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Abstract16

We introduce and evaluate an approach for the simultaneous retrieval of aerosol and sur-17

face properties from Airborne Visible/Infrared Imaging Spectrometer Classic (AVIRIS-18

C) data collected during wildfires. The joint National Aeronautics and Space Admin-19

istration/National Oceanic and Atmospheric Administration (NASA/NOAA) Fire In-20

fluence on Regional to Global Environments and Air Quality (FIREX-AQ) field cam-21

paign took place in August 2019, and involved two aircraft and coordinated ground-based22

observations. The AVIRIS-C instrument acquired data from onboard NASA’s high al-23

titude ER-2 research aircraft, coincident in space and time with aerosol observations ob-24

tained from the Aerosol Robotic Network (AERONET) DRAGON mobile platform in25

the smoke plume downwind of the Williams Flats Fire in northern Washington in Au-26

gust, 2019. Observations in this smoke plume were used to assess the capacity of optimal-27

estimation based retrievals to simultaneously estimate aerosol optical depth (AOD) and28

surface reflectance from Visible Shortwave Infrared (VSWIR) imaging spectroscopy. Ra-29

diative transfer modeling of the sensitivities in spectral information collected over smoke30

reveal the potential capacity of high spectral resolution retrievals to distinguish between31

sulfate and smoke aerosol models, as well as sensitivity to the aerosol size distribution.32

Comparison with ground-based AERONET observations demonstrates that AVIRIS-C33

retrievals of AOD compare favorably with direct sun AOD measurements. Our analy-34

ses suggest that spectral information collected from the full VSWIR spectral interval,35

not just the shortest wavelengths, enables accurate retrievals. We use this approach to36

continuously map both aerosols and surface reflectance at high spatial resolution across37

heterogeneous terrain, even under relatively high AOD conditions associated with wild-38

fire smoke.39

1 Introduction40

Atmospheric aerosols are fundamental to the physics and chemistry of the Earth’s41

atmosphere and play important roles in the planetary radiation balance, the hydrologic42

cycle, atmospheric circulation, and even human health. Besides being one of the largest43

uncertainties in estimates of the future global climate (Boucher et al., 2013), the effects44

of aerosols in the present atmosphere are complex and often poorly understood (e.g., Ku-45

niyal & Guleria, 2019). Climate change may also alter the relative concentrations and46

distributions of atmospheric aerosols through processes such as the desertification of po-47

tential dust sources (Green et al., 2020) and an increased incidence of wildfires (Barbero48

et al., 2015). New and improved measurements of aerosol quantity, size, shape, and chem-49

ical composition are necessary in order to monitor these sources and to better understand50

the processes of aerosol emission and transport. As aerosols vary widely in concentra-51

tion and composition over space and time, observations from passive optical instruments52

with synoptic coverage from satellites will play a critical role in this effort.53

A key challenge in measuring aerosols with passive remote sensing from a single-54

angle view is the separation of atmospheric effects from the surface-reflected radiance,55

especially over land. Spaceborne imaging sensors such as the Ozone Monitoring Instru-56

ment (OMI) and the Moderate Resolution Imaging Spectroradiometer (MODIS) have57

exploited spectral observations in different wavelengths in the ultraviolet (UV) and vis-58

ible (VIS) to shortwave infrared (SWIR), respectively, to retrieve aerosol optical depth59

(AOD), which is the total amount of aerosols in the atmospheric column, and some in-60

formation about aerosol type, especially absorption (e.g., Torres et al., 2007; Hsu et al.,61

2013; Levy et al., 2013; Sayer et al., 2014; Buchard et al., 2015). Due to the complex-62

ity of the underlying surface, these algorithms often limit aerosol retrievals to wavelengths63

where the surface signal is expected to be low and, further, assume a simple statistical64

relationship – typically linear – between key wavelengths. Spatial averaging and precon-65

ditioning are also necessary to reduce the noise in the observations. These approaches66

are necessary because a handful of spectral channels are numerically insufficient to de-67
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termine the surface/atmosphere separation. Unfortunately, the Earth’s surface does not68

always adhere to such strict relationships, nor is it always possible to find nearby dark69

surfacespixels, which are among the challenges for these multi-band approaches.70

While the atmospheric science community is interested in aerosols for the reasons71

outlined above, the land surface community considers the presence of an overlying layer72

of aerosols a nuisance that must be removed in order to retrieve key information about73

surface ecology, biodiversity, mineralogy, vegetation health, and other geophysical pa-74

rameters (e.g., C. M. Lee et al., 2015; Rast & Painter, 2019). This led to the develop-75

ment ofThese “atmospheric correction” approaches, initially for multiband imagers. These76

techniques were adapted for are traditionally applied to data from imaging spectrome-77

ters – also called hyperspectral imagers, due to their high spectral resolution and large78

number of spectral bands – to obtain accurate surface information with little attention79

paid to the details of the atmospheric aerosol (e.g., Gao et al., 2009; Rast & Painter, 2019;80

Thompson et al., 2019b). However, recent work has leveraged the substantial informa-81

tion content of VIS to SWIR (VSWIR) imaging spectroscopy with high spectral reso-82

lution (≤ 10 nm) to simultaneously retrieve accurate surface and atmosphere states over83

heterogeneous terrain (Thompson et al., 2018, 2019a). A similar approach has demon-84

strated the capacity to retrieve atmospheric optical depths from extremely high spec-85

tral resolution (0.14 / 0.28 nm) data in the 290-695 nm region (Hou et al., 2016, 2017,86

2020). In this study, we extend this approach to wildfire smoke with realistic constraints87

on physically possible surface reflectances and demonstrate the ability to accurately re-88

trieve AODs from 0 to above 2 in the mid-visible (550 nm) while showing sensitivity to89

aerosol optical properties at unprecedented spatial resolution.90

The wildfire cases are taken from the western phase of the joint National Aeronau-91

tics and Space Administration (NASA) and National Oceanic and Atmospheric Admin-92

istration (NOAA) Fire Influence on Regional to Global Environments and Air Quality93

