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Abstract: In 2020, Ethiopia had the worst desert locust outbreak in 25 years, leading to food insecurity.
Locust research has typically focused on predicting the paths and breeding grounds based on
ground surveys and remote sensing of outbreak factors. In this study, we hypothesized that it
is possible to detect desert locust cropland damage through the analysis of fine-scale (5–10 m)
resolution satellite remote sensing datasets. We performed our analysis on 121 swarm point locations
on croplands derived from the Food and Agriculture Organization (FAO) of the United Nations,
and 94 ‘non-affected’ random cropland sample points generated for this study that are distributed
within 20–25 km from the ‘center’ of swarm affected sample locations. Integrated Drought Condition
Indices (IDCIs) and Vegetation Health Indices (VHIs) calculated for the affected sample locations for
2000–2020 were strongly correlated (R2 > 0.90) with that of the corresponding non-affected group of
sample sites. Drought indices were strongly correlated with the evaluation Standardized Precipitation
Evapotranspiration Indices (SPEIs), and showed that 2020 was the wettest year since 2000. In 2020,
the NDVI and backscatter coefficient of cropland phenologies from the affected versus non-affected
cropland sample sites showed a slightly wider, but significant gap in March (short growing season)
and August-October (long growing season). Thus, slightly wider gaps in cropland phenologies
between the affected and non-affected sites were likely induced from the locust damage, not drought,
with fine scale data representing a larger gap.

Keywords: desert locust; cropland damage; cropland phenology; Integrated Drought Condition Index

1. Introduction

The Ethiopian economy is heavily dependent on smallholder rain-fed agriculture,
which is vulnerable to natural and anthropogenic catastrophes that in turn leads to food
insecurity [1]. The desert locust, Schistocerca gregaria (Förskal), is the most destructive
herbivory migratory pest in the world [2]. It is highly mobile and feeds on large quantities
of any kind of green vegetation, such as crops, pasture, and fodder. The desert locust has
been a threat to agricultural production, causing starvation in Africa and western Asia
for thousands of years [3,4]. The desert locust is normally a solitary insect that occurs in
deserts and scrubs in northern Africa, the Sahel, the Arabian Peninsula, and parts of Asia to
western India [3]. During this solitary phase, the desert locust has low occurrence and poses
no threat to croplands. The 2019–2021 desert locust upsurge in East Africa and the Arabian
Peninsula followed a series of heavy rainfall events beginning with Cyclone Mekunu
in May 2018 that produced heavy rains in the Rub’al Khali of the Arabian Peninsula,
ending in a drought and creating patches of vegetation [5], followed by Cyclone Luban
in October 2018, leading to swarms being reported in early 2019. These conditions are
conducive for the egg_laying, hatching, development and gregarious formation (swarms)
of desert locusts [3–5]. In the gregarious phase, they can induce extensive agricultural
production damage. Desert locusts may have a life cycle of two to three months, resulting

Remote Sens. 2022, 14, 1723. https://doi.org/10.3390/rs14071723 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14071723
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3830-2528
https://orcid.org/0000-0002-5322-6340
https://doi.org/10.3390/rs14071723
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14071723?type=check_update&version=2


Remote Sens. 2022, 14, 1723 2 of 14

in three to five generations in a year [3–5], and swarms can fly up to 100 km per day [3].
These factors of locust swarm development and mobility have made identifying their
impact on smallholder croplands difficult with remote sensing.

Ethiopian vegetation has been disturbed by locust swarms since the end of 2019 (first
swarm appearance on 25 June 2019) [6] and this round of outbreak has been the worst
in the country for the past 25 years [7,8]. Locusts have invaded more than 200 Woredas
(districts) which occupy over 200,000 hectares of land along the Rift Valley Escarpments,
eastern and southern parts of the country [2]. The FAO has estimated the 2020 desert locust
agricultural production damage in Ethiopia led to acute food insecurity for 8.6 million
people between January and March 2021 [9]. The control effort of the outbreak was limited
to merely minimal human power due to the complexities of war, bad politics, perilous
terrain, and poor proactive institutional preparedness.

