle. We wish to perturb
our original transformation system described in (4) with an
additional term p(x, ẋ) representing the obstacle avoidance
dynamics, i.e.,

τ v̇ = K(g−x)−Dv−K(g−x0)s+Kf(s)+p(x, ẋ), (7)

which incorporates the steering angle methodology previ-
ously discussed. We use (5) and (6) to write

p(x, ẋ) = γRẋφ exp(−βφ), (8)

where R is a rotation matrix with axis

(
(o− x)× ẋ

|o− x||ẋ|

)
rotated by π

2 from [23]. In practice, a threshold is typically
used to assess if an obstacle is further away from the goal
than the robot. However, this will not work with a circular
pattern driving. In the next section, we introduce our method
to overcome this drawback.

IV. METHODOLOGY

A. Avoiding Obstacles in Circular Movement Primitives

In the previous section, we formalized the DMP structure
and described the steering angle approach for obstacle avoid-
ance with discrete point-to-point trajectories. In this section,
we present our contributions for an obstacle avoidance
method that enables practical use of a circular trajectory.
In our work, we consider circular trajectories to have the
same start and goal location. Consequently, some of the
assumptions made in previous work do not apply. Namely,
the distance of the obstacle to the goal location is no longer
an appropriate means of filtering out obstacles. Secondly, a
priori knowledge that a circular movement primitive is being
executed allows us to make another change to the obstacle
avoidance term to improve efficiency. Finally, the obstacle

Fig. 4: The SEELO environment used in the experimental evalua-
tion. The rocks are randomly sampled and placed on the surface.

avoidance formulation previously introduced assumes global
knowledge of obstacles, which may be an infeasible assump-
tion. We address each of these issues separately.

In practice, the original obstacle avoidance formulation
[23] used a threshold to determine if an obstacle was further
away from the goal location than the robot’s current position.
This assumption removed the effect of obstacles “behind”
the robot. In the case of a circular trajectory, we remove this
obstacle filter and instead consider a sensory limit threshold.
Using this threshold, we set a radius around the robot’s
current position to restrict the influence of nearby obstacles.
In our implementation, we modified (8) to be

p(x, ẋ) =
∑

o∈obstacles

{
zγRmẋφ exp(−βφ)δ−1, if z < δ

0, otherwise
(9)

where z = |o − x| and δ is a set threshold representing
the maximum detection distance between the robot and the
obstacle. All obstacles outside the radius specified by δ are
ignored. Without this change, all obstacles (regardless of
distance to trajectory) would perturb the robot since they
will be tangential to the robot during execution. We show
in our experimental results why this change is necessary.
We also define Rm to be a matrix that is rotated by δ/r
where r is the nominal radius of the executed movement
primitive. As the robot heading aligns with the tangent of
the circle, obstacles will bias the avoidance term to drive the
robot towards the outside of the circle. This parameter allows
us to instead adapt the steering of the robot to the interior
of the circle such that it tends towards a shorter path when
deviating from the canonical DMP. When driving the robot
in clockwise circular patterns we multiple δ/r by −1.

B. Simulation Environment

In previous work [32], we developed a 3D simulation
environment using the Unity Game Engine [40] to rep-
resent lunar excavation for reinforcement learning tasks.
Building upon this, SEELO enhanced the fidelity of the
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Fig. 5: In each of the three executions, we see a unique uniformly sampled distribution of rocks (represented by black dots) traversed by
the same circular DMP. The 2D representation of the original circular DMP without any obstacle avoidance (OA) is in red, our method
is in green, and the original obstacle avoidance method is in blue. We use a yellow boundary to indicate the sensing limits of the DMP
with our obstacle avoidance method over the history of the trajectory execution.

terrain deformation and physical modeling of the robot in
addition to consolidating other capabilities. SEELO seeks
to provide life-accurate mission environments and regolith
interaction mechanics while remaining lightweight enough
to run faster than real-time, Fig. 4. These combined features
allow SEELO to be used for mission planning purposes and
offer an environment for lunar robots to perform machine
learning for mobility, excavation, and various other activities.
SEELO uses lunar surface data collected by NASA’s Lunar
Reconnaissance Orbiter to realistically represent proposed
landing sites [41]. The physical and empirical modeling
of the RASSOR excavator at Kennedy Space Center has
informed the attributes of the simulated analogue. This
includes calculating the baseline power usage, empirically-
derived equations relating excavated material to effects on
actuator load, and mobility power calculations.

V. EXPERIMENTS

A. Experimental Setup
We conducted our experiments using the SEELO sim-

ulation. In addition to the scaled model of the RASSOR
excavator, a lunar lander was placed as a marker in which the
robot drove around similar to the IPEx mission objectives.
For our results depicted in Figs. 5-7, we model a challenging
environment [42] by uniformly sampling 10 rock distribu-
tions consisting of 70 rocks each with a volume of 67.8 dm3

per rock. We selected a rock large enough to be considered
non-traversable by the robot. The rocks are distributed within
a 22 m × 22 m worksite with a density of 0.15 rocks/m2.
For each distribution of rocks, we evaluated our modified
obstacle avoidance method (referred to as OA in the figures)
against both the original formulation presented in [23] and
an unmodified DMP without obstacle avoidance. We only
trained the DMP once using a synthetically generated circular
trajectory with a radius of 7.0 m. We also sampled 100
additional rock distributions and quantitatively evaluated the
performance of the obstacle avoidance methods separately.