(FIREX-AQ) field campaign that took place in August 2019. A diverse suite of in situ94

and remote sensing instruments were deployed during this campaign. Here we focus on95

data from NASA’s “Classic” Airborne Remote Visible Infrared Imaging Spectrometer96

(AVIRIS-C), which flew on the ER-2 high altitude research aircraft, and coincident ground-97

based sun photometer observations made by the Aerosol Robotic Network (AERONET).98

Simultaneous surface-atmosphere retrievals using AVIRIS-C data were performed using99

multiple aerosol models, demonstrating the ability to accurately retrieve AOD in com-100

parison with AERONET and distinguish broad aerosol types using imaging spectroscopy101

in the VSWIR. These retrievals were performed at high resolution (16.3 m) to generate102

spatially continuous aerosol and atmospherically corrected surface maps. We further eval-103

uate the information content of spectroscopic observations and show that aerosol related104

information is both dependent on the statistical constraints applied to the spectral sur-105

face reflectance, and distributed across the entire VSWIR spectral range. We close with106

a discussion of the implications of this work for imaging spectroscopy on NASA’s up-107

coming Plankton, Aerosol, Cloud and ocean Ecosystem (PACE), Earth surface Mineral108

dust source InvesTigation (EMIT), Aerosol and Cloud, Convection and Precipitation (ACCP),109

and Surface Biology and Geology (SBG) satellite missions.110

2 Methods111

The joint NASA/NOAA FIREX-AQ field campaign was designed to improve our112

understanding of the impacts of landscape fires (i.e., wildfires and controlled/agricultural113

burns) on climate, weather, and downwind air quality. During the western phase of the114

campaign in August 2019, the NASA high-altitude ER-2 research aircraft flew 11 flights115

over targets in Washington, Oregon, California, Utah, and Arizona from the NASA Arm-116

strong Flight Research Center (AFRC) located in Palmdale, CA. Additional NASA and117

NOAA aircraft participated in the campaign, along with dedicated deployments of ground-118

based stationary and mobile sensors. In this section, we describe the instruments and119
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approaches used to retrieve and validate combined surface and atmospheric parameters120

from VSWIR imaging spectroscopy during FIREX-AQ.121

2.1 Airborne measurements122

During FIREX-AQ, NASA’s “Classic” Airborne Visible Infrared Imaging Spectrom-123

eter (AVIRIS-C) flew in the Q-bay located in the belly of the ER-2 high-altitude research124

aircraft. AVIRIS-C measures radiance in 224 contiguous bands in the spectral range from125

380 to 2500 nm, with approximately 10 nm spectral sampling (Green et al., 1998). From126

the 20 km operational altitude of the ER-2, the approximately one milliradian instan-127

taneous field of view (IFOV) of AVIRIS-C translates to 16.3 m ground-level spatial sam-128

pling with a swath of about 11 km. The instrument is a whiskbroom imager with an os-129

cillating scan mirror that sweeps across the 30◦ cross-track field of view at 12 Hz, ac-130

quiring thousands of spectra per second. With this configuration, light from each cross-131

track element passes through the same optical system, providing uniformity across the132

image swath. Four optical fibers route the light from the foreoptics into four spectrom-133

eters with the following spectral ranges: (A) 380-700 nm, (B) 700-1300 nm, (C) 1300-134

1900 nm, and (D) 1900-2500 nm. This approach allows each detector to be individually135

optimized (Green et al., 1998).136

Prior to the campaign, AVIRIS-C was laboratory calibrated using measurements137

of International System of Units (SI) traceable sources. During the campaign, the lab-138

oratory calibration was updated and refined using vicarious calibration from overflights139

of the Railroad Valley Playa, a dry lake bed in Nevada (Bruegge et al., 2021). A ground140

team made measurements of the surface of the playa on 4 August 2019, about ten days141

prior to ER-2 overflights on 13 and 15 August 2019. The shape of the reflectance of the142

playa is known to be stable within a few percent over multiple years, and vicarious cal-143

ibration for Railroad Valley has an uncertainty of about 3% under ideal, clear sky con-144

ditions (Bruegge et al., 2019). Details of the vicarious calibration of AVIRIS-C for FIREX-145

AQ can be found in Bruegge et al. (2021). The resulting calibration coefficients were ap-146

plied to the AVIRIS-C data used in this investigation, rescaling the data to absolute ra-147

diance units. The resulting radiance cubes were geolocated using a camera model com-148

bined with on-board GPS telemetry and mapped to a square, rectilinear grid with 16.3149

m pixels. The same grid was used for aerosol retrievals and comparisons with ground-150

based measurements.151

2.2 Ground-based measurements152

The Aerosol Robotic Network (AERONET) is a distributed network of ground-based153

sun photometers that provide information about atmospheric aerosol loading (AOD) and154

aerosol properties by measuring direct solar intensity and directional sky radiances in155

a number of visible and near-infrared wavelengths (Holben et al., 1998; Dubovik & King,156

2000; Giles et al., 2019; Sinyuk et al., 2020). In addition to the static AERONET sites,157

during FIREX-AQ specially modified sun photometers were mounted on two vehicles and158

attempts were made to place these vehicles under wildfire smoke plumes to measure their159

aerosol properties and serve as validation for remote sensing retrievals (Holben et al., 2018).160

This was accomplished successfully for the Williams Flats Fire that burned on the Colville161

Indian Reservation, about 80 km northwest of Spokane, WA (e.g., Junghenn Noyes et162

al., 2020).163

Table 1 lists the coincident measurements between AVIRIS-C and AERONET iden-164

tified during the FIREX-AQ campaign. We gathered all instance of data where acqui-165

sitions were less than 100 m apart (AVIRIS pixel center compared to AERONET loca-166

tion), and also less than 15 minutes apart. In all cases, the closest match to AVIRIS-C167

was within a single retrieval pixel (≤ 16.3 m), and the dates and times reported are the168

closest matching AERONET instance. AERONET AODs were linearly interpolated in169
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log-log space to 550 nm using the two nearest AERONET wavelengths on either side of170

the desired wavelength (e.g., Sayer et al., 2013). Note that not all the matches were for171

conditions with wildfire smoke.172

2.3 Retrieval strategy173

Surface and atmospheric properties were simultaneously estimated using a Bayesian174