Desert locust research has typically focused on predicting their paths and breeding
grounds based on ground surveys and satellite remote sensing of outbreak climate factors.
Through a review of the literature, we observed a knowledge gap for detecting locust dam-
age on croplands using satellite remote sensing datasets. Characterization of desert locust
cropland damage could help efficient rehabilitation and mitigation efforts of food insecurity.
Since higher rainfall and good vegetation growth favors locust infestation, we evaluated if
fine spatial resolution satellite data (5–10 m), such as Planetscope, and Sentinel-1 and -2,
would be able to detect damaged vegetation from locusts.

Drought is a common recurrent phenomenon in Ethiopia that has brought agriculture
production shortfalls which leads to food insecurity and famine [10–12]. The most badly
hit countries were Kenya, Ethiopia, Somalia, and Uganda [10,11] and it forced the worst
humanitarian crisis to occur in the past 10 years. About 13.7 million people were at risk of
hunger in Ethiopia [11]. Due to the 2015/2016 drought, about 18 million people in Ethiopia
were in need of food aid (18 M ≈ 20%, i.e., 1 in 5 people needed food aid) [11–14]. In order to
separate cropland damage from desert locust and drought impacts, we have also analyzed
drought conditions in the region. Remote sensing-based integrated drought indices have
the potential to describe drought conditions comprehensively. Analysis of multiple drought-
related factors, such as precipitation, temperature, soil moisture, and vegetation health
enables the effective characterization of the occurrence, spatial extent and intensity of
drought in a given area [15–17].

2. Data, Study Region, and Methodology
2.1. Datasets and Study Region

The datasets used in this study, their descriptions, and sources, are presented in Table 1.
We have used in situ and reanalysis data, as well as optical, active and passive microwave
satellite datasets to distinguish locust and/or climate impacts on croplands.

Desert Locust swarm site datasets were downloaded from the Food and Agriculture
Organization (FAO) of the United Nations website [6]. These data have observation date,
geographic coordinates, areal extent affected by each recorded swarm, and other similar
information. The FAO website has desert locust data in their various developmental stages
and group formation, namely, bands, hoppers, adult, and swarms. We used the swarm
stage dataset, since Desert Locust crop damage impact is the highest in their gregarious
(swarm) stage. The graduated orange to red-colored sites in Figure 1, are 121 sample desert
locust swarm sites used in this study, while the light green-colored sites correspond to
cropland sample sites from the USGS Global Food Security-Support Analysis Data at 30 m
(GFSAD30 [18]; totals 94; assumed non-affected by locust) used for comparative analysis.
The graduated swarm sample sites are presented by month of locust occurrence from light
orange (1 January 2020) to darker red (13 January 2021). Note that the graduated colors
may not necessarily show swarm occurrence pattern in time. The first locust appearance in
Ethiopia was the 25th of June 2019. The January 2020–January 2021 swarm locations pre-
sented here are selected samples, not all occurrences are presented here; hence, this sample
may not show the distribution pattern through time. We only show when the swarms that
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were analyzed with remote sensing data, and most of the swarms in this sample occurred
in October 2020.
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Figure 1. Map of our 121 affected and 94 non-affected study sample points in croplands superimposed
on Digital Elevation Model (DEM) of Ethiopia [19]. The affected sites are presented with red graduated
colors by month of locust occurrence from light orange (1 January 2020) to darker red (13 January
2021). Most of the swarms presented here occurred in October 2020. (Bottom-left) radii describe the
double-ring buffer approach used for sample points.

We assume the temporal and spatial detail on 5–6 day intervals at 10–50 m resolution
provided by Sentinel-1, and Sentinel-2, and monthly Planet Scope base maps at 5 m
resolution will enable the detection of locust swarm damage.

Planet Scope Base maps of red, green, blue and near-infrared wavelengths at 5 m
spatial resolution were provided free of charge by the Norway’s International Climate and
Forests Initiative (NICFI) [20]. These data are available at monthly temporal resolution
since September 2020, while it stretches back to December 2015 with a quarterly temporal
resolution. The PlanetScope constellation of 3U CubeSats is comprised of Dove, Dove-R
and SuperDove satellites in a 98◦ sun synchronous orbit with crossing times between
9:30–11:30 am [21,22].

The full Sentinel-2 mission comprises twin polar-orbiting satellites with a combined
5-day revisit time [23]. These satellites provide a global dataset since December 2018
and products are systematically generated at the ground segment. We used these level-
2A product assets from the Google Earth Engine (GEE) Data Catalog to calculate NDVI.
The assets contain 12 spectral bands representing surface reflectance (SR).

