

A Machine Learning-Derived Atomistic Potential for Y₂Si₂O₇

Cameron J. Bodenchatz¹, Wissam A. Saidi^{2,3}, and Jamesa L. Stokes¹

¹NASA Glenn Research Center, Cleveland, OH ²National Energy Technology Laboratory, Pittsburgh, PA ³University of Pittsburgh, Pittsburgh, PA

Funding provided by the NASA Transformational Tools & Technologies (TTT) Project

Materials Science & Technology 2022 Pittsburgh, PA October 10th, 2022

- Background
- Simulation Methods Machine Learning-based Interatomic Potential for Molecular Dynamics (MLMD)
- Crystal Cell Optimization Calculations
- Thermochemical Property Calculations
- Thermomechanical Property Calculations CTE
- Conclusions

Jet engine diagram licensed under CC BY-SA 4.0, attributed to Jeff Dahl. https://commons.wikimedia.org/wiki/File:Jet engine numbered.svg

COMBUSTION

Turbine

Target: 1482°C

Hot Section

EXHAUST

SiC/SiC Ceramic Matrix Composite (CMC) Components

- Replace metal alloy engine components with SiC/SiC • ceramic matrix composites (CMCs)
- Increased efficiency and cost savings •

COMPRESSION

Combustion Chambers

Cold Section

- Higher temperature stability
- Lower density

INTAKE

Robinson and Smialek, J Am Ceram Soc 82, 1817 (1999)

Air Inlet

Zhu, et al. ICACC 2018

CMCs can degrade under O_2 and H_2O environments at high ٠ temperature (>800°C)

Weight loss of SiC in High-Pressure Jet

Fuel Burner (6 atm, 20 m/s)

E. Opila et al. *J Am Ceram Soc* (**1999**)

K. Lee et al. J. Am Ceram Soc. (2019)

SiO₂ TGO

Environmental Barrier Coatings (EBCs) for SiC/SiC CMCs

- CMCs can recess under O_2 and H_2O environments at high temperature (>800°C)
- Rare-Earth (RE) disilicates ($RE_2Si_2O_7$) are a promising class of EBCs

1482°C

EBC

SIC CMC

- EBCs can prevent H₂O diffusion
- Some formation of SiO₂ TGO still occurs with EBC

$$\begin{split} \text{SiC (s)} &+ 3/2 \text{ } \text{O}_2 \text{ } (\text{g}) \rightarrow \text{SiO}_2 \text{ } (\text{s}) + \text{CO (g)} \\ &\text{SiO}_2 \text{ } (\text{s}) + 2 \text{ } \text{H}_2 \text{O} \text{ } (\text{g}) \rightarrow \text{Si(OH)}_4 \text{ } (\text{g}) \end{split}$$

Formation/Recession

EBC Failure Modes

Formation/Recession

& Infiltration

Atomic-scale simulation methods for property calculations

DFT

- Electron-level theory
 - Cost scales with number of electrons
- Smaller simulation cells
 - Self-interaction errors?

Classical Molecular Dynamics

- Atom-level theory
 - Cost scales with number of atoms
- Bonding based on empirical trend fits
 - Generally, no bond breaking/formation

	DFT	Classical MD
Pros	Higher accuracyGeneralizability	 Time ~Hours System Size Larger cells possible (~1,000s-10,000s of atoms)
Cons	 Time ~Days-Weeks System Size Smaller unit cells (~100s of atoms) 	 Requires pre-parameterized potential Not as generalizable

Atomic-scale simulation methods

Direct Property Calculations

- Train ML model to directly predict property
- ML algorithm suitable for problem
 - Regression vs. Clustering
- Descriptors to capture system information
 - Crystal structure information
 - Atomic composition
 - Environmental variables
 - Temperature, Pressure, etc.
- Example: Neural network to predict CTE for rare-earth disilicates¹

Indirect Property Calculations

- Train ML model to run simulations
 - Interatomic potentials
- Regression algorithms, typically
 - Almost always neural networks
- Descriptors often include atomic neighborhood information
 - Nearest-neighbor atoms within cutoff
 - Bonding information
- Example: NN-based interatomic potential for HfO₂

DeePMD theory

- Deep Neural Network using descriptors to preserve translational, rotational, and permutational symmetries
- Descriptors dependent on atomic neighbor environment
 - Full information (radial and angular) included for first- and second-nearest neighbors
 - Radial information only for other atoms inside the userdefined cutoff radius
- Training data obtained from ab initio molecular dynamics (AIMD) simulations using DFT
- DNN used to calculate atomic energies; total energy is the sum of atomic energies.
- Forces and virial calculated using gradient of energy w.r.t. positions