Maximum A Posteriori (MAP) inversion approach. In the satellite remote sensing and175

atmospheric science communities, this is known colloquially as Optimal Estimation (OE)176

(e.g., Rodgers, 2000; Nguyen et al., 2019; Maahn et al., 2020). Recently, the method was177

adapted for retrievals using imaging spectroscopy data from the AVIRIS-Next Gener-178

ation (AVIRIS-NG) instrument (Thompson et al., 2018, 2019a). In comparison to AVIRIS-179

C, AVIRIS-NG has nearly twice as many spectral samples (425 vs. 224) within the spec-180

tral range from 380 to 2510 nm (Chapman et al., 2019). One of the goals of the present181

work is to demonstrate the OE approach using the lower spectral resolution data from182

AVIRIS-C. In this section we summarize the salient points regarding the application of183

OE to AVIRIS-C aerosol retrievals for FIREX-AQ cases. More in-depth technical dis-184

cussions of OE retrievals for imaging spectroscopy can be found in Thompson et al. (2018,185

2019a).186

We begin with a state vector, x, that represents the set of surface, xs, and atmo-187

spheric, xa, parameters we wish to estimate using the AVIRIS-C observations. In the188

specific cases considered here, xs represents the Lambertian surface reflectances for all189

224 AVIRIS-C spectral bands. The atmospheric state, xa, includes AOD at 550 nm of190

one or more aerosol types and the column water vapor concentration. For convenience,191

we further represent the known solar and sensor geometry as an additional vector, g. A192

forward model, f , maps the state vector to an estimate of the radiance at the sensor, l̂o =193

f(x,g)+ϵ, where ϵ is a vector of measurement errors that are assumed Gaussian and194

independent of the state vector, x.195

Making the simplifying assumption of a locally-homogeneous, Lambertian surface196

(e.g., Tanré et al., 1979; T. Y. Lee & Kaufman, 1986; Pinty et al., 2005), the forward model197

can be written as:198

l̂o = latm(xa,g) + [ldn(g) · τ (xa,g) · r(xs)] ·
1

1− s(xa,g) · r(xs)
+ ϵ. (1)

The first term, latm, is the atmospheric path radiance, which represents light scattered199

by the atmosphere back into the sensor that never interacts with the surface, and car-200

ries most of the information about the aerosol and water vapor content of the atmospheric201

column. The term in brackets contains the total (direct + diffuse) downwelling irradi-202

ance at the surface, ldn, that is attenuated by transmission through the atmosphere, τ ,203

and reflected by a single bounce from the surface, which has a hemispherical-directional204

reflectance factor (HDRF), given by r. The HDRF is the ratio of the reflected radiant205

flux from the surface due to the incoming light from the entire hemisphere to the reflected206

radiant flux from an ideal, diffusely reflecting (Lambertian) surface (Schaepman-Strub207

et al., 2006). If the surface was such a perfectly diffusely reflecting surface, then r ≡ 1.208

WhileHowever, in practice, the HDRF of the surface is much less than one, the effect on209

the modeled reflectance for the surface modeled here is effectively that of a scaler, which210

will not impede the AOD retrievals. For simplicity, we will henceforth refer to the HDRF211

as the surface reflectance or just reflectance. The set of surface reflectances for the AVIRIS-212

C wavelengths corresponds exactly to the surface state vector, xs. The fraction that ap-213

pears after the brackets accounts for multiple scattering, which is light that interacts with214

the surface and the atmosphere multiple times. Each interaction modifies the term in215

the brackets by a multiple of the spherical albedo of the atmosphere observed from the216

ground, s, and the light diffusely reflected upward from the surface, r. The sum of these217
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interactions make up a geometric series that is represented by the fraction in the limit218

of an infinite number of interactions. Finally, the measurement noise, ϵ, is assumed to219

be Gaussian with a zero mean and a covariance given by Σe. Note that additional terms220

could be included to account for surface emission, which may be important for very hot221

targets, like active fires. However, since direct measurements of the hot fire front were222

very sparse, these terms were not used.223

The OE retrieval approach uses Bayes’ theorem to estimate the state vector, in-224

cluding both surface and atmosphere terms, most likely to have yielded the true obser-225

vation lo, after taking into account both measurement noise and the strength of any prior226

information. Bayes’ theorem is given by the expression:227

p(x|y) = p(y|x)p(x)
p(y)

. (2)

This equation should be read: the probability of a state, x, given by the observations,228

y, is equal to the probability of y given x times the probability of x divided by the prob-229

ability of y. In words, Bayes’ theorem states that the posterior probability, p(x|y), is equal230

to the likelihood, p(y|x), times the prior, p(x), divided by the evidence, p(y). The ev-231

idence, or the marginal likelihood, does not provide any information on the state vec-232

tor x, so for practical purposes Bayes’ theorem is simplified to:233

p(x|y) ∝ p(y|x)p(x). (3)

In general, we take the prior to be a multivariate Gaussian distribution given by:234

p(x) ∝ exp

[
−1

2
(x− xp)TΣ−1

p (x− xp)

]
, (4)

where xp is the mean of the assumed prior distribution of the state vector with a covari-235

ance Σp, and the superscript T designates the transpose of the vector. Note that the term236

in the brackets is the square of the Mahalanobis distance, which is a multidimensional237

generalization of the Euclidian distance (De Maesschalck et al., 2000). In a similar fash-238

ion, the difference between the modeled and sensor observations, sometimes called the239

“noise,” but which actually contains both the error in the forward model and the mea-240

surement noise, is expressed in Gaussian form as:241

p(y|x) ∝ exp

[
−1

2
(lo − l̂o)

TΣ−1
e (lo − l̂o)

]
, (5)

where lo is the true observation, l̂o is the modeled observation from the forward model,242

and Σe is the error covariance matrix.243

With these assumptions, the posterior probability becomes:244

p(x|y) ∝ exp

[
−1

2
(lo − l̂o)

TΣ−1
e (lo − l̂o)

