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Abstract. We propose to use gravitational waves from extreme mass ratio inspirals (EMRI),
composed of a boson star and a supermassive black hole in the center of galaxies, as a new
method to search for boson stars. Gravitational waves from EMRI have the advantage of be-
ing long-lasting within the frequency band of future space-based interferometer gravitational
wave detