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SiC/SiC Ceramic Matrix Composite (CMC) Components

• Replace metal alloy engine components with SiC/SiC

ceramic matrix composites (CMCs)

• Increased efficiency and cost savings

– Higher temperature stability

– Lower density

• CMCs can degrade under O2 and H2O environments at high 

temperature (>800℃)
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Environmental Barrier Coatings (EBCs) for SiC/SiC CMCs

• CMCs can recess under O2 and H2O environments at high temperature (>800℃)

• Rare-Earth (RE) disilicates (RE2Si2O7) are a promising class of EBCs

• EBCs can prevent H2O diffusion

• Some formation of SiO2 TGO still occurs with EBC
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E. Opila et al. J Am Ceram Soc (1999)

K. Lee et al. J. Am Ceram Soc. (2019)

SiC (s) + 3/2 O2 (g) ⟶ SiO2 (s) + CO (g)

SiO2 (s) + 2 H2O (g) ⟶ Si(OH)4 (g)

EBC chemistry affects TGO growth and CMC recession

1000 h/1000 cycles at 1316℃ in 90% H2O + 10% O2

EBC-coated turbine vanes



EBC Failure Modes
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Thermochemical Properties

• Phase Stability

• Chemical Reactions

Thermomechanical Properties

• Mechanical Strength

• Thermal Expansion

Computational Simulations



Atomic-scale simulation methods for property calculations

DFT

• Electron-level theory

– Cost scales with number of electrons

• Smaller simulation cells

– Self-interaction errors?

Classical Molecular Dynamics

• Atom-level theory

– Cost scales with number of atoms

• Bonding based on empirical trend fits

– Generally, no bond breaking/formation
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DFT Classical MD

Pros

• Higher accuracy

• Generalizability

• Time
• ~Hours

• System Size
• Larger cells possible (~1,000s-10,000s of 

atoms)

Cons • Time
• ~Days-Weeks

• System Size
• Smaller unit cells (~100s of atoms)

• Requires pre-parameterized potential
• Not as generalizable
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Direct Property Calculations

• Train ML model to directly predict property

• ML algorithm suitable for problem

– Regression vs. Clustering

• Descriptors to capture system information

– Crystal structure information

– Atomic composition

– Environmental variables

• Temperature, Pressure, etc.

• Example: Neural network to predict CTE 

for rare-earth disilicates1

Indirect Property Calculations

• Train ML model to run simulations

– Interatomic potentials

• Regression algorithms, typically

– Almost always neural networks

• Descriptors often include atomic 

neighborhood information

– Nearest-neighbor atoms within cutoff

– Bonding information

• Example: NN-based interatomic potential 

for HfO2
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Machine learning approaches for crystalline materials

[1] Ayyasamy, et al. J Am Ceram Soc. (2020)

[2] Wu, et al. Phys Rev B. (2021)



DeePMD theory

• Deep Neural Network using descriptors to preserve 

translational, rotational, and permutational symmetries

• Descriptors dependent on atomic neighbor environment

– Full information (radial and angular) included for first- and 

second-nearest neighbors

– Radial information only for other atoms inside the user-

defined cutoff radius

• Training data obtained from ab initio molecular dynamics 

(AIMD) simulations using DFT

• DNN used to calculate atomic energies; total energy is the 

sum of atomic energies.

• Forces and virial calculated using gradient of energy w.r.t.

positions

10Wang H, et al. Comp Phys Comm. (2018)

Generate Raw Data

• DFT, AIMD, QMC, etc.

Convert Raw Data to Descriptors

Train and Test DeePMD Neural Networks

• Tensorflow

Import Model to MD Code

• Classical MD – LAMMPS

• Path Integral MD – i-PI
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Molecular Dynamics: Minimization and Lattice Constants

Phase Theory a b c α β γ

β

C2/m

DFT (PBE) 6.91 9.06 4.78 90 101.97 90

DFT (PBEsol) 6.85 8.97 4.74 90 101.79 90

MLMD (PBE*) 6.90 9.05 4.77 90 101.95 90

Expt1 6.88 8.97 4.72 90 101.70 90

γ

P21/c

DFT (PBE) 4.75 10.90 5.63 90 96.18 90

DFT (PBEsol) 4.71 10.81 5.57 90 95.98 90

MLMD (PBE*) 4.74 10.88 5.62 90 96.14 90

Expt2 4.69 10.84 5.58 90 96.03 90

Expt3 4.69 10.86 5.59 90 96.01 90

Expt4 4.66 10.78 5.54 90 96.06 90

δ

Pna21

DFT (PBE) 13.80 5.09 8.20 90 90 90

DFT (PBEsol) 13.62 5.03 8.12 90 90 90

MLMD (PBE*) 13.77 5.07 8.19 90 90 90

Expt5 13.81 5.02 8.30 90 90 90

Expt4 13.69 5.02 8.17 90 90 90
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[3] Leonyuk, et al. J Cryst Growth. (1999)

[4] Smolin, et al. Acta Crist B: Struct Cryst Cryst Chem. (1970)

[5] Dias, et al. Zeitschrift für Krist. (1990)



Finite-Difference Phonon Calculations

• Consistent results with DFT across supercell sizes

– 1×1×1 (22 atoms)

– 2×2×2 (176 atoms)

– 3×3×3 (594 atoms)

– 5×5×5 (2,750 atoms)

• Slight deviation between 1×1×1 cell in MLMD compared 

to DFT
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Quasi-Harmonic Approximation Phonon Calculations

• Quasi-harmonic approximation considers non-

equilibrium volume contributions

– Span of volumes from 94% to 106% of equilibrium

• Slight deviation between 1×1×1 cell in MLMD 

compared to DFT

• Can provide thermochemical properties required for 

phase stability and formation calculations

– CALPHAD via Thermo-Calc software

• Larger supercell capabilities could enable studies of 

more complicated properties, simulation 

techniques, etc.
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Long-duration and large-cell molecular dynamics

• Supercell size increased to 8×8×8 

conventional unit cells

– 11,264 atoms

• Total energy and temperature stable over 

a 2 µs simulation

• Cost-prohibitive cell size and timeframe 

for DFT

14Timestep = 2 ps, Total Simulated Time = 2 µ



CTE calculations as function of temperature

• Good agreement between 

MLMD simulations and 

experiment1

• Overprediction of a and b CTE, 

underprediction of c CTE

CTE ( ×106 K-1 )

β γ δ

a 7.4 0.1 4.1

b 5.3 7.2 11.5

c 0.6 7.0 11.2

Avg Bulk 4.4 4.8 8.9
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Table 1: Linear lattice CTE and average bulk CTE of Y2Si2O7 crystal phases

[1] Dolan, et al. Powder Diff. (2008)



Conclusions

• Machine learning was used to develop an interatomic potential for YDS

– Potential was successfully used to calculate various properties of YDS including CTE

– Results from MD match well with results from DFT

• MLMD enables calculation of phonon vibrational frequencies at similar accuracy but at substantial faster 

timeframes as compared to DFT (~hours vs. ~weeks)

• MLMD enables long-duration and/or large cell calculations that would be cost prohibitive with DFT

– Simulations on the order of 10-100 ps were successfully completed

– Simulations including 8×8×8 conventional unit cells (11,264 atoms) of β-YDS were successfully completed

• Training of MLMD potentials is resource intensive, and training of potentials for additional materials is 

required. However, training is a one-time expense (per material), and potentials can be flexibly used in 

additional calculations.
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