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1. Abstract
Indigenous communities around the Great Slave Lake (GSL) in Canada’s 
Northwest Territories have observed long-term changes in water levels within the 
Slave River Delta (SRD), causing concern over the alteration and loss of natural 
and cultural resources. Changes in delta water dynamics have impeded fishing and
transportation accessibility and threatened to alter important wetland ecosystems, 
leading to greater uncertainty in natural resources management. In partnership 
with the Fort Resolution Métis Government (FRMG), the Deninu K'ue First Nation 
(DKFN), the Akaitcho Territory Government (ATG), and Environment and Climate 
Change Canada (ECCC), this project provided a visual archive of water patterns 
and land cover in the Slave River Delta for summer months (May to October) from 
1984 to 2021. We produced time series animations, maps, and charts of land cover 
and delta morphology changes using data from NASA's Landsat 5 Thematic 
Mapper (TM) and Landsat 8 Operational Land Imager (OLI) missions, augmented 
with other NASA-supported satellite imagery, land cover classifications, and 
precipitation datasets. Satellite observations confirm that changes in surface water
and wetland extent in the delta tend to correlate with changes in Slave River 
discharge and precipitation in the drainage basin. However, we identified several 
water channels in the Slave River Delta and several areas of former wetland whose
drying trends have persisted despite increases in precipitation and discharge from 
2010 to 2020. By synthesizing various Earth observations into understandable and 
accessible data visualizations, the project strengthened decision-makers' overall 
understanding of drivers of change in the Slave River Delta.
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2. Introduction
2.1 Background Information
The Slave River Delta is a high boreal wetland environment in Canada’s Northwest
Territories (NWT) nourished by sediment-rich water from the Slave River as it 
flows northeast from the Slave, Peace, and Athabasca basins into the Great Slave 
Lake. The delta, located within Akaitcho Territory and NWT Métis Nation Claimant
Areas, is adjacent to the community of Fort Resolution, which is predominantly 
populated by First Nations and Métis peoples. The hydroecology of the delta 
underpins several economically and culturally important activities for local 
communities, including fishing, river travel, and subsistence trapping (Dagg, 
2016). However, existing scientific research on long-term changes in the hydrology
of the SRD is limited in scope.
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Figure 1. Study area map. The RGB inset image is a composited and cloud-masked
Landsat 8 OLI image of the Slave River Delta in summer 2021. The basemap of

North America is from OpenStreetMap.

In order to evaluate the effects of the 1968 impoundment of the Peace River by the
Bennett Dam on the shapes and sizes of water channels in the SRD, a previous 
study quantified changes in land and water areas using four aerial photographs of 
the delta taken between 1946 and 1994 (English et al., 1998). While this high-
resolution photography allowed the authors to detect changes in delta morphology 
at a fine spatial scale, the images’ temporal infrequency left a high degree of 
uncertainty about the processes driving the observed changes. 

A recent study offered a more continuous history of hydrologic cycles in the delta 
through paleolimnological analysis of a sediment core from the SRD (Brock et al., 
2010). The authors determined that climate-driven variability in runoff from the 
Slave River is likely more important in controlling flood frequencies than the 
regulation of the river by the Bennett Dam upstream. Another study shed light on 
the hydrological regimes of lakes throughout the delta through analyses of water 
samples collected in 2003 (Brock et al., 2007). However, both of these field-based 
studies examine either a single location within the delta or a single year, limiting 
the degree to which hydrological changes experienced by distinct water bodies in 
the delta can be simultaneously assessed over time.

Increasing availability of satellite-based Earth observation data allows for time 
series analyses of environmental change to be conducted at relatively high spatial 
resolutions and temporal frequencies. Optical remote sensing takes advantage of 
different materials’ spectral properties to classify surface cover, allowing for the 
spatial extent of water or wetlands to be quantified. Other satellite-based 
technologies like altimetry can record very fine changes in surface elevation, 
allowing us to generate detailed time series of water levels. Using the parallel 
processing power of cloud computing through platforms like Google Earth Engine 
(GEE), decades of Earth observations can be quickly processed on a global scale. 
However, few studies have applied satellite-based remote sensing techniques to 
study the hydroecology of the SRD over time.
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The primary Earth observation data underlying our analyses come from NASA’s 
Landsat series, the longest-running satellite program for moderate-resolution 
optical remote sensing in existence. To ensure consistency in our time series, we 
considered imagery starting in 2021 and extending back to 1984, the launch year 
of Landsat 5, whose Thematic Mapper (TM) instrument produced images with 
more spectral detail and a finer (30-meter) pixel resolution than the instruments of 
previous Landsat missions.

2.2 Project Partners & Objectives
We partnered with Fort Resolution Métis Government (FRMG), Deninu K’ue First 
Nation (DKFN), Akaitcho Territory Government (ATG), and Environment and 
Climate Change Canada (ECCC) to analyze long-term changes in the SRD using 
Earth observation data. Our partners lead field-based efforts to monitor water 
levels, seasonal flooding patterns, fish population health, and river chemistry in the
SRD. Changes in water dynamics over the past few decades have raised concerns 
about the ability of future generations to participate in economically and culturally 
important activities like boat transportation, fishing, and subsistence hunting in 
the delta (Dagg, 2016).