The Sentinel-1 mission provides a continuous all-weather, day-and-night imagery
from a dual-polarization C-band Synthetic Aperture Radar (SAR) instrument at 5.405 GHz
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(C band) [24]. We have used data from the GEE collection that includes the S1 Ground
Range Detected (GRD) scenes, processed using the Sentinel-1 Toolbox to generate a cali-
brated, ortho-corrected product. We processed the VV (single co-polarization, vertical trans-
mit/vertical receive) and the HH (single co-polarization, horizontal transmit/horizontal
receive) combination bands scenes.

The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra and
Aqua satellites was launched by NASA in 1999 and 2002, respectively, has 36 spectral bands
from which different groups of data products are processed at different spatial and temporal
resolutions tuned for specific applications. For this study, we used MODIS collection 6 level
3 Normalized Difference Vegetation Index (MODIS/006/MOD13Q1) data product from
Google Earth Engine Data Catalog (Table 1). The MODIS NDVI product is computed from
atmospherically corrected bi-directional surface reflectance that has been masked for water,
clouds, heavy aerosols, and cloud shadows. Nadir bidirectional reflectance distributions
functions (BRDF)-Adjusted Reflectance (NBAR) provides improved retrievals of surface
reflectance through consistent normalization of multiple views of the surface to a nadir
view using BRDF to model surface anisotropies [25,26].

The Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) dataset
combines satellite precipitation estimates with in situ station rainfall data and has a spatial
resolution of 0.05◦ [27]. An evaluation of CHIRPS, FLDAS, GPM/TRMM rainfall datasets
with station rainfall dataset in the Ethiopian highlands showed that CHIRPS rainfall had
the least bias and error (ME ≈ −0.2–0.2 mm, MAE ≈ 0.5–2 mm), and the best agreement
(COR ≈ 0.8) [27].

Table 1. Descriptions of datasets used in this study.

S/N Datasets and Sources Spatial Res. Temporal Res. Study Duration Data Variables

1 Locust Hub [6] Point locations with
impacted area (ha) As it occurs January

2020–February 2021 Locust sites

2 Planet Scope Basemaps [20] 5 m (resampled to 50 m) Monthly September
2020–February 2021 NDVI

3 Sentinel 2 L2A Surface
Reflectance [29] 10 m (resampled to 50 m) 5 days * January

2020–February 2021 NDVI

4 Sentinel-1 σ◦ [24] 10 m (resampled to 50 m) 6 days * January
2020–February 2021 VV, VH

5 GFSAD30 [18] 30 m Annual January
2020–February 2021 Cropland points

6 MOD13Q1 [30] 250 m 16 days * January
2000–December 2020 NDVI

7 CHIRPS † [31] 5 km Daily * January
2000–December 2020 rf

8 FLDAS †† [28] 10 km Daily * January
2000–December 2020 Ta, SM

9 GLEAM ††† [32] 25 km Monthly January
2000–December 2020 PET

† Climate Hazards Group InfraRed Precipitation with Station data. †† Famine Early Warning Systems Network
(FEWS NET) Land Data Assimilation System. ††† Global Land Evaporation Amsterdam Model. * Aggregated to
monthly datasets.

Data from the Famine Early Warning Systems Network (FEWS-Net) Land Data As-
similation System (FLDAS) included gridded meteorological forcing fields and modeled
hydrological variables [28]. The FLDAS air temperature field is derived from the Na-
tional Oceanic and Atmospheric Administration (NOAA) Global Data Assimilation Sys-
tem (GDAS) and NASA Modern Era Reanalysis for Research and Applications version
2 (MERRA-2) datasets. The FLDAS soil moisture distribution data was derived from a
combination of the Modern Era Retrospective-analysis for Research and Applications Ver-
sion 2 (MERRA-2) and daily Climate Hazards Center InfraRed Precipitation with Stations
(CHIRPS) data. We used the National Centers for Environmental Prediction/Oregon State
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University/Air Force/Hydrologic Research Lab (NOAH) model derived 0.1◦ × 0.1◦ daily
Eastern Africa Region data product.

