

Thermochemistry of Aerospace Materials

Gustavo Costa

NASA Glenn Research Center, 21000 Brookpark Road, Cleveland OH, 44135

To be presented at International Research Conference on Structure and Thermodynamics of Oxides/carbides/nitrides/borides at High Temperature, October 4-7,2022, Arizona State University, AZ

Aerospace Propulsion

Nuclear Thermal Propulsion (NTP)

Interplanetary transportation

https://www.jpl.nasa.gov/visions-of-the-future/

Nuclear Thermal Propulsion (NTP)

-Highest mass specific energy sources at atomic level

Table 1

Power generation process by yield.

Energy source	Mass specific energy (kJ/kg)	Mass specific power (kW/kg)
Matter-antimatter- annihilation	ca. 8×10^{13}	ca. 2×10^{13}
Nuclear fusion	ca. 4×10^{11}	ca. 10 ¹¹
Nuclear fission	ca. 8 × 10 ¹⁰	ca. 2 × 10 ¹⁰
Radioactive decay	$2\times10^83\times10^9$	$7\times 10^67\times 10^8$
Chemical sources	$4\times10^22\times10^4$	$2 \times 10^{1} - 10^{3}$
Classical physical sources	$4\times 10^{-2}5\times 10^{5}$	$10^{-1} - 10^4$

https://www1.grc.nasa.gov/research-and-engineering/nuclear-thermal-propulsion-systems/; Tucker et al, Nuclear Technology, 207, 6, 2021. WWW.nasa.gov

Thermochemical Calculations

CALPHAD – Computer Coupling of Phase Diagrams and Thermochemistry method
 Thermo-Calc 2021b code using SUB3 (SGTE Substances Database v3.3) and TAF-ID (TAF-9)
 Thermodynamic of Advanced Fuels International database from Nuclear Energy Agency.

Calculation input considerations of systems based on conceptual fuel design:

- Reactor loaded with 100 kg UN fuel operating at 500 MW for 4 h, 2300 2800 K at 100 bar
- U-235 thermal fission yields from table C-3-3. Handbook of Nuclear Data for Safeguards, International Atomic Energy. International Nuclear Data Committee, INDC(NDS)-0534
- Fission Products: H, He, Br, Kr, Sr, Zr, Nb, Mo, Tc, Ru, Rh, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu from 10⁻³ to 10⁻⁶ mol%
- Calculated products are in thermodynamic equilibrium. Reactions are assumed to not be driven by kinetics.
- Microstructural parameters that affect homogeneity of the components and so the extent of the reactions are not consider here.

Thermochemical calculation – UN

Calculated total amount of phases in equilibrium in the UN fuel at 100 bar.

Thermochemical calculation – UN

Calculated species site fraction in FCC phase in equilibrium in the UN fuel particle at 100 bar.

Thermochemical calculation – UN

Calculated species in liquid in equilibrium in the UN fuel particle at 100 bar.

NASA

Thermochemical calculation – UN

Calculated amount of vapor species in equilibrium in the UN fuel particle at 100 bar.

General Comments

UN fuel:

- fcc UN, β-U₂N₃ and bcc liquid phases are found to be equilibrium in the fuel during reactor operation from 2300 to 2800 K at 100 bar.
- Fcc UN phase is computed to dissolve low amounts of Mo, Nb, Zr and Te fission products (fps) substituting for U, N and vacancies in the structure.
- Fps Ce, Tc, Sr, Ba, Cs, Rh, Mo and Te are found to be in equilibrium in liquid
- > Fps Cs and Te were found to form Cs_2Te in liquid
- The partial pressure of fission products and N2 were calculate to be significant over all reactor operation temperatures.
- Mono and diatomic fps (e.g. Xe, Kr, Sm, Cs, Ba, Sr, He, Xe₂ etc) gas species were computed to form in the gas.
- ➢ Halides (e.g. CsI, CsBr, Bal₂, Srl₂) and tellurides (e.g. SbTe, CeTe, NdTe) in the gas

Ceramic Coating Materials

- Thermal Barrier Coatings (TBCs): Reduce heat flux towards the underlying material 7YSZ, 31YSZ, 16RESZ (RE = Y, Gd and Yb), $Gd_2Zr_2O_7$
- Environmental Barrier Coatings (EBCs): Barrier to chemically corrosive agents $Y_2Si_2O_7$ and $Yb_2Si_2O_7$

Rare earth Silicates and Zirconia based Coating Materials Exposed to Mineral Dust Particles (CMAS) and High Temperature Calorimetry

→(CaO-MgO-Al₂O₃-SiO₂)

CMAS Corrosion of Thermal/Environmental Barrier Coatings

CMAS + Coating => Reaction Products

Questions to answer:

- How reactive is the CMAS with the coating materials?
- Will the coating material react or go into solution?
- What phases will precipitate?
- Is the coating material or the reaction product stable with the CMAS glass?