Molecular Dynamics: Minimization and Lattice Constants

Phase	Theory	а	b	С	α	β	γ
β C2/m	DFT (PBE)	6.91	9.06	4.78	90	101.97	90
	DFT (PBEsol)	6.85	8.97	4.74	90	101.79	90
	MLMD (PBE*)	6.90	9.05	4.77	90	101.95	90
	Expt ¹	6.88	8.97	4.72	90	101.70	90
γ P2 ₁ /c	DFT (PBE)	4.75	10.90	5.63	90	96.18	90
	DFT (PBEsol)	4.71	10.81	5.57	90	95.98	90
	MLMD (PBE*)	4.74	10.88	5.62	90	96.14	90
	Expt ²	4.69	10.84	5.58	90	96.03	90
	Expt ³	4.69	10.86	5.59	90	96.01	90
	Expt ⁴	4.66	10.78	5.54	90	96.06	90
δ Pna2 ₁	DFT (PBE)	13.80	5.09	8.20	90	90	90
	DFT (PBEsol)	13.62	5.03	8.12	90	90	90
	MLMD (PBE*)	13.77	5.07	8.19	90	90	90
	Expt ⁵	13.81	5.02	8.30	90	90	90
	Expt ⁴	13.69	5.02	8.17	90	90	90

[3] Leonyuk, et al. J Cryst Growth. (1999)[4] Smolin, et al. Acta Crist B: Struct Cryst Cryst Chem. (1970)

Finite-Difference Phonon Calculations

- Consistent results with DFT across supercell sizes
 - 1×1×1 (22 atoms)
 - 2×2×2 (176 atoms)
 - 3×3×3 (594 atoms)
 - $5 \times 5 \times 5$ (2,750 atoms)
- Slight deviation between 1 × 1 × 1 cell in MLMD compared to DFT

β-Y2Si2O7 Heat Capacity

Quasi-Harmonic Approximation Phonon Calculations

- Quasi-harmonic approximation considers nonequilibrium volume contributions
 - Span of volumes from 94% to 106% of equilibrium
- Slight deviation between 1 × 1 × 1 cell in MLMD compared to DFT
- Can provide thermochemical properties required for phase stability and formation calculations
 - CALPHAD via Thermo-Calc software
- Larger supercell capabilities could enable studies of more complicated properties, simulation techniques, etc.

Long-duration and large-cell molecular dynamics

- Supercell size increased to 8 × 8 × 8 conventional unit cells
 - 11,264 atoms
- Total energy and temperature stable over a 2 µs simulation
- Cost-prohibitive cell size and timeframe for DFT

CTE calculations as function of temperature

- Good agreement between MLMD simulations and experiment¹
- Overprediction of *a* and *b* CTE, underprediction of *c* CTE

	CTE(×10 ⁶ K ⁻¹)			
	β	γ	δ	
а	7.4	0.1	4.1	
b	5.3	7.2	11.5	
С	0.6	7.0	11.2	
Avg Bulk	4.4	4.8	8.9	

Table 1: Linear lattice CTE and average bulk CTE of $Y_2Si_2O_7$ crystal phases

- Machine learning was used to develop an interatomic potential for YDS
 - Potential was successfully used to calculate various properties of YDS including CTE
 - Results from MD match well with results from DFT
- MLMD enables calculation of phonon vibrational frequencies at similar accuracy but at substantial faster timeframes as compared to DFT (~hours vs. ~weeks)
- MLMD enables long-duration and/or large cell calculations that would be cost prohibitive with DFT
 - Simulations on the order of 10-100 ps were successfully completed
 - Simulations including $8 \times 8 \times 8$ conventional unit cells (11,264 atoms) of β -YDS were successfully completed
- Training of MLMD potentials is resource intensive, and training of potentials for additional materials is required. However, training is a one-time expense (per material), and potentials can be flexibly used in additional calculations.

- Environmental Effects & Coatings Branch at NASA Glenn Research Center
 - Dr. Bryan Harder Wednesday, 8:00 AM in 335 David L. Lawrence Convention Center
 - Oxidation and Erosion Implications of CMAS on Environmental Barrier Coatings

• NASA Pleiades Supercomputer Cluster

- Funding
 - NASA Transformational Tools and Technologies (TTT) project
 - NASA Transformative Aeronautics Concepts Program (TACP)
 - NASA Aeronautics Research Mission Directorate (ARMD)