] [
−1

2
(x− xp)TΣ−1

p (x− xp)

]
. (6)

Taking the logarithm of both sides, we obtain:245

χ2(x) ≡ −2 ln p(x|y) =
[
(lo − l̂o)

TΣ−1
e (lo − l̂o)

]
+

[
(x− xp)TΣ−1

p (x− xp)
]
, (7)
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which is the OE cost function (Cressie, 2018). Minimizing this cost function leads to the246

MAP estimate, the most probable state that includes all the prior information and pos-247

terior probabilities (Thompson et al., 2019a).248

In our implementation, the solution to Eq. (7) is found using a trust-region method,249

a common nonlinear gradient-best optimization technique that guarantees local conver-250

gence for continuous problems (Branch et al., 1999; Conn et al., 2000). Columns of the251

Jacobian corresponding to atmospheric state vector terms (water vapor and AOD) were252

estimated using finite differences of the look up table (see Section 2.4), while columns253

related to the surface were calculated analytically using the chain rule on Equation 1.254

Starting points were initialized near the atmospheric state bounds for water vapor and255

AOD for each aerosol type and the corresponding heuristically-determined surface re-256

flectance starting points, in order to help ensure a more global optimization. We found257

that the retrieval proved to be generally robust, with the multipoint initialization lead-258

ing to spatially-smooth atmospheric state values, consistent with expectation. Both the259

averaging kernel matrix - a representation of the sensitivity of the costloss function to260

the true state - and an estimate of the uncertainty based on the full posterior predicted261

distribution, can be calculated at the retrieved state. Full descriptions of these calcu-262

lations are derived in (Rodgers, 2000), and the exact formulation used here is available263

in (Thompson et al., 2018).264

Returning to Eq. (7), careful consideration reveals that the second term in square265

brackets, which includes the prior distribution, acts as a regularization parameter for the266

solution of an ill-posed problem (Cressie, 2018; Nguyen et al., 2019). For our applica-267

tion, we exploit this characteristic of the prior in a two-step manner to improve the per-268

formance of the algorithm under conditions of high aerosol loading where the underly-269

ing surface is partially or completely obscured at shorter wavelengths by the atmosphere.270

Recall that the surface model prior is based on a collection of multivariate Gaussian dis-271

tributions, as shown in Eq. (4). It is common in operational settings to use “universal”272

models that provide only very weak, or “soft,” constraints (Thompson et al., 2020a). As273

illustrated in Fig. 1, we performed an initial atmospheric correction using soft constraints274

from what we consider “universal surface models.” These are represented by the basic275

surface priors shown at the top of the figure, which have smoothly varying reflectances276

as a function of wavelength, with a broad spread about the mean, and very small band-277

to-band covariances peaking around 3.5×10−4. We then selected large, rectangular ar-278

eas of heterogeneous terrain upwind of the smoke plumes, where the retrieval of the sur-279

face reflectance could be considered trustworthy. The surface reflectances were grouped280

using K-means clustering, and we obtained a set of within-group means and covariance281

matrices. These locally derived surface priors, associated spreads, and band-to-band co-282

variances are shown in the bottom portion of Fig. 1. Compared to the basic surface pri-283

ors, the local surface priors have more mixture representationspectral variability with284

much tighter agreement about the mean, and larger covariances, which ranges up to 1.0×285

10−3 for the selected pixel shown. We note that the magnitudes of the reflectance val-286

ues (which differ between the two prior sets due to the different data sources used for287

each) are not important, as they are scaled uniformly during the retrieval. These stronger288

priors were then used in a second pass of the OE retrieval for the portion of the image289

obscured by the dense smoke plume in the shorter wavelengths.290

2.4 Atmospheric radiative transfer291

The complete forward model f(x,g) includes models of the sensor, surface, and at-292

mosphere that transform state variables to a predicted radiance. The surface model is293

described in Section 2.3, and the instrument model contains a component-wise descrip-294

tion of the AVIRIS-C sensor with constant noise terms that account for electronic and295

detector thermal effects, as well as signal-dependent noise from photon counting statis-296

tics (Thompson et al., 2018). In this section, we describe the atmospheric models used.297
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figs/priors.png

Figure 1. Illustration of basic (top) and localized (bottom) priors for the surface component

of the state vector, xs. The priors shown in the top set are drawn from a moderately diverse

set of reference spectra, as per Thompson et al. (2018). These were used to estimate the surface

reflectance of a clear-sky area of land (middle panel) located upwind of the target area of interest

that contained the smoke plume. The resulting surface reflectances were then clustered into the

local surface priors shown in the bottom panel. Each panel of priors shows the prior means as

different colored lines and root mean square of the covariance on the left, and the full covariance

matrix of a selected pixel on the right. White regions in the plots indicate spectral ranges that

are dominated by water vapor and contain little information about the surface.

In order to determine the optical coefficients used in Equation 1, we ran a series298

of MODTRAN 6.0.2.2G radiative transfer model simulations for each scene (Berk & Hawes,299

2017). While in theory the formulation in Section 2.3 can estimate any combination of300

atmospheric state parameters, in this work we focus on two key atmospheric components:301

the total column water vapor and the aerosol optical depth for three different aerosol types.302

The three aerosol types used in this investigation were the sulfate and dust models pre-303

viously used for AVIRIS-NG aerosol retrievals over India (Thompson et al., 2019a) as304

well as a fine smoke aerosol model based on AERONET climatological observations (Omar305
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et al., 2005, 2009). The sulfate model is based on Chin et al. (2002) and Hess et al. (1998).306

The dust model is taken from a single size bin from 1 to 1.8 µm in the OPAC-Spheroids307

model described in Colarco et al. (2014). The dust spectral refractive indices are based308

on the OPAC data (Hess et al., 1998), and the shape information is drawn from the non-309

spherical single scattering aerosol database described by Meng et al. (2010). The dust310

and sulfate models were not intended to represent particular species, but to encapsulate311

general optical properties of different classes (Thompson et al., 2019a).312

The smoke model has a log-normal size distribution given by:313

dn(r)

d ln r
=

N0√
2π · lnσ

· exp
[
−(ln r − ln rc)