Within the simulation, we were able to measure the
distance driven and power consumed by the robot throughout
the operation. These measurements are provided as part of
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Fig. 6: A simplified representation of the seven remaining execu-
tions with novel rock distributions. A darker shade of the trajectory
color denotes the associated rock distribution.

the quantitative discussion. We only considered one size of
rock and we exaggerated the rock size to improve visibility
and more clearly demonstrate the capability of our method.
Furthermore, we assessed each DMP-generated trajectory for
traversability with obstacles. We recorded collisions for any
trajectory that causes the robot to go within a 1.5x safety
factor of its radius to the obstacle. The obstacle avoidance
gains can be tuned to increase the boundary between the
robot and obstacle as needed. In all of our experiments, we
set γ to 1500000, β to 10, and the value of δ is 1.5 m.
For the DMP, we set α to 30 and included 1000 Gaussian
basis-functions. We separately tuned the obstacle avoidance
term for the DMP with the original formulation and used
γ = 100000 for all experiments with the exception of
Execution A.

B. Experimental Results

In Fig. 5, we show three of the ten executions. The last
seven executions are displayed in Fig. 6. For the trajectories
depicted in Fig. 5, we see that our method (in green)
only deviates from the canonical DMP (without obstacle
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Fig. 7: A power draw comparison between the three DMP ap-
proaches (with/without OA) across ten trials. In the simulation, we
record the instantaneous power draw from the motors and present
the average (dark lines) and standard deviation (shaded area).

avoidance in red) when an obstacle is directly in its path.
Obstacle avoidance is performed online and the robot is only
aware of the obstacle when within 1.5 m as defined by δ.

The original obstacle avoidance formulation introduced
in [23] (shown in blue) demonstrates worse tracking per-
formance for the circular DMP. In particular, the original
method does not consider proximity nor does it apply a
bound on the distance between the obstacles and the robot
as we have done in our approach. As a result, since most
obstacles are present within the radius of the circular tra-
jectory, the obstacle avoidance term continues to push the
blue trajectory “outward” from the lander in a spiral. This is
not desirable behavior and we tuned the obstacle avoidance
parameters to reduce the effect.

In Fig. 5, the original obstacle avoidance technique in Ex-
ecution A used the same parameters as our method, whereas
in Execution B (and the rest of the tests) we used new
parameters specifically tuned for the original approach. Due
to the influence of the totality of the obstacles, the individual
weight of a single obstacle is diminished, which means that
the trajectory can inadvertently steer into a collision such as
the case in Execution C at position (0.0,−7.5).

In our quantitative evaluation, we found our method re-
quired the robot to drive 44.11±0.65 m on average. In con-
trast, the original obstacle avoidance formulation traversed
46.83 ± 0.49 m across the terrain. The nominal circular
trajectory for the unmodified DMP is 43.45 m, but this was
never achieved in the simulation since a collision with an
obstacle would halt the robot mid-execution. In Fig. 7, we
compare the power consumption of the ten executions across
all three DMP modalities. The “spikes” on the original and
unmodified DMP methods are due to rock collisions mid-
execution. In most cases, these impacts stop the execution
of the robot. Our approach was the only method to reach
the goal state and it successfully completed every test. Con-
sequently, the average power draw for our method is higher
compared to the other methods. When a robot becomes stuck
and the wheels freely spin the power consumption is lowered.

Fig. 8: A top-down view of the SEELO execution of overlayed
DMPs. The left-most robot has hit an obstacle and is stuck on an
incline whereas the second robot using our DMP obstacle avoidance
method can successfully navigate between the rocks.

We did not collide with any obstacles with our methodol-
ogy during the ten trials conducted. Therefore, we conducted
an additional 100 tests with novel rock positions. We found
that our method again avoided all obstacles across the 100
tests, whereas the unmodified DMP would have collided
with 426 obstacles in the environment. Similarly, the original
obstacle avoidance approach collided with 425 obstacles.
Fig. 8 illustrates one of these cases where a robot employing
our method successfully navigates between obstacles and
another robot collides with a rock (shown pitched upward
over the rock) using the unmodified DMP trajectory.

VI. CONCLUSION

In this paper, we used DMPs to represent lunar excavator
trajectories enabling us to define a compact, generalized rep-
resentation of the motion plans on the surface. We deployed
our method in a comprehensive 3D lunar ISRU simulation
(SEELO). During the execution of the method within the
simulation, we adapted the behavior of the DMP to rock
obstacles in the environment. To do this, we devised a
modified approach to obstacle avoidance with DMPs that
enabled us to traverse obstacle-laden environments in circular
patterns. We also compared our technique against the canon-
ical obstacle avoidance method for DMPs and addressed the
quantitative and qualitative differences in our results. As part
of our future work, we will leverage the movement primitives
framework we implemented to investigate rapid-retasking of
robots, implement additional forcing terms to address other
excavator mission criteria, the generation of other types of
primitives relevant to lunar robotic mission operations, and
testing on physical mobile robots.
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