We applied a variety of Earth observation data to quantify and visualize changes in
water resources within the SRD, while also exploring possible driving factors of 
change. We produced maps and charts visualizing the spatial extent of water 
within the SRD over time, focusing on the widening and narrowing of distributary 
channels. We also performed yearly land cover classifications of the SRD in order 
to quantify historical changes in the areal coverage of wetlands within the delta. 
Finally, we analyzed GSL water levels, Slave River flow rates, and annual 
precipitation within the Slave River drainage basin to determine the degree to 
which changes in surface water and land cover may be driven by changes in 
regional hydrology. Overall, we seek to demonstrate the ways in which remote 
sensing can enhance the existing body of literature on the SRD, while 
simultaneously providing compelling visualizations that enable community 
members of many backgrounds to effectively participate in decision-making 
processes to protect local water resources. 

3. Methodology
3.1 Data Acquisition 
3.1.1 Surface Water Data Acquisition
We used the GEE JavaScript API to access layers from the Global Surface Water 
(GSW) dataset, provided by the European Commission’s Joint Research Centre (EC
JRC), to examine changes in surface water within the SRD (Pekel et al., 2017). 
Within this dataset, we primarily utilized the monthly water history product, in 
which results from a system classifying Landsat pixels as either water or not water 
are reported on a monthly time step from March 1984 through December 2021 
(Pekel et al., 2016). We also used the maximum water extent layer from this 
dataset, showing all pixels where water has been detected from 1984 to 2021. 
Finally, we acquired yearly “seasonality” images from GSW, in which pixels are 
classified as either permanent water (i.e., present for all months of the open-water 
season), seasonal water (i.e., present only for some months), or not water for each 
year in the study period.

3



To visualize interannual changes in delta surface water extent using an animation, 
we also acquired true-color satellite imagery from the Level 1, Tier 1 Top-of-
atmosphere (TOA) reflectance collections of Landsat 5 and Landsat 8 (Table A1). 
Imagery from these two instruments is available for most of our study period, with 
Landsat 5 covering 1984–1999 and 2001–2011, and Landsat 8 covering 2013–2021.
Landsat 5 imagery of the delta was not available for the years 2000 and 2012. We 
used Landsat 7 imagery to fill the gap for the year 2000, but excluded 2012 due to 
data gaps caused by the Scan Line Corrector failure. Our animation therefore has 
imagery for every year from 1984 to 2021 except for 2012. We only considered 
images acquired between May and October when creating our animation frames.

3.1.2 Land Cover Data Acquisition
Wetland classification images of the Slave River Delta for 2007 and 2017, created 
by the Arctic-Boreal Vulnerability Experiment (ABoVE) and sourced from the NASA
Oak Ridge National Laboratory Distributed Active Archive Center for 
Biogeochemical Dynamics (ORNL DAAC), served as reference images for training 
our land cover classifiers (Figure B2). We ran the classifiers on annual cloud-free 
summer-season composites of the Slave River Delta based on Collection 2, Level 2, 
Tier 1 surface reflectance imagery from Landsat 5 and Landsat 8 spanning 1984–
2021. Gaps in Landsat 5 data coverage at high latitudes prevented us from 
completing classifications for the years 2000 and 2012. For all other years in the 
study period (N=36), we used imagery from May through October when creating 
the composites in order to capture each year’s ice-free season, the exact timing of 
which varies from year to year. In order to provide the greatest spectral 
differentiation between land cover classes, we considered data from bands 1-5 and 
7 from Landsat 5 and bands 2-7 from Landsat 8 via GEE (Table A1). The strong 
absorptive tendencies of water across the electromagnetic spectrum allow our 
classifiers to distinguish water, wetlands, and drier land from each other.

3.1.3 Water Balance Data Acquisition
We acquired daily precipitation data, gridded at 1000 m resolution, from NASA’s 
Daymet dataset of climatic variables to generate an annual time series of 
watershed precipitation. We also acquired monthly average evaporation data, with 
a coarser spatial resolution of 10 km on average, from the European Centre for 
Medium-Range Weather Forecasts' (ECMWF) Climate Reanalysis (ERA5) in order 
to compensate for the net precipitation that eventually flows into the Slave River. 
For both datasets, we used GEE to access data from 1984 to 2021 in accordance 
with the study period (Table A1). To accurately delineate the watershed area of the
Slave River and its tributaries, we used the Canadian Digital Elevation Model 
(CDEM) from GEE, which provides an accurate terrain raster layer with 23-meter 
spatial resolution across the entire study area. We also downloaded a shapefile of 
regional drainage basins created by the Water Survey of Canada (WSC) and 
Natural Resources Canada (NRCan) in order to perform our analysis using multiple
sets of watershed boundaries for robustness. 

From the ECCC website, we downloaded daily estimates of Slave River discharge 
at station 07NB001, located in Fitzgerald, Alberta, which is the station on the 
Slave River geographically closest to the SRD. Finally, we acquired mean Great 
Slave Lake surface heights from the Global Reservoir and Lakes Monitor (G-

4



REALM) dataset, hosted on the United States Department of Agriculture’s Foreign 
Agricultural Service (USDA FAS) website. These data are based on altimetric 
readings taken at a 10-day frequency by the Ocean Topography Experiment 
(TOPEX)/Poseidon and Jason-series missions operated by NASA and the Centre 
National D'Etudes Spatiales (CNES). We downloaded altimetric data covering 
October 1992 through December 2021.