2.2. Methods
2.2.1. Desert Locust Swarm Data

For this study, generally, data variables were extracted for 2020 locust and cropland
sample points using Google Earth Engine (GEE), and further processed using R. R is a pro-
gramming language originally designed for statistical computing and graphics. Currently,
R programming is widely used for processing remote sensing and GIS datasets. In addition,
ArcGIS was used for buffer analysis around points, for zone preparation and sample selec-
tion. We generated corresponding sample points on neighboring croplands from the United
States Geological Survey (USGS) Global Food Security-Support Analysis Data at 30 m
(GFSAD30) using GEE. The locust datasets have swarm areal coverages between about
1 ha–35,500 ha. The following assumptions were made for this analysis: (1) locust swarm
location points were taken at the geographic center of the respective swarms; and (2) crop-
land area is uniform within these study swarm points. Thus, (1) swarm-cover linear radius
in meters:

(r)=
√

Area (ha) ∗ 50, i.e., r ∼ 50 m–10, 000 m (10 km) (1)

A double-ring buffer of 20 km (inner-ring) and 20–30 km (outer-ring) was created for
all swarm points (Figure 1). Cropland sample points were clipped by the swarm outer-
ring buffer (94 samples). To get a comparable number of swarm location sample points,
we selected back swarm point samples that were within 25 km from selected cropland
pixels. In such a process, we have selected 121 swarm sample points that are located
between 20 km and 25 km from selected cropland sample points. Swarm points that were
more than 25 km away from cropland sample points were discarded, which highly reduced
the available swarm sample points. This was performed to be in line with the 25 km similar
climatic influence zone assumption.

Assuming the swarm sites as center is the easier assumption that we propose, so that
we are able to do a buffer analysis and select corresponding “non-affected” sites in reference
to the swarm points. Fortunately, assuming the swarm sites as locust swarm edges will not
affect our analysis, since we generate the corresponding “non-affected” sites 20 km away
from swarm sites (between 20–25 km). Note that the reported larger locust swarm diameter
is 20 km.

2.2.2. Approach for Analyzing Satellite Land Surface Remote Sensing Products

We applied Normalized Difference Vegetation Index (NDVI) [33] on both the aggregate
swarm “affected” and aggregate “undisturbed” (non-affected) sample points for 2020 to
estimate locust swarm damage to croplands at observational scales from 5 m to 250 m
and spatially resampled these data to 50 m to 500 m to reduce atmospheric contamination.
Cloud and cloud shadow masking, and speckle removal were applied to the optical and
microwave products used in this study. The 250 m native spatial resolution 16-day MODIS
surface reflectance data were resampled using a 2 × 2 square kernels mean value of the
sample. We calculated Sentinel-2 L2A NDVI weekly data as per-pixel maximum value
monthly composites. Our intent was to determine if each satellite time-series at moderate
and coarse resolution had a significant departure from “normal” in swarm locations as
compared to non-affected sites. We also calculated NDVI from Planet Scope Monthly
Base maps for September 2020 through February 2021 and resampled to 50 m for both
aggregated sites.

Sentinel-1 backscattering coefficient data from the Ground Range Detected (GRD)
scenes Interferometric wide swath mode (IW) for the single co-polarization vertical trans-
mit/vertical receive (VV) and dual-band cross-polarization vertical transmit/horizontal
receive (VH) descending path was used in this study. Sentinel-1 may resolve differences in
radar time series backscatter coefficients (σ◦) from locust damage, as others have found
utility in these data for assessing crop damage from other types of disturbance [34–36].
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Both Sentinel-2 surface reflectance and Sentinel-1 SAR backscattering coefficients were
resampled using 5 × 5 square kernels resulting in 50 m spatial resolution datasets.