Questions to be answered with High Temperature Calorimetry

Calorimetric Experimental Techniques Coating Reactivity with CMAS

- Drop in molten CMAS
- Determine enthalpies of solution, mixing and reaction
 - $\Delta H_{reaction}$ $\Delta H_{s} \Delta H_{mix}$

- coating material
- Determine heat of fusion (>2400°C)

 ΔH_{fusion} of 7YSZ

- during heating/cooling
- Determine heat of fusion (<2400°C)

 ΔH_{fusion} of Yb₂Si₂O₇ and CaYb₄Si₃O₁₃

Combination of these techniques allows for calculation of coating enthalpic reactivity with CMAS

Rare earth Silicates and Zirconia based Coatings and their Binary Oxide components Exposed to Mineral Dust Particles (CMAS) and High Temperature Calorimetry

- Collaboration between NASA GRC and Arizona State University, Davis (Prof. Alexandra Navrotsky)
- Combination of three calorimetric techniques diffraction
- Used molten CMAS as a solvent with varying SiO₂ content

CMAS + Coating => Reaction Products

Coating Materials and their binary oxide components

- TBCs 7YSZ, 31YSZ, 16RESZ (RE = Y, Gd and Yb), $Gd_2Zr_2O_7$
- EBCs $Y_2Si_2O_7$ and $Yb_2Si_2O_7$

Reaction Products

Apatites - CaY₄Si₃O₁₃ and CaYb₄Si₃O₁₃

High Temperature Solution Calorimetry

Costa et al, J. Am. Ceram Soc. 2018.

Drop-and-Catch (DnC) Calorimetry

NASA

Designed and built at UC Davis

Costa et al, J. Am. Ceram Soc. 2018.

Differential Thermal Analysis (DTA)

CMAS SiO₂ content Effect on Reactivity

- Anionic equilibria*
 Qⁿ notation**
- $Si_2O_7^{6-} = SiO_4^{4-} + SiO_3^{2-}$ (1) $2Q^3 = Q^2 + Q^4$ (4)

$$3SiO_3^{2-} = SiO_4^{4-} + Si_2O_5^{2-}$$
 (2) $2Q^2 = Q^1 + Q^3$

$$Si_2O_5^{2-} = SiO_3^{2-} + SiO_2$$
 (3)

$$2Q^1 = Q^0 + Q^2$$
 (6)

*** $Acid + O^{2-} = Base$ (7)

 $SiO_3^{2-} + O^{2-} = 2SiO_4^{4-}$ (8) Slag 35 mol% SiO₂ Q^2 $Si_2O_5^{2-} + O^{2-} = 2SiO_3^{2-}$ (9) 42-65 mol% SiO₂ $Q^3 - Q^4$

Reaction is more energetic: more exo (negative) or less endo (positive)

(5)

*Virgo et al, Science 1980. **Stebbins, Nature 1987. ***Navrotsky, Rev Miner. 1995. www.nasa.gov

Enthalpies of solution and mixing of binary oxides in CMAS melts with 35 and 42 mole% SiO₂ (green and blue circles, respectively).

Costa et al, J. Am. Ceram Soc. 2022.

Enthalpies of solution and mixing of SiO₂ in silicate melts with varying SiO₂ mole percent. Green,21 blue,16and red16 spheres.

Costa et al, J. Am. Ceram Soc. 2022.

www.nasa.gov

Enthalpies of solution of the $Gd_2Zr_2O_7$, $Y_2Si_2O_7$, and $Yb_2Si_2O_7$ coating materials versus SiO₂ mole percent in CMAS melt.

Increasing SiO₂ content favors reaction for $Y_2Si_2O_7$ and $Yb_2Si_2O_7$ while opposite trend is observed for $Gd_2Zr_2O_7$

Costa et al, J. Am. Ceram Soc. 2022.

www.nasa.gov

Enthalpies of mixing of the Y₂Si₂O₇ and Yb₂Si₂O₇ coating materials versus SiO₂ mole percent in CMAS melt.

Increasing SiO₂ content favors reaction for $Y_2Si_2O_7$ and $Yb_2Si_2O_7$ while opposite trend is observed for $Gd_2Zr_2O_7$

Costa et al, J. Am. Ceram Soc. 2022.

www.nasa.gov

Material	$\Delta H_{f}(kJ/mol)$		
	This study, CMAS -1	From literature	
	(42 SiO ₂ mol%)*		Solvent/method
7YSZ	3.59±3.06	4.77±3.18	Sodium molybdate**
31YSZ	1.02±5.86	-6.92 ± 0.70	Sodium molybdate**
16RESZ	18.20±3.47		
V.C.O	Z ₂ Si ₂ O ₇ −110.25±14.71	-91.60±4.60	Acid calorimetry, HF***
		-112.16	Density Functional
Y ₂ SI ₂ O ₇			Theory, DFT‡
		-67.08 ± 5.98	Alkali borate [†]
$Gd_2Zr_2O_7$	-38.48±9.93	-41.80±1.50	Sodium molybdate ^{††}
		-52.20 ± 1.50	Sodium molybdate ^{†††}

*Costa et al, J. Am. Ceram Soc. 2022. **Costa et al Chem Mater. 2010. ***Cordfunke et al, Chem. Thermodyn 1998. **‡**Bodenschatz et al, DFT calculated data; 2021.NASA GRC (Unpublished). [†]Fabrichnaya et al, Z Metallkd. 2001.^{††}Jafar et al, J Alloys Compd 2021. ^{†††}Helean et al, MRS Online Proceedings Library 2000.

Summary

- The exothermicity of reaction between coating material or their binary oxide components and the CMAS melt reflects the difference between their acid-base character.
- Enthalpies of solution of YDS and YbDS becomes less endothermic with decreasing SiO₂ mol% while an opposite trend is observed for Gd₂Zr₂O₇
- The reactivity of coating materials and their binary oxides with CMAS melts increases with increasing difference in their acid-base character.
- Coating materials formulated from binary oxides with less exothermic enthalpies of solution and mixing are predicted to be less reactive or susceptible to CMAS corrosion.
- The reactivity between the coating materials and the melt is expected to increase with decreasing stability of the coating as a solid or as the coating's enthalpy of formation becomes less exothermic.