2

2(lnσ)2

]
, (8)

where the left hand side of the equation describes the number of particles in equal steps314

in the logarithm of the radius, r, and N0 is a normalization term. The key parameters315

of the distribution are rc, the characteristic radius (sometimes called the modal radius),316

and σ, which is the characteristic width (sometimes call the geometric standard devi-317

ation). From Omar et al. (2005, 2009), rc = 0.0790 µm, and σ = 1.5624 µm. Note that318

the characteristic radius is derived from the volume-weighted characteristic radius, rv319

distribution given for the fine mode smoke in Omar et al. (2005, 2009), using the con-320

version: rc = rv exp[−3(lnσ)2] (Remer & Kaufman, 1998).321

Omar et al. (2009) provide the real and imaginary part of the index of refraction322

at two wavelengths, 532 nm and 1064 nm, since the model is derived for use with the323

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) aerosol324

products. These values nr(532) = 1.517, nr(1064) = 1.541, for the real part, and ni(532) =325

0.0234, ni(1064) = 0.0298 were interpolated in log-log space to the required MODTRAN326

wavelengths. The difference between a simple linear interpolation and the log-log inter-327

polation is small for the AVIRIS-C wavelengths used in the retrievals. Single scattering328

properties were calculated using a Mie code assuming spherical particles (Mishchenko329

et al., 1999).330

The extinction, absorption, and asymmetry parameters of each aerosol are shown331

as a function of wavelength in Fig. 2. These are the key parameters used in the atmo-332

spheric radiative transfer performed by MODTRAN (Berk & Hawes, 2017). This figure333

demonstrates that the sulfate and smoke scattering coefficients are very similar due to334

similar size distributions. Their absorption coefficients, however, differ significantly in335

the 0.4 to 2.5 µm range. By comparison, the dust spectral optical properties differ sig-336

nificantly from those of the other two aerosol models. Although the dust model is used337

in the simulation experiment described in the next section, detailed investigation of AVIRIS-338

C sensitivity to atmospheric dust is beyond the scope of this investigation, which is fo-339

cused on fire observations.340

Given the aerosol properties, MODTRAN 6.0 was then used to calculate the op-341

tical properties τ , s, and latm, that appear in Eq. 1 using the mean view and solar an-342

gle geometries for each scene. As in Thompson et al. (2018), the simulations were run343

using the correlated-k representation to handle atmospheric absorption with 17 coeffi-344

cients per 0.1 cm−1 spectral bin. Vertical distributions of constituents assigned accord-345

ing to the MODTRAN mid-latitude summer profile. Multiple scattering was performed346

using the DISORT (Stamnes et al., 1988) method internal to MODTRAN, with 8 streams347

(Berk & Hawes, 2017). We note that MODTRAN does not account for polarization ef-348

fects, which may play a significant role, particularly below 500 nm. The resulting coef-349

ficients were placed in a lookup table (LUT) indexed by atmospheric state. AOD val-350

ues in the LUT for each aerosol type ranged from 0-3 with six evenly spaced values. In-351

terpolations within the LUT were used to determine the precise radiance for any given352

state vector during individual pixel inversions (Thompson et al., 2019a).353
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figs/aerosol_RTM_inputs.png

Figure 2. Aerosol model components for different aerosol types as a function of wavelength,

showing (a) the normalized extinction coefficients, (b) the absorption coefficients, and (c) the

asymmetry parameters for the three aerosol models. Dust is indicated in blue, sulfate in green,

and smoke in purple.

3 Results354

We first present a small series of simulation results to provide intuition about the355

effects of different aerosols on at-sensor radiance for AVIRIS-C, followed by retrievals of356

AODs over multiple locations from the FIREX-AQ campaign and comparisons with AERONET.357

3.1 Simulation comparisons358

We begin by showing the absolute at-sensor radiances, modeled using Eq. 1, for an359

arbitrary bright and dark target (uniform reflectances of either 50% or 5%), as well as360

for a vegetation and a bare ground spectrum. Keeping the amount of atmospheric wa-361

ter vapor fixed to 2 g cm−2, we varied AOD values for each aerosol independently from362

0.25 to 1.0. The results are shown in Fig. 3. For the bright surface in the top row, the363

absorbing aerosols (dust and smoke) dramatically affect the at-sensor radiances, espe-364
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cially around 500 nm. Larger effects are seen with higher AOD. This sensitivity to ab-365

sorbing aerosols over bright surfaces is the basis for the “critical reflectance” approach366

for retrieving aerosol single scattering albedo (SSA) (e.g., Zhu et al., 2011; Seidel & Popp,367

2012; Wells et al., 2012). The situation is different for the dark surface, where the smoke368

aerosol has the largest at-sensor radiances around 500 nm. To first order, this is due to369

the smaller asymmetry parameter for the smoke aerosol model as shown in Fig. 2, which370

indicates less scattering in the forward direction and, consequently, more backscattered371

light from the aerosol. It is also worth noting that the dust model shows the effects of372

changing AOD throughout the VSWIR spectral range. This is because the extinction373

coefficient is relatively constant for dust as a function of wavelength (Fig. 2), due to the374

relatively large particle size of the dust model compared to the sulfate and smoke mod-375

els. Non-uniform surface targets, such as vegetation or bare soil (bottom two rows of Fig. 3),376

further complicated the modeled at-sensor radiance features, though the distinction be-377

tween aerosol models is still quite clear.378
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figs/aerosol_rdn_0.png

figs/aerosol_rdn_0_surface.png

Figure 3. Simulated at-sensor radiance for different targets (top row: uniform 50%, second

row: uniform 5%, third row: vegetation, fourth row: bare ground)uniform targets for 50% (top)

or 5% (bottom) uniform surface reflectance, for the three different aerosol types (columns). Each

offor four different AODs ranging from 0.25 to 1.0 at 550 nm are shown in each panel. Note that

the rows use a constant scale for the y-axis, but the scales are different from the top row to the

bottom.
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figs/aerosol_rdn_2.png

figs/aerosol_rdn_2_surface.png

Figure 4. The mean change in at-sensor radiance in the 0.25-1.0 AOD range, per 0.1 unit

difference of AOD, relative to the simulated AVIRIS measurement noise. Simulations were per-

formed using a uniform reflectance target of either 50% (top) or 5% (second rowbottom), along

with an arbitrary vegetation spectrum (third row) and bare earth spectrum (fourth row) for

different aerosol types. In all cases, an atmospheric water vapor value of 2.0 g cm−2 was used.
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To further investigate the behavior of the at-sensor radiances for different aerosol379

types, we used the same set up to calculate the mean radiance deviation per 0.1 unit change380

in AOD within the 0.25 to 1.0 AOD range can compared this to the estimated AVIRIS-381