2.2.3. Approach for Analyzing Climate Data

For drought analysis, we calculated soil moisture condition index (SMCI), vegetation
condition index (VCI), temperature condition index (TCI), and precipitation condition
index (PCI). Using these multi-indices will help us to detect the effects of all types of
droughts (meteorological, hydrological, agricultural, and ecological). These indices were
combined using optimal weights with respect to the corresponding Standardized Precipita-
tion Evapotranspiration Index (SPEI) to get an Integrated Drought Condition Index (IDCI)
and Vegetation Health Index (VHI) as in Table 2. Such drought analysis methods have
been well developed over several years [11,37–39]. Initial values for the weights were
determined based on multiple linear regression of the factors with the SPEI time-series
datasets. Then, other possible combinations closer to the initial combinations were made
and a temporal analysis was conducted on a 5 km grid for all datasets. Note that the
individual datasets used for the drought analysis have different native spatial resolution
(Table 1). A 1-month, 3-month, 6-month, and 12-month seasonal accumulation of the
CHIRPS precipitation data resulted in a similar temporal aggregation of the PCI and the
corresponding derived SPEI. The drought condition indices were correlated with the cor-
responding SPEI, and thus we determined the best coefficients of the individual drought
condition indices that yielded the more accurate IDCI and VCI. We calculated the SPEI from
CHIRPS rainfall and the Global Land Evaporation Amsterdam Model (GLEAM) potential
evapotranspiration (PET) that was mainly developed from in situ datasets [32,40,41]. In a
previous study conducted in the same study area as our study, CHIRPS rainfall showed
the least bias and error (ME ≈ −0.2–2 mm, MAE ≈ 1.5–2 mm), and the best agreement
(COR ≈ 0.8), with station rainfall data [27]. Therefore, we are comfortable with using the
CHIRPS rainfall data to drive SPEI, in combination with the PET data that in turn was
derived mostly from in situ datasets, for evaluating the corresponding Integrated Drought
Condition Index and Vegetation Health Index.

Table 2. Descriptions of Remote Sensing Drought Indices.

Drought Indices Data Source Formula

PCI CHIRPS (CHIRPSrf i− CHIRPSrfmin)
(CHIRPSrfmax− CHIRPSrfmin)

SMCI FLDAS (FLDASSMi−FLDASSMmin)
(FLDASSMmax− FLDASSMmin)

TCI FLDAS (FLDAStamax− FLDAStai)
(FLDAStamax− FLDAStamin)

VCI MODIS (MODISNDVIi− MODISNDVImin)
(MODISNDVImax−MODISNDVImin)

IDCI CHIPS, FLDAS, MODIS α ∗ PCI + β ∗ TCI + γ ∗ SMCI + (1 − α − β − γ) ∗ VCI

VHI MODIS, FLDAS VHI = α ∗ TCI + (1 − α) ∗ VCI

α, β and γ represent the weight of single index while constituting the integrated drought indices; PCI: Precipitation
Condition Index; SMCI: Soil Moisture Condition Index; TCI: Temperature Condition Index; VCI: Vegetation
Condition Index; IDCI: Integrated Drought Condition Index; VHI: Vegetation Health Index.

3. Results

In this research, we first assessed droughts in the region as it is prone to drought
impacts. This was performed to determine whether vegetation damage in the region (if
any) came from the impacts of locust, drought, or both.

3.1. Temporally Integrated Drought Condition and Vegetation Health Indices, and Evaluation

The highest correlation coefficient was obtained with a 6-month Integrated Drought
Condition Index (IDCI6) calculated using a coefficient of 0.7 for the Precipitation Condition
Index (PCI) and coefficients of 0.1 for the Condition Indices of Temperature (TCI), Soil



Remote Sens. 2022, 14, 1723 7 of 14

Moisture (SMCI) and Vegetation (VCI). A high correlation value of r = 0.95 was obtained
when the resulting 6-month IDCI (IDCI6) drought index was correlated with the corre-
sponding 6-month Standardized Precipitation Evapotranspiration Index (SPEI6; Table 3,
Figure 2-left). In contrast, the highest correlation coefficient was obtained with the 3-month
Vegetation Health Index (VHI3) calculated using coefficients of 0.2 and 0.8 for the Condition
Indices of Temperature (TCI) and Vegetation (VCI) respectively (Figure 2-right; Table 3).
Scatterplots of these best-correlated seasonal indices (IDCI6 and VHI3) for the affected and
non-affected sites is presented in Figure 3. The fitted trendline on this scatterplot yielded
an R2 of 0.98 and 0.94 for the IDCI6 (Figure 3-right) and VHI3 (Figure 3-left) respectively.

Table 3. Correlation coefficient (r) values between the drought condition indices with different
weights and the different timescales SPEI for the non-affected and affected cropland sample sites
(p-value < 0.01). Note the highest r with gray-shaded bold values. Seasonal PCI and IDCI were
correlated with corresponding seasonal SPEI. Also note that the 1-, 3-, 6-, and 12-months PCI and
IDCI were correlated with the corresponding 1-, 3-, 6-, and 12-months of SPEI respectively (similar
font colors), while the only-monthly drought indices (TCI, SMCI, VCI, and VHI; yellow background)
were correlated with all the 1-, 3-, 6-, and 12-months SPEI. Also note that the numbers at end of the
indices refers to months.