3.2 Data Processing
3.2.1 Surface Water Data Processing
To create an annual time series of surface water area, we used GEE to manually 
delineate polygons around several of the larger Slave River Delta channels 
identified by partners, using the GSW maximum water extent layer as a reference 
so that our polygons included the fullest extent of each channel while excluding 
nearby lakes and ponds. We additionally drew a single larger polygon representing
the outer delta, covering the land and water area bounded by the Old Steamboat 
Channel to the south, the main Slave River channel to the east, and the body of the
lake to the north and west (Figure B5).

To create visual demonstrations of physical changes in the Slave River Delta over 
time, we created GIF animations of the Slave River Delta where each frame 
represents a single year. We created an animation of true-color imagery by 
masking all images for clear terrain only using Landsat’s pixel quality assessment 
band, and then we mosaicked yearly animation frames by taking the median value 
for each pixel from the set of images for each year. We also animated the yearly 
seasonality layers from the GSW dataset clipped to the SRD from 1984 to 2020 to 
provide an alternative visualization focused more directly on water. 

3.2.2 Land Cover Data Processing
After selecting summer-month imagery intersecting the SRD from the Landsat 5 
and 8 archives covering 1984 through 2021, we assessed each image at the pixel 
level by filtering out saturated and cloud-related pixels and then created annual 
median composites. To train our land cover classifiers, we overlaid the 2008 
composite from Landsat 5 and the 2017 composite from Landsat 8 with the 2007 
and 2017 ABoVE classification images, respectively. We used 2008 instead of 2007 
for our Landsat 5 training image, as there were not enough relatively cloudless 
observations of the delta during the summer of 2007 to generate a completely 
cloud-free training image. 

We used GEE to randomly sample 140,000 points from each training image, setting
a minimum distance of 10 meters between sample points in order to align them 
with the 10-meter resolution ABoVE reference imagery. Of the randomly sampled 
points, 70% (98,000) were used to train our classifiers using GEE’s Random Forest 
Classifier algorithm, while the remaining 30% were reserved for validation. The 
Random Forest Classifier creates a series of decision-tree models to predict the 
land cover class of each randomly sampled point. The classifier makes each 
prediction by comparing the spectral values of each point’s corresponding Landsat 
training pixel with each point’s corresponding ABoVE reference pixel. We chose 
Random Forest classification over other classification methods because of its high 
level of accuracy and its previous usage within the ABoVE classification 
methodology. After training a Landsat 5 classifier and Landsat 8 classifier with the 
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ABoVE references using our random sample points, we applied the classifiers to 
the rest of our annual Landsat composites to obtain summer-month wetland 
classifications of the delta from 1984 through 2021. 

Once our classifications of the delta were developed and tested for accuracy, we 
took the modified Enhanced Wetland Classification (EWC) system and further 
reduced the number of classes to six to develop a simpler classification scheme 
more aligned with the objectives of this study. Classifications of bogs, marshes, 
fens, and swamps were aggregated to represent an overall wetland class, and 
deciduous and conifer forests were consolidated into general forestry. Grouping 
the classes in this way yielded a 6-class scheme which allows us to be more 
accurate in our assessments of long-term changes in wetland extent within the 
SRD. Under the simplified class scheme, the 2007 and 2017 ABoVE reference 
images are considered by the team to be a proxy for ground truth data. These 
reference images had overall accuracies of 84.6% and 88.5%, respectively, under 
the enhanced class scheme, but their overall accuracies rise to 97.1% and 95.6%, 
respectively, within our simplified class scheme. Most of the errors in the 
enhanced ABoVE classifications are rooted in the difficulty of distinguishing 
between wetland types and forest types, so our method of simplifying classes 
eliminated most of that error.

3.2.3 Water Balance Data Processing
We tested several methods for delineating the watershed boundaries of the Slave 
River drainage basin. First, we generated our own watershed boundary map using 
the Pysheds package in Python, an open-source library designed to help with 
processing DEMs, particularly for hydrologic analysis. However, the watershed we 
created using Pysheds had large gaps over secondary drainage basins. We decided
to instead rely on an existing Canadian watershed boundary shapefile from WSC, 
which uses a 3-level hierarchy of drainage areas. With this shapefile, we were able 
to easily delineate two key watersheds for our study: all land draining into the GSL
through its outlet, the Mackenzie River, and all land draining into the Slave River.

We uploaded the watershed vector files into GEE to serve as the bounding areas 
for calculating watershed precipitation. Daymet provides daily modeled 
precipitation totals in millimeters. To generate an annual time series of 
precipitation within these watersheds, we calculated the annual total precipitation 
for each pixel by summing up daily values for each pixel throughout each year, and
then summed up the results for all pixels in each watershed. We performed a 
similar process to derive annual evaporation figures from the daily ERA5 data. We 
derived annual net precipitation for both the GSL watershed and the Slave River 
watershed across the study period by subtracting evaporation from precipitation 
for each year. Finally, to process the G-REALM data on GSL water levels, we first 
filtered out invalid observations and then aggregated the original data from their 
10-day frequency into yearly average lake heights for 1992 to 2021 using R. To 
prepare our annual time series of net watershed precipitation, Slave River 
discharge, and GSL water levels for analysis, we combined them into a single 
table.