C noise (Fig. 4). The different panels in this figure are often referred to as radiative ker-382

nels. This comparison highlights that the available signal from a 0.1 change in AOD typ-383

ically exceeds the sensor noise threshold - indicating that there is sufficient signal to make384

a detection. These results do not, however, determine whether or not a retrieval strat-385

egy will be able to distinguish between surface, AOD, and water vapor - for that anal-386

ysis we examine remote detections in the next section.387

3.2 Remote retrievals388

We implemented the OE retrieval strategy described in Section 2.3 on all AVIRIS-389

C acquisitions with spatially and temporally coincident AERONET mobile acquisitions.390

An example of these retrievals using the smoke model is shown in Figure 5. The top row391

shows the retrieved AODs for all four scenes, ranging from very low to very high amounts392

of aerosols. The second row shows the estimated AOD uncertainty (in units of AOD),393

which remains small relative to the aerosol levels present in these scenes. Careful inspect394

of the scenes indicates that the AOD uncertainties are lowest over more vegetated pix-395

els and highest over the pixels with more bare ground, consistent with previous findings396

(Thompson et al., 2019a). The third row shows “atmospherically corrected” RGB im-397

ages from the retrieved reflectances. For comparison, the last row provides RGB images398

of the measured at-sensor radiance. It is apparent that the retrieval does a good job re-399

moving the presence of smoke, indicating a robust AOD retrieval using this aerosol model.400

Some retrieval instabilities are noticeable over water pixels where the observed radiances401

tend to be extremely low.402
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figs/state_images_results_radiometric_correction_rcprior_fine_fire_aerosol_.png

Figure 5. Mapped retrieval results over the mobile AERONET locations from August 6 and

7, 2019. From top to bottom, figures show the aerosol AOD modeled by OE (using the CALIPSO

smoke model), the corresponding AOD uncertainty, an RGB image from the retrieved reflectance,

and the initial radiance. The same area is visible in several scenes, observed at different points

in time with different aerosol values. Each scene is a 200 × 400 pixel (3200 × 6400 m) area, cen-

tered on the mobile AERONET site.

In addition to retrievals over the mobile AERONET platform, we also ran simi-403

lar retrievals over several fixed AERONET sites under clear-sky conditions (see Table404

1). Figure 6 shows a comparison of retrievals performed using MODTRAN radiative trans-405

fer simulations using both the sulfate and smoke aerosol models. The dust aerosol model406

unsurprisingly resulted in near-zero AOD estimates, and is consequently excluded from407

subsequent analyses. AODs retrieved using both the smoke and sulfate aerosol models408

compare favorably with the limited number of spatially and temporally coincident data409

acquisitions from AERONET and AVIRIS-C (Table 1). This is particularly true given410

the number of conflicting factors between measurements, which include viewing geom-411

etry differences as well as potential spatial and temporal misalignment. To help assess412

these, we display multiple metrics of uncertainty for each point. As each line was man-413

ually assessed for orthorectification errors, we expect the spatial alignment to be strong414

relative to the 16 m ground level resolution data. As such, we take the spatial uncer-415

tainty range to be the 3 × 3 pixel grid overlaying the target location, and plot the min-416

imum and maximum values. While we expect the temporal accuracy of both instruments417

to be high, small timing offsets could result in relatively large changes in smoke plume418

location, and as such we show the 15 minute interval around the closest matching mo-419

bile AERONET measurement. The center point, however, is the closest temporal match420

(corresponding to Table 1). Comparing the performance, the smoke model appears to421

show less bias relative to AERONET than the sulfate model.422

We further assess the capacity to distinguish between aerosol types by evaluating423

the residuals between the observed and modeled at-sensor radiance, using both the smoke424

and sulfate aerosol models. Figure 7 shows this comparison for two different flight lines425
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figs/aod_comparison_results_radiometric_correction_rcprior_classic_aerosol_.pngfigs/aod_comparison_results_radiometric_correction_rcprior_fine_fire_aerosol_.png

Figure 6. Comparison between AOD at 550 nm estimated through OE from the AVIRIS-C

data, and AOD at 550 nm estimated from mobile AERONET units. The range of values in the

AVIRIS scene in the 3 × 3 pixel grid surrounding the target are shown as the spatial uncertain-

ties, all AERONET values within the nearest 15 minutes of the time of acquisition of the target

pixel are shown as AERONET-AVIRIS temporal uncertainties, and the uncertainty from the

optimal estimation AOD retrieval is shown as the OE instrument uncertainties. AERONET-

AVIRIS spatial and temporal uncertainties indicate potential uncertainty in the alignment be-

tween the two measurements. AERONET direct measurement uncertainty for the Version 3 Level

2.0 AOD measurements for mid-visible wavelengths is very low, typically less than 0.01 (Eck et

al., 1999; Giles et al., 2019), and so not shown directly.

(one clear sky, and one wildfire example), using 2D histograms. In the clear sky case (left426

panel), the majority of points lie on or near the 1:1 line, indicating that both models pro-427

vide similarly good fits. In the a wildfire case (right panel), most points lie well above428

the 1:1 line, indicating that the smoke model significantly outperforms the sulfate model429

for these pixels. This provides statistical evidence for the ability of VSWIR imaging spec-430

troscopy from AVIRIS-C to discriminate aerosol types over heterogeneous scenes.431
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figs/Histograms.pdf

Figure 7. Histogram density of radiance residuals for smoke and sulfate aerosol models, for

clear sky and wildfire flightlines.