Correlation Coefficient (r)

Drought
Indices

Weight Non-Affected Croplands Affected Croplands
PCI TCI SMCI VCI SPEI1 SPEI3 SPEI6 SPEI12 SPEI1 SPEI3 SPEI6 SPEI12

PCI1
PCI3
PCI6
PCI12

0.87 0.93 0.96 0.96 0.87 0.92 0.96 0.96

TCI1 0.38 0.45 0.48 0.43 0.39 0.45 0.47 0.41
SMCI1 0.73 0.75 0.61 0.39 0.74 0.72 0.56 0.36
VCI1 0.50 0.72 0.62 0.37 0.51 0.71 0.61 0.35

IDCI1
IDCI3
IDCI6
IDCI12

0.7 0.1 0.1 0.1 0.87 0.93 0.95 0.94 0.88 0.92 0.94 0.93
0.6 0.2 0.1 0.1 0.86 0.92 0.93 0.91 0.86 0.91 0.92 0.90
0.6 0.1 0.2 0.1 0.87 0.92 0.93 0.90 0.87 0.91 0.92 0.89
0.5 0.1 0.3 0.1 0.86 0.90 0.89 0.84 0.86 0.89 0.88 0.83
0.5 0.2 0.2 0.1 0.85 0.90 0.90 0.86 0.85 0.89 0.89 0.85
0.5 0.1 0.2 0.2 0.85 0.91 0.90 0.86 0.86 0.90 0.89 0.85
0.4 0.2 0.2 0.2 0.83 0.90 0.88 0.81 0.83 0.88 0.86 0.79

0.2 0.8 0.54 0.76 0.68 0.45 0.56 0.74 0.66 0.42
0.3 0.7 0.55 0.75 0.68 0.47 0.56 0.74 0.66 0.45
0.4 0.6 0.54 0.73 0.68 0.49 0.56 0.71 0.66 0.46
0.5 0.5 0.53 0.69 0.65 0.49 0.54 0.68 0.64 0.46

VHI1

0.6 0.4 0.50 0.64 0.62 0.49 0.52 0.64 0.61 0.46

The two groups of study sample sites track a very similar IDCI and VHI seasonality
with an r > 0.90 (Figures 2 and 3). Time series of IDCIs, VHIs, and SPEIs revealed distinct
drought and non-drought years in the study region. Drought years that showed growing
season drought condition index values below 0.4 [37] include 2002, 2004, 2009, 2015,
and 2017 (Figures 2 and 4), while 2001, 2006, 2007, 2010, 2013, 2016, and 2018–2020 were
non-drought years. The monthly and 3-months seasonal average SPEI displayed the shorter-
time fluctuations of meteorological drought, while the 6- and 12-months seasonal average
SPEIs displayed more aggregated drought conditions (Figure 4). Both the integrated
drought indices (IDCI and VHI) and the evaluation drought index (SPEI) in Figures 2 and 4
clearly revealed that 2020 was the wettest year since 2000 for both groups of sites.
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Figure 3. Scatterplots of the affected versus non-affected sites-average best correlated Integrated
Drought Condition Index (IDCI6) and Vegetation Health Index (VHI3) with their corresponding
Standardized Precipitation Evapotranspiration Index (SPEI) for 2000–2020 that are presented in
Figure 2. The details for the individual drought indices are presented in the Figure 2 caption.

3.2. Cropland Phenology Time Series

The Sentinel-2 site-average NDVI for 2020 for both the affected and non-affected sites
tracked a similar seasonal pattern (Figure 5 top-center). Both NDVI time series showed
a dual growing season (short Belg, and long Kiremt growing seasons). The affected sites
NDVI time-series is lower (– 0.04 NDVI October 2020) than the corresponding non-affected
sites NDVI in July, August, and September (Figure 5 center). The site-to-site standard error
(SE) was slightly higher during the main growing season.

The MODIS NDVI also displayed the dual growing season (Figure 5 top-right). How-
ever, even though the affected sites NDVI was slightly lower than that of the non-affected
sites during September and October, the difference was not significant (Figure 5 right).

Planetscope monthly mosaics did not display seasonality in affected sites, and only
displayed a very slight seasonality in non-affected sites relative to MODIS and Sentinel-2
NDVI. Nonetheless, the gap is present between the affected and non-affected sites in the
long growing (Kiremt) season and comparable to Sentniel-2.
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the non-affected (left) and corresponding affected (right) sample sites average.