3.3 Data Analysis
3.3.1 Surface Water Data Analysis
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Using GEE, we calculated the area in square kilometers within each channel 
polygon that was classified as water, not water, or no data within the GSW monthly
water history layers from 1984 to 2020. To aggregate our monthly surface water 
area calculations to an annual time step, we took averages for each year, excluding
any monthly observations where more than 5% of the pixels in a polygon were 
classified as no data. The authors of a recent study of changes in global lake and 
reservoir surface water area used the same 5% threshold in order to limit the level 
of uncertainty for their calculations of water surface area (Busker et al., 2019). In 
the context of the GSL, applying this threshold filtered out almost all non-summer 
observations, where ice and snow cover resulted in many no-data pixels. Each 
yearly data point can thus be thought of as an average summer-month surface 
water area for that year.

To analyze our time series data on the yearly surface water areas of individual 
waterways in the SRD, we created line charts plotting each channel's surface 
water area over time relative to 1984. One chart depicts the area of surface water, 
in square kilometers, gained or lost by each channel relative to its 1984 water 
area. Another chart reports these changes in surface water area as percentages of 
each channel’s water surface area in 1984 (Figure 4). We also considered changes 
in the surface water area of the entire outer delta by summing the yearly surface 
water area totals for all channels and plotting the data on a chart (Figure B1).

3.3.2 Land Cover Data Analysis
Following the classification of Landsat 5 and Landsat 8 imagery, we created a 
confusion matrix in GEE to test the training and validation accuracies of the 
classifiers. Of the original 140,000 random sample points, 30% (42,000) were 
reserved as validation pixels to undergo a classification of their own, and then be 
compared to initial results. We maximized the number of sample points according 
to the processing capabilities of GEE and maintained a training to testing ratio of 
70:30. We tested an 80:20 ratio for the Landsat 5 classifier in alignment with 
ABoVE’s Random Forest process but found that this ratio did not meaningfully 
improve our classification accuracies. We therefore opted to use the more robust 
70:30 ratio. 

To analyze wetland extent over time, we calculated the area of land occupied by 
each land cover class by extracting pixel counts for each year in the study period 
under both the enhanced and simplified classifiers. We performed some additional 
filtering on the results in order to generate a more accurate time series of wetland 
extent in the SRD (Figure B3). To account for variation in the availability of cloud-
free scenes for certain years in the wetland time series, we devised a metric which 
we will refer to as the “cloud-free score” for each annual composite. We defined 
this metric as the number of scenes’ worth of cloud-free pixels that went into a 
given annual composite image, and we considered composites with higher cloud-
free scores to be more reliable for classification than composites with lower cloud-
free scores. To calculate each cloud-free score, we added up the fractional Landsat
cloud scores of all summer-month scenes that were acquired for each year’s 
composite image and subtracted that number (representing the number of images 
covered by clouds) from the total number of scenes collected for a given 
composite.
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The average cloud-free score of our 36 classified images was 23.8, with a standard 
deviation of 4.2. We filtered out observations with a cloud-free score below 19.6 
(i.e., at least one standard deviation below the average cloud-free score). Applying 
this filter removed 6 observations out of the 36 years in our time series (Table A2). 
As an additional step to address high year-to-year variability in the wetland area 
time series, we also filtered out two years, 1994 and 2006, for which the calculated
total wetland area was more than 2 standard deviations above or below the 
average of the previous and following two years of data.

Based on our time series of wetland surface areas in the SRD, we created tri-color 
maps symbolizing three types of land cover change: wetlands to forest, wetlands to
shrubland, and all other classes to wetlands. Using geospatial packages in Python, 
we created these change images for three intervals of time: 1984 to 2021 (overall 
change within the study period), 2005 to 2010 (an example of a drying period), and
2010 to 2020 (an example of a wetting period). 

3.3.3 Water Balance Data Analysis
In order to assess relationships between changes in surface water area in the SRD,
Slave River watershed precipitation, changes in GSL water levels, and Slave River 
flow rates, we first normalized the data we acquired for these variables by applying
a Min-Max Scaling function (Equation 1).

X '=
X−X min
X max−Xmin

The normalized data fall between 0 and 1 and are unitless, which makes them 
more statistically comparable. We then calculated Pearson correlation coefficients,
R-squared values, and corresponding p-values based on normalized datasets to 
assess statistical significance. These statistical analyses were performed using our 
annual time series numbers for each variable from 1984 to 2021 (N = 38), except 
for GSL water levels, which were only available for 1993 to 2021 (N = 29). The 
annual change of water levels is defined as the water level of the study year 
subtracted by the water level of last year; we obtained 28 values of annual water 
level change for 1994 to 2020. 

We also investigated the spatial distribution of areas in the SRD that experienced a
statistically significant trend in precipitation volume change from 2010 through 
2020 by applying the Mann-Kendall test, which is a non-parametric method for 
identifying statistically significant trends in time series data. We applied this test 
to the annual precipitation data for each pixel in the watershed area, setting the 
Alpha parameter to 0.1.

4. Results & Discussion
4.1 Analysis of Results
4.1.1 Surface Water Results
Every channel except for the main body of the Slave River appears to have shrunk 
slightly in terms of surface water area, although 2020 saw a few channels regain 
some surface water (Figure 2). The Old Steamboat Channel shrunk by 0.6 square 
kilometers, which marks more surface water loss in absolute terms than any other 
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channel. However, other channels like the East Channel, Middle Channel West, 
and Middle Channel South experienced almost 100% loss of surface water areas 
relative to 1984 during at least one year in the study period.