Figure 8 shows one example retrieval under thick smoke conditions. The left panel432

shows the reflectance of a mixed pixel from flightline f190807t01p00r14 along with the433

averaging kernels corresponding to the H2O and AOD550 state variables. The averag-434

ing kernel represents the sensitivity of the costloss function to the true state by illustrat-435

ing the impulse response of the final retrieval estimate to a unit perturbation of the rest436

of the state vector (Rodgers, 2000).437
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figs/veg_rfl.pdf figs/bare_rfl.pdf

figs/veg_avg.pdf figs/bare_avg.pdf

Figure 8. Left: Reflectance spectrum and aerosol averaging kernel for a vegetated pixel from

flightline f190807t01p00r14. Right: Reflectance spectrum and aerosol averaging kernel for a bare

soil pixel from the same flightline.

This provides insight into where the inversion draws draws its information - values far-438

ther from zero (either positive or negative) indicate stronger influence.439

The red features, indicating sensitivity to H2O, follow the shape of atmospheric ab-440

sorption features at 940 and 1140 nm. Interestingly, the edge of the deep absorption fea-441

ture at 1480 nm also contributes strongly to the water vapor retrieval. The upslope in442

the black AOD550 averaging kernel at 500 nm indicates that higher radiances in these443

channels are interpreted as path radiance, and increase the estimated aerosol. Shortwave444

channels also contribute to the aerosol estimate, because the surface reflectance of green445

vegetation is strongly constrained in this region; additional radiance in the low-signal446

areas near the opaque water absorption features would be interpreted as an increase in447

the estimated aerosol load. Lacking a commensurate increase in the contrast of vegeta-448

tion features in the visible wavelengths, a higher AOD would be required to produce the449

measured radiance. In contrast, the near infrared portion of the spectrum from 800-1250450

nm can vary in brightness due to changes in vegetation reflectance itself, which is more451

variable in this region. Consequently, the averaging kernel in this area is nearly flat. The452

right panel of Figure 8 shows a spectrum that contains mostly soil and nonphotosynthetic453

vegetation. Here the long wavelengths are unconstrained and contribute little informa-454

tion to either atmospheric parameter. The aerosol retrieval thus relies on the shortest455
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channels; an increase in signal at the shortest wavelengths is attributed to aerosols rather456

than reflectance.457

The averaging kernels for individual reflectance channels are also informative. Fig-458

ure 9 shows those associated with the reflectance retrieval in selected visible, near infrared,459

and shortwave infrared channels of a smoky scene. The visible wavelength channels are460

highly influenced by aerosols, reducing the spectral sensitivity of these measurements and461

broadening the associated averaging kernels. The retrieval of these reflectance values re-462

lies on a wide range of wavelengths, leading to nonzero values across the spectrum. In463

contrast, the shortwave infrared averaging kernel, where the atmosphere is more trans-464

parent, is strongly peaked around its associated radiance channel. This reinforces the465

intuition that, in heavy aerosol loading conditions, the retrieval does not infer the vis-466

ible wavelength reflectances entirely from the obscured channels, but rather exploits in-467

formation distributed over the entire the spectrum.468

figs/veg_rfl_avgkernel_200.pdf figs/veg_avgkernel_200.pdf

Figure 9. Left: Reflectance spectrum from f190807t01p00r14. Right: The associated averag-

ing kernels for three reflectance channels.

Finally, we demonstrate how this process can be used to characterize smoke plumes469

from fires. In Figure 10, we show this retrieval process over an actively burning portion470

of the Williams Flats Fire near Spokane, WA (Junghenn Noyes et al., 2020). This scene471

demonstrates how the combination of high spectral fidelity measurements and strong up-472

wind surface priors facilitate retrievals of and through thick smoke, with aerosol opti-473

cal depths reaching above 2. Notably, retrievals through smoke over water do not work474

as well (noticeable in the inconsistent values shown in the river in the upper right cor-475

ner of the scene). This is due to the weak reflectance of water across the majority of the476

spectrum, and subsequent low at-sensor radiance signal, which also amplify any sensor477

noise effects. However, Figure 10 shows smooth results over a range of surface terrain,478

with few false positives outside of the plume.479
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figs/plume_touched.png

Figure 10. Map of the primary plume near the fire front in flightline f190806t01p00r18. A

white line in the upper right denotes a river with a lower surface reflected signal, and subsequent

relatively poor retrievals.

The high spatial resolution mapping of AOD enables a unique characterization of
plume dynamics. We fit the second order structure function S2(r), which reveals how
the concentration changes as a function of distance from the source. Specifically it de-
scribes the expected value of the squared difference in the AOD field f(i), indexed by
location i, as a function of separation distance r between pairs of points.

S2(r) = E
[
|f(i+ r)− f(i)|2

]
(9)

Sn(r) is estimated using the mean of observed AOD values at different spatial offsets.
It is typically described locally by a power law:

S2(r) ∝ rζ2 (10)

where ζ2 is the second order scaling exponent. Following Kolmogorov theory, a passive480

tracer in turbulence has a theoretical second-order scaling exponent ζ2 of 2/3 (Pope, 2000).481

We fit a structure function to image f190806t01p00r18, using an AOD threshold of 0.2482

to effectively segment the plume from the background (Figure 11). The second order scal-483

ing exponent, identified by the best fitting line in logarithmic space, has a value of 0.8484

which is quite close to the theoretical result of 0.66 for a passive turbulent flow. In other485

words, the small scale structure of the plume observed over scales of 50 m to over 1000486

m is broadly consistent with expectation for a turbulent atmosphere. The ideal slope of487

2/3 is plotted in red for reference.488

–20–



manuscript submitted to Journal of Geophysical Research: Atmospheres

figs/StructureFunction.pdf

Figure 11. Second order structure function calculated from the particle concentration of the

smoke plume in Figure 10. The empirically determined slope of 0.8 is close to the theoretical

value of 0.66 that would occur for a passive tracer in turbulent flow.