The Sentinel-1 vertical-transmit and vertical-receive (VV; Figure 6 left) and vertical-
transmit and horizontal-receive (VH; Figure 6 right) radar time series backscatter coeffi-
cients (σ◦) also tracked similar cropland phenology for the two groups of sample sites.
The backscatter coefficient timeseries showed a consistent distinct difference between the
affected and non-affected sample sites throughout the year, in contrast to MODIS NDVI ob-
servations. The difference in σ◦ between the two groups of sites was higher and significant
in April–May, July, and September–October (Figure 6). However, the non-affected sites σ◦

was consistently higher than that of the affected sites for the entire 2015–2021 data record
(Supplementary Figure S1).
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Figure 6. Study sample sites Sentinel-1 radar Descending path vertical transmit and vertical receive
(VV; top-left) and vertical transmit and Horizontal receive (VH; top-right) polarization average
backscatter coefficients (σ◦) time series for both the affected (blue) and non-affected (orange) sites
for 2020, with superimposed spatial error bars, and their respective σ◦ difference (bottom).

4. Discussion
4.1. Drought Conditions in Ethiopia

Throughout recorded history, East African agricultural production has suffered from
recurrent drought conditions. The recent 2015/2016 and 2009 droughts are among many
in the region [10–14]. In contrast, other years experienced floods. The integrated drought
indices analyzed in this research, namely, the Integrated Drought Condition Index (IDCI)
and Vegetation Health Index (VHI), and the evaluation drought index (Standardized
Precipitation-Evapotranspiration Index–SPEI) clearly revealed that the year 2020 was
the wettest year since 2000 for both the locust non-affected and affected groups of sites
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(Figures 2 and 4). Therefore, the slight inferiority in NDVI and backscatter coefficient for
the desert locust-affected sites in 2020 was not due to drought.

In a drought analysis drought indices timeseries, monthly and shorter season drought
indices showed the shorter-time fluctuations of meteorological drought, while the longer-
time indices showed agricultural drought. At the end of 2020 and beginning of 2021 in this
study, some sites experienced meteorological drought conditions that might continue well
into 2021 to bring agricultural drought.

4.2. Cropland Dynamics

A site-to-site NDVI standard error (SE) across Ethiopia was slightly higher during
the main growing season. This difference might be attributed to the slight differences
in growing season and crop types between the northern semi-humid and southeastern
semi-arid parts of Ethiopia. Even though, for the locust-affected sites, MODIS NDVI was
slightly lower than that of the non-affected sites during September and October in 2020
in this research, the difference was not significant. Thus, the finer composited spatial
resolution Sentinel-2 NDVI (50 vs. 500 m) performed better than the corresponding MODIS
NDVI to discern the locust damage on croplands in the study area. The MODIS NDVI in
the study area displayed a higher phenology amplitude throughout the year in 2020 (above
3.5) compared to the corresponding Sentinel-2 NDVI. This can be attributed to the fact that
the 2 × 2 kernel aggregated 250 m MODIS NDVI (yielding 500 m spatial resolution) may
have natural vegetation contamination compared to that of the 5 × 5 kernel aggregated
10 m Sentinel-2 NDVI (yielding 50 m spatial resolution). In contrast, Sentinel-2 NDVI
revealed a higher dynamic range potentially due to improved sensitivity of the finer spatial
resolution to vegetation dynamics throughout the growing season.

The limited duration of Planet Scope monthly Basemaps product (September 2020 on-
wards) reduced our ability to assess the NDVI gap throughout the year 2020 (unlike the
other two NDVI products analyzed in this research–MODIS and Sentiniel-2), and ability
to detect both growing seasons. However, the gap is present in the long growing (Kiremt)
season and comparable to Sentinel-2. These results capture the current potential for Planet
products to be used for locust swarm damage assessment. Future products from Planet
with refined atmospheric correction models applied to derive surface reflectance could
enhance the crop monitoring aspect of these data, and potentially enhance the locust signal
we are trying to resolve.