Figure 2. Changes in the surface water area of individual waterways in the outer
Slave River Delta, expressed in square kilometers of water relative to 1984 (top)

and in percent water area relative to 1984 (bottom).

The surface water areas of all the channels tend to rise and fall together, with local
peaks in most channels around 1997 and 2005 and local lows around 2001 and 
2010. However, the long-term trends of the channels are divergent, with most 
channels losing some surface water area while the ResDelta Channel, the main 
body of the Slave River, has expanded somewhat. A previous study of delta channel
morphology based on aerial photography suggested that a greater portion of the 
water coming down the Slave River between the 1940s and the 1990s was flowing 
through the ResDelta Channel, the main body of the Slave River, rather than 
through other distributary channels in the outer delta, possibly as a result of 
sediment deposition patterns (English et al., 1998). Our results confirm that this 
divergent trend has continued steadily through 2021 and, as we discuss in section 
4.1.3, distributary channel shrinkage seems to be independent of long-term overall 
trends in the amount of water flowing through the Slave River. We would therefore
tentatively attribute the long-term loss of surface water in channels like the Old 
Steamboat to sediment deposition patterns narrowing their entrances, diverting 
water into the main ResDelta Channel.

4.1.2 Land Cover Results
Our Landsat 5 enhanced classification had a 98.6% training accuracy and a 60.7% 
validation accuracy (Table A3), and our Landsat 8 enhanced wetland classification 
had a 98.6% training accuracy and a 58.8% validation accuracy (Table A5). These 
accuracies were expectedly low, since our classifications (Figure B3) were based 
entirely on spectral data from Landsat imagery, unlike the ABoVE references 
(Figure B2) that were created using data from additional instruments and field 
work. However, re-computing the enhanced validation error matrices into our 
simplified class scheme yielded overall validation accuracies of 83.8% for Landsat 
8 (Table A4) and 83.4% for Landsat 5 (Table A6). Furthermore, the user accuracies
for the simplified wetland class, which became the focus of our study, were 85.2% 
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for the Landsat 5 classifier and 86.2% for the Landsat 8 classifier. These results 
suggest that our satellite image classifications can offer broadly reliable estimates 
of wetland extent over time, albeit with limited accuracy.

After performing classifications on all years in the study period, calculating the 
area covered by each land cover class for each year, and filtering out cloudier 
years and outliers (as described in section 3.3.2), we found that the total area 
classified as wetland in the SRD appears to follow a multi-year cyclical trend, with 
alternating wetting and drying periods (Figure 3). Total wetland-classified surface 
area decreased from roughly 2,500 km2 in 1993 to roughly 1,900 km2 in 1999 
before rebounding to about 2,600 km2 in 2005. By 2010, wetland-classified area 
decreased to around 2,100 km2 before rising again to almost 2,500 km2 in 2020.

Figure 3. Surface area in the Slave River Delta classified as wetlands, 1984–2021

The timing of high and low points in our wetland extent time series generally 
matches the timing of highs and lows in outer delta channel surface water areas 
(Figure 2). For example, the mid-1990s are a wetter period in our wetland time 
series, which is consistent with the results of a paleolimnological analysis of the 
SRD that identified the mid-1990s as a time of increased flood frequency (Brock et 
al., 2010). However, the limited accuracies of our classifiers preclude any strong 
conclusions about what these cycles represent in hydrological or ecological terms. 
For areas that changed from one class to another, it is difficult to determine with a 
high degree of certainty whether they are undergoing longer-term ecosystem 
changes or simply experiencing the normal cycles between wetter and drier 
periods that are typical of wetland habitats. However, we can partially reduce 
these ambiguities by analyzing our results in a spatially explicit way.

To visualize the spatial distribution of land in the SRD that experienced wetting 
and drying trends, we created maps of pixel-level changes in simplified 
classification results that occurred during a drying period (2005–2010), a wetting 
period (2010–2020), and over the full study period (1984–2021) (Figure 4). Many of
the areas where class changes occurred from 2005–2010 and from 2010–2020 are 
close to the body of the Slave River. One possible explanation for this pattern is 
that our classification results are sensitive to interannual cycles in the discharge 
and flood frequency of the Slave River, which would affect areas closest to the 
river the most. However, a previous study comparing the hydrological drivers of 
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multiple lakes in the SRD in 2003 found that almost all of the lakes whose water 
balances are dominated by flood events were near the mouth of the Slave River, 
rather than the middle and upper parts of the delta, where the hydrology of most 
lakes was primarily controlled by evaporation (Brock et al., 2007). If flood 
frequency were the only factor explaining the spatial distribution of the land cover 
changes detected by our classifications, we would therefore expect more 
concentrated greens and blues to be present near the mouth of the river. Instead, 
our maps show the most concentrated areas of class change along the middle and 
upper portions of the river. 

Figure 4. Simplified wetland class changes between 2005 and 2010 (top left), 2010
and 2020 (top right), and 1984 and 2021 (bottom left).

In order to try and address our project partners’ particular concern about longer-
term ecosystem changes in the SRD, we sought to identify areas where changes 
from wetlands to drier classes seemed to be occurring independently of the overall
wetting and drying trends. During the drying period from 2005 to 2010, very few 
pixels changed from other classes to wetlands. However, large areas that were 
classified as wetlands in 2010, particularly in the delta’s eastern portion, were 
reclassified as forest or shrubs in 2020, despite the overall wetting trend during 
that period. Furthermore, although the total area classified as wetlands was 
roughly equal at both the start and end of our study period, the spatial distribution 
of wetlands has drastically shifted away from the eastern portion of the delta. 
These patterns suggest that among areas within the delta, the eastern portion 
seems most likely to be experiencing longer term ecosystem shifts rather than 
simple cycling between wetter and drier patterns in an otherwise-stable wetland 
ecosystem. However, these results cannot be fully confirmed due to the limited 
availability of ground-truth data to assess the accuracy of our classifications 
distinguishing wetlands from other classes over the full study period.

4.1.3 Water Balance Results
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One factor that may affect the changing distribution of wetlands over time is 
precipitation. The Mann-Kendall test results for the entire Slave River drainage 
basin show that a large portion of the watershed experienced a significant increase
in precipitation, most of which was near the body of the Slave River. Roughly a 
third of the surface area of the delta itself also experienced a consistent increase in
precipitation during that decade. Areas of positive precipitation trends are mostly 
in the northeastern and southern parts of the delta, generally coinciding with the 
spatial pattern of wetland increase in the same period (Figure 5).

Figure 5. Precipitation trends from 2010 through 2020 within the Slave River
drainage basin (left) and the SRD (right). Trend results for the drainage basin are

overlaid on a layer showing the spatial distribution of average annual precipitation.

More generally, we observed Slave River watershed precipitation to be tightly 
associated with both river discharge and Great Slave Lake water levels. Discharge 
and changes in water levels have their high and low points during the same years 
as precipitation (Figure 6). Several of these high and low points also correspond 
with the timing of drying and wetting periods in delta land cover, as discussed in 
the previous section. However, there is sometimes a time lag between precipitation
changes and water level changes.

 
Figure 6. Comparison of normalized annual values for Slave River drainage basin

precipitation vs. Slave River discharge (left) and Slave River drainage basin
precipitation vs. average Great Slave Lake water levels (right).
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Linear regression analysis supported our judgement of the strength of 
precipitation as a predictor of discharge and water levels. The results of linear 
regression between annual precipitation over the Slave River drainage basin and 
the annual discharge of the river demonstrate a fairly strong relationship (Figure 
B4). The slope is 0.706 with a p-value of 0.00015. The R-squared reaches 0.33, 
which confirms previous findings that Slave River watershed precipitation is the 
dominant factor in the overall water balance of the Great Slave Lake (Gibson et al.,
2006). We achieved similar results for precipitation and water level changes. The 
slope for these two variables is 0.538 with a p-value of 0.00019. The corresponding
R-squared also revealed the strong influence the precipitation has on the lake 
water levels, with the actual number to be 0.44. For robustness, we also ran these 
regressions using net precipitation (total precipitation minus evaporation) as our 
regressor instead of total precipitation, and we continued to find statistically 
significant (p < 0.05) results for both relationships, albeit with slightly lower R-
squared values of 0.32 for discharge and 0.31 for water levels.

The results of linear regression between annual precipitation and annual surface 
water area changes, on the other hand, were not statistically significant. The 
corresponding slope was 0.192, with a p-value of 0.30000. The weakness of 
precipitation as a predictor of surface water extent changes suggests that 
precipitation is not among the primary causes of the shrinkage of channels in the 
delta. This is what we expected, because precipitation does not map 1-to-1 onto the
kinds of flood events that fill up channels during the summer months, which are 
also influenced by other factors, such as winter ice jam patterns (Das et al., 2015). 
Considering the strong correlation between precipitation and discharge, sediment 
deposition might be the primary contributor to the consistent channel shrinkage. 
This hypothesis is backed up by the fact that the only channel that did not show a 
significant decrease in its surface water extent was the main channel of Slave 
River, through which the majority of the discharge flows into the lake. The change 
of the surface water extent of this channel matched the changing pattern of the 
discharge decently, which fluctuated throughout the study period but did not 
consistently decrease. The apparent lack of water in other sub-channels wasn’t due
to the limited water input, but more likely the blockage of the water entrances by 
deposited sediment.

4.2 Future Work
Our results and limitations in applying satellite-based Earth observations to study 
long-term hydroecological changes in the Slave River Delta point to both the 
potential for future applications of remote sensing in the region and the 
importance of field-based reference data. Other satellite-based data like c-band 
radar could be used to delineate surface water and help classify land cover during 
seasons when high cloud cover reduces the utility of visible to infrared wavelength 
imagery, thereby allowing researchers to cross-validate their results and reduce 
levels of uncertainty. Other technologies like high-resolution drone imagery could 
provide greater precision in both our imagery and in the quantitative data on areal 
coverage of water and wetlands. However, additional field surveys of habitat, 
biomass accumulation, and hydrological variables like water levels and discharge 
within the SRD itself would be critical in helping refine or alter our conclusions 
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about changes in the delta ecosystem and open up new questions to guide the 
acquisition of remotely sensed data.