4 Discussion489

Understanding the intensity, distribution, and composition of aerosols is of criti-490

cal importance to Earth system science and public health. We present a method for us-491

ing imaging spectroscopy to quantify both aerosol category and optical depth from imag-492

ing spectroscopy. Our approach leverages a combined solution of the surface and atmo-493

spheric state, facilitating aerosol optical depth retrievals over dense smoke plumes as well494

as the characterization of the surface reflectance near active fires - paving the way for495

science at the interface of the surface and atmosphere. We demonstrate the efficacy of496

this method by comparison to ground-based estimates of aerosol optical depth, and ap-497

ply the method to the Williams Flat Fire near Spokane, WA in order to generate a high498

spatial resolution map of smoke aerosols.499

Our procedure uses Optimal Estimation to independently solve for the complete500

atmospheric and surface state at each pixel, leveraging radiative transfer modeling, cal-501

ibrated at-sensor radiance measurements, and an estimate of the surface prior. Due to502

the reduced surface signal under dense plumes, stronger local priors than commonly uti-503

lized (e.g., Thompson et al., 2018, 2019a, 2020a; Carmon et al., 2020), help inform an504

accurate retrieval. Deriving these stronger local priors is straightforward, given the in-505

creasing quantities of imaging spectroscopy data available. With future orbital imaging506

spectroscopy missions, generalized sets of strong local priors are likely, particularly given507

that they may also aid in model uncertainty propagation. Evidence that the algorithm508

utilizes the full VSWIR spectral range to estimate aerosol optical depth (Figure 8), in-509

–21–



manuscript submitted to Journal of Geophysical Research: Atmospheres

cluding higher wavelengths where aerosols do not have a dominant absorption signature,510

highlights that these strong priors play a substantial role in the retrieval.511

While we were able to demonstrate strong agreement between AOD measured from512

the ground (AERONET) and remotely (AVIRIS-C), some discrepancies remained even513

with our best aerosol model. Several factors could contribute to this. First, while mea-514

surements were aligned in time and space to the maximum possible extent, misalignment515

- particularly in measured optical path - may still be a factor. Additionally, our anal-516

yses indicated that accurate AOD retrievals are quite sensitive to absolute radiometric517

calibration. While we used a vicarious calibration to reduce radiometric calibration er-518

rors in AVIRIS-C data, some calibration errors inevitably remain, and could contribute519

to observed differences. And finally, and perhaps most significantly, any and all radia-520

tive transfer models contain a host of modeling and input data assumptions, and despite521

our best efforts it is quite possible that these differing assumptions contribute to the ob-522

served discrepancies.523

Our approach demonstrates the capacity to distinguish between aerosol types, us-524

ing residuals between modeled and observed radiances. This capacity is critical for global525

acquisitions, where manual distinctions based on local context will not be feasible due526

to high data volume rates. Future work will be needed to explore the retrieval capac-527

ity of additional aerosol types, within-class drivers of optical property variation, and aerosol528

mixtures. and the effects that aerosol mixtures may have. Investigations into the influ-529

ence of different vertical distributions of aerosols, as well as the interaction of aerosols530

with other trace gases, also remains to be explored.531

Smoke has diverse optical properties (Samset et al., 2018). The goal here was sim-532

ply to show spectroscopic discrimination between broad aerosol categories, which has not533

to our knowledge been demonstrated for an instrument of this spatial resolution. Nev-534

ertheless we recognize the within-class variance of smoke optical properties - due to the535

balance of particle sizes and the ratio of black to organic carbon - as a potential source536

of error in our AOD estimates. We leave the discrimination and measurement of these537

finer classes to future work.538

5 Conclusion539

With increased global and repeat acquisitions of imaging spectroscopy pending through540

missions like the Earth Surface Mineral Dust Source Investigation (EMIT), the Surface541

Biology and Geology (SBG) mission, and the Aerosol and Cloud, Convection and Pre-542

cipitation (ACCP), imaging spectroscopy will provide a promising avenue to provide global543

estimates of aerosol quantity and composition. We do note that our technique performs544

relatively poorly over aquatic regions, due to strong absorption of light at wavelengths545

exceeding one micron, but appears to work well over different terrestrial substrates. Fu-546

ture extensions of this work could consider utilizing vertical profile distributions to ap-547

proximate air quality at the surface, extending the diversity of aerosol types considered,548

and investigating the relationship between surface characteristics and point source emis-549

sions.550
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Mobile 2 08/06 18:27:03 18:41:55 18:47:17 18:41:54 47.9110 118.3350

Mobile 2 08/06 20:24:34 20:38:55 20:54:18 20:39:22 48.1020 118.2060

Mobile 2 08/06 21:00:52 21:12:29 21:12:29 21:15:49 48.1020 118.2060

Mobile 1 08/07 18:14:50 18:27:52 18:29:50 18:28:43 47.9061 118.3337

CalTech 08/12 18:51:58 19:06:58 19:18:58 19:05:38 34.1367 118.1262

UFR 08/21 22:51:51 23:03:44 23:12:44 23:04:10 35.2148 111.6344

UFR 08/21 23:06:43 23:06:43 23:33:43 23:19:07 35.2148 111.6344

*UFR stands for USGS Flagstaff ROLO

thank the AERONET (NASA GSFC and LOA PHOTONS) teams for providing instru-559

mentation, calibration, processing, and in-field support for DRAGON measurements. In560

addition, we would like to thank the following principal investigators for maintaining AERONET561

sites and contributing aerosol data: Tom Stone (USGS Flagstaff ROLO) and Jochen Stutz562

(Caltech). This research was carried out at the Jet Propulsion Laboratory, California563

Institute of Technology, under a contract with the National Aeronautics and Space Ad-564

ministration. Copyright 2021 California Institute of Technology. All rights reserved. US565

Government Support Acknowledged.566

6 Open Research567

6.1 Data Availability568

All airborne acquisitions used in this manuscript may be found on the AVIRIS data569

portal (https://aviris.jpl.nasa.gov/dataportal/). All retrievals were performed using the570

open source optimal estimation package ISOFIT v2.8.0 (Thompson et al., 2021).571
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