The backscatter coefficient (σ◦) for affected sites was consistently lower both during
2015–2019 when no locusts were present and during 2020 when locusts were present,
suggesting the differences seen were not mainly due to locust damage but because the
affected sites were intrinsically different, indicating locust habitat preferences. However,
these gaps in 2020 were wider during April–May, July, and September–October, which is
consistent with the other NDVI indices above that occurred during the desert locust active
duration. While the precise characteristics of these preferences are uncertain, the lower
coefficients are consistent with a lower vegetation biomass/structure and lower aggregated
soil moisture. Lower vegetation biomass may aid such behaviors as basking to increase
body temperatures while well-drained soils in more open areas can be preferred sites for
laying [42,43].

The vegetation damage gaps we detected in this study during the small and main
growing season in Ethiopia are in line with other studies. In a World Bank-Supported High-
Frequency Phone Surveys report, there were two waves of locust invasion in Ethiopia [2].
The first invasion was from January to May, while the second round started in late
September and peaked in October to November. The first round of locust invaded
~180–240 Woredas (Districts) and damaged over 200,000 hectares of mainly croplands,
but also grazing lands and trees in eastern and southern Ethiopia. This round of locust
vegetation damage corresponds to the March small growing season (Belg) phenology
gap between the locust-affected and non-affected groups of sample sites in this study.
The second round of invasion was reported to be 20 times more severe than the first
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round, and this was exacerbated by COVID-19 restrictions, war, and flooding that hin-
dered locust management [2]. According to the World Bank report, due to the locust crop
damage and related factors in Ethiopia, poverty levels were expected to rise and make
over 2 million people to fall into poverty. The scale of Productive Safety Net Programme
(PSNP) was expected to increase from 9 million to as high as 15 million [2]. Established
in 2005, the PSNP is a multi-donor trust fund Ethiopia’s Government multi-billion dollar
food security, public works, and social safety net program for millions in need across
Ethiopia [44–46]. This study also found wider NDVI time-series gap in the main growing
season (particularly October–November) between the locust-affected and non-affected
sample sites.

5. Conclusions

NDVI and backscatter coefficient phenology from locust-affected sites (121) and ad-
jacent non-affected sites (94) in Ethiopia for the year 2020 showed closely similar climate
patterns. The gaps between affected and non-affected sites are slightly wider during March
(shorter growing season) and August–October (late long growing season) with Sentinel-
2 10 m resolution NDVI data. We conclude this can be attributed to the active locust
swarms during these times in our study domain. Our meteorological and agricultural
drought indices in the study area showed that the 2019/2020 growing season was in a
non-drought phase. NDVI difference from Planet Scope Basemaps at 5 m resolution in the
major locust-affected and important crop producing parts of the country also revealed that
the 2020 NDVI in the late long growing season (September–October) was inferior compared
to that of the 2021, while corresponding climatic conditions were comparable.

Through our analysis we found that the largest challenge in large area locust damage
assessment with remote sensing includes: (1) locust infestations occur following strong
rainfall that can support good crop vegetation growth; (2) locusts move toward good crop
growing areas for feed; and (3) damage is variable, crops can regenerate after invasion,
and the sensitivity of damage from 10 m (Sentinel-2) to 250 m (MODIS) is not consistent.
Locust outbreaks continue to be difficult to detect with remote sensing, yet it appears
Sentinel-2 had the ability to detect early and late season NDVI differences from the 121 sites
we investigated. These combined factors make it very difficult to discriminate locust-
affected and non-affected croplands with moderate and fine scale multi-temporal satellite
remote sensing. We found phenology gaps between the two groups of samples are wider for
finer resolution Planet, Sentinel-1 and Sentinel-2 datasets compared to that of the moderate
resolution MODIS dataset, but the signal of locust outbreak remains quite small. Analysis
of optical and/or microwave meter to sub-meter level very-high spatial resolution datasets
collected at dense temporal intervals acquired from satellites (e.g., from Planet Scope
[3–7 m], future WorldView Legion constellations, etc.), aerial (manned and unmanned
aerial vehicles), and/or ground-based technologies may provide a more robust signal to
detect cropland locust damage. Analyzing locust band cropland damage might also be an
important consideration for future study, as locust hoppers are less mobile than adults.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs14071723/s1, Figure S1. Study sample sites Sentinel-1 radar Descending path vertical transmit
and vertical receive (VV; top) and vertical transmit and Horizontal receive (VH; bottom) polarization
average backscatter coefficients (σ◦) time series for both the affected (blue) and non-affected (orange)
sites for January 2015/2016–February 2021.
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