Our partners could benefit from increased accessibility and flexibility in exploring 
the data and insights produced by analyses of remotely sensed data. Being able to 
present our data through a web-based graphical user interface would allow 
partners and community members of varying levels of technical expertise to access
data more easily and apply their own parameters to visualize changes according to 
custom time frames or color schemes. Such platforms have the potential to 
enhance broader public engagement and advocacy relating to important 
environmental changes.

Finally, our research and our discussions with partners point to additional topics of
research related to water dynamics that are worth further investigation in order to 
address community concerns and elevate the state of knowledge on environmental 
changes in the SRD. To better understand the dynamics of channel water shifting 
in the SRD, we believe that we could benefit from a closer analysis of interannual 
and seasonal changes in sediment deposition, with specific focus on the early 
2000s, when there was an especially pronounced change in channel surface water 
extents and topography. Seasonal ice dynamics, which are an important factor in 
controlling river discharge, could be investigated with radar imagery and other 
Earth observation data as well as ground-based research. Having a stronger sense 
of trends, or lack-of-trends, between weather events, melting periods, and channel 
structure could better direct stakeholder decision making regarding water 
transportation in the delta. Finally, community concerns about muskrat 
populations in the delta could be addressed by future field-based research on 
muskrat populations, as well as by more field-based work on ecological changes in 
key areas of the delta. 

5. Conclusions
We’ve shown that satellite-based Earth observations can identify long-term 
environmental changes that speak well to community concerns about the future of 
water transportation and wetland habitats in the Slave River Delta. Through our 
research, we’ve determined that many waterways in the outer SRD have been 
steadily losing surface water, while the main river channel has expanded. Our 
analysis of these changes in relation to watershed precipitation, river discharge, 
and lake water levels suggests that long term channel shrinkage may be primarily 
driven by sedimentation blocking off sections of channels, rather than just being a 
result of changes in overall precipitation and discharge. 

We also found that land cover in the delta seems to experience cycles between 
wetter and drier vegetation, broadly correlating with precipitation trends. 
Although limited historical ground-truth data prevents us from distinguishing 
between normal wetland hydrological cycling and more permanent habitat change 
with a high degree of certainty, we were able to apply spatial methods to identify 
areas in the eastern portion of the delta whose drying patterns seem independent 
of precipitation trends. These areas may warrant further investigation and 
attention in future habitat preservation efforts and in ongoing research on the 
future of wetland ecosystems in the SRD.
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Satellite-based Earth observations, in addition to providing longitudinal and 
spatially rich perspectives for scientific research, have rich potential in informing 
environmental policy, education, and advocacy. Our partners working in Fort 
Resolution can apply the information we gathered on surface water and land cover 
changes to target field-based interventions for mitigating channel shrinkage and 
preserving wetland habitat. Satellite-derived imagery of surface water and land 
cover also illustrates environmental changes to residents more broadly, thereby 
animating communities’ ongoing environmental advocacy efforts. By tailoring our 
research according to the community concerns of partners living and working in 
the Slave River Delta, we hope to provide examples of ways in which analyses of 
Earth observation data can support efforts to address pressing environmental 
challenges more broadly.
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7. Glossary
Altimetry – In general, refers to the measurement of heights. Satellite-based 
altimeters use radar pulses to accurately measure surface heights by tracking the 
time each pulse takes to return to the instrument.
Boreal – A sub-arctic climate characterized by short mild summers, occurring in 
latitudes between 50 and 70 degrees North.
Channel morphology – The shapes of river channels and how they change over 
time.
Composite image – An image whose pixels are stitched together from several 
images covering the same spatial area. The images being stitched together may 
come from different dates, viewing angles, or sensors.

15

http://qgis.osgeo.org/


Confusion matrix – A table used to measure the accuracy between classification 
predictions and true values.
Discharge/flow – The rate at which a volume of water passes by a given cross-
section of a river or stream.
Distributary channel – Water that branches off and flows away from the main 
body of a river.
Drainage basin/watershed – An area of land where all precipitation eventually 
flows into a common water outlet.
Hydroecology – The study of interactions between hydrology and living 
ecosystems, such as wetland habitat.
Hydrology – The study of the movement and distribution of water at or near the 
Earth’s surface.
Median image – An image in which each pixel value is taken from the median of 
that pixel’s non-null values across a collection of spatially overlapping images.
Mosaicking – The process of combining multiple images from nearby spatial areas
into a single larger image
Random Forest Classifier – A method of classification in which a multitude of 
randomly generated decision trees are used to identify the discrete class or 
category to which an observation belongs, and then a final classification is 
determined by taking a majority vote of the decision trees.
Reflectance – The portion of all light shining upon a material that the material 
reflects.
Remote sensing – Techniques and processes for detecting the physical qualities 
of an area by measuring the radiation reflected and emitted by that area from a 
distance, usually from satellites or aircraft.
Seasonality – The quality of an environmental pattern of change to occur along a 
predictable time scale.
Spatial Resolution – The smallest size of an area for which a given sensor can 
distinguish that area from its surroundings. Spatial resolution for imagery is often 
reported in terms of pixel size, or the geographic distance covered by the length of
one image pixel.
Spectral differentiation – Using multiple recorded energy signatures along the 
electromagnetic spectrum to differentiate features in remote sensing imagery.
Temporal Resolution – The unit of time between observations in a dataset of 
repeated measurements. This may also be referred to as the return frequency or 
observation frequency.
Water Balance – A ratio between added quantities and lost quantities within a 
body of water, considering precipitation, evaporation, river discharge, and other 
trends.
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Appendix A
Table A1:
Information on Acquired Datasets

Name
Sourc

e Product Type/Level

Spatial
Resoluti

on

Date
Rang

e
Frequen

cy
Landsat 5 
Thematic 
Mapper (TM)

NASA Level 1, Collection 1, 
Tier 1 top-of-atmosphere
reflectance (for 
animation); Level 2, 
Collection 2, Tier 1 (for 
classification)

30m 1984-
2013

16 days

Landsat 7 
Enhanced 
Thematic 
Mapper Plus 
(ETM+)

NASA Level 1, Collection 1, 
Tier 1 top-of-atmosphere
reflectance (for 
animation)

30m 2000 16 days

Landsat 8 
Operational 
Land Imager 
(OLI)

NASA Level 1, Collection 1, 
Tier 1 top-of-atmosphere
reflectance (for 
animation); Level 2, 
Collection 2, Tier 1 
surface reflectance (for 
classification)

30m 2013-
2021

16 days

Arctic-Boreal
Vulnerability 
Experiment 
(ABoVE)

NASA, 
ORNL- 
DAAC

Land Cover 
Classification Imagery

10m 2007, 
2017

Discrete

Global 
Surface 
Water (GSW)

EC JRC Landsat pixels classified 
as water / no water / no 
data

30m 1984-
2020

Monthly; 
yearly

Daymet V4: 
Daily Surface
Weather and 
Climatologic
al 
Summaries

NASA, 
ORNL- 
DAAC

Gridded estimates of 
daily precipitation, 
measured in meters of 
liquid water equivalent.

1000m 1984-
2021

Daily

Canadian 
Digital 
Elevation 
Model 
(CDEM)

NRCan Collection of ground or 
reflective surface 
elevations

~ 23m pubd. 
2013

Discrete

Watersheds 
in Canada

WSC, 
NRCan

Feature layer depicting 
the watershed 
boundaries of Canada.

N/A 1927-
2015

Discrete
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Global 
Reservoir 
and Lake 
Monitor (G-
REALM)

USDA 
FAS, 
NASA, 
CNES

Mean lake surface water
height (meters) above 
sea level

N/A 1992-
2021

10 days

ERA5-Land 
Monthly 
Averaged - 
ECMWF 
Climate 
Reanalysis

ECMW
F

Monthly averaged 
evaporation estimation 
(meters in liquid water 
equivalent)

11132m 1981-
prese
nt

Monthly

Historical 
Hydrometric 
Data

ECCC Daily estimates of river 
discharge (m3/s)

N/A 1984-
2021

Daily 

Table A2:
Information used to filter yearly wetland extent results (years that were filtered 
out are highlighted)

Year Num. of
Landsat
scenes
acquire

d

Calculated
wetland

area was an
outlier

Cloud
-free
score

Year Num. of
Landsat
scenes

acquired

Calculated
wetland area

was an
outlier

Cloud-
free

score

198
4

30 false 18.19 200
3

42 false 25.32

198
5

35 false 20.48 200
4

44 false 27.17

198
6

36 false 20.11 200
5

49 false 25.89

198
7

41 false 26.86 200
6

49 true 22.71

198
8

40 false 25.09 200
7

41 false 18.33

198
9

32 false 19.03 200
8

44 false 28.85

199
0

37 false 22.83 200
9

46 false 27.29

199
1

46 false 22.78 201
0

43 false 23.55

199
2

40 false 27.04 201
1

36 false 18.15

199
3

43 false 24.19 201
3

43 false 23.12

199 40 true 28.67 201 49 false 23.96
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4 4
199
5

45 false 22.58 201
5

53 false 25.29

199
6

42 false 19.47 201
6

53 false 29.06

199
7

35 false 20.75 201
7

54 false 32.91

199
8

38 false 24.84 201
8

55 false 27.79

199
9

41 false 21.01 201
9

50 false 24.42

200
1

25 false 10.66 202
0

44 false 24.67

200
2

49 false 28.09 202
1

43 false 25.44

Table A3:
Landsat 5 enhanced wetland classification error matrix

Table A4:
Landsat 5 simplified wetland classification error matrix

Table A5:
Landsat 8 enhanced wetland classification error matrix
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Table A6:
Landsat 8 simplified wetland classification error matrix
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Appendix B

Figure B1:
Sum of surface water area of major channels in the outer Slave River Delta, 1984-
2020

 
Figure B2.
ABoVE enhanced wetland classification images for 2007 (left) and 2017 (right).

 
Figure B3. 
Enhanced wetland classification training results for 2008 (left) and 2017 (right) in 
the SRD. 
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Figure B4. 
Least-squares linear regression scatter plots showing normalized annual values for
Slave River watershed precipitation as a predictor of normalized annual Slave 
River discharge (left, slope = 0.706), Great Slave Lake water level changes 
(middle, slope = 0.538), and total surface water area of outer SRD water channels 
with insignificant slope to be 0.192 (right).

Figure B5. 
Polygons representing the individual SRD channels and the outer delta, overlaid 
on the GSW maximum water extent layer. Basemap: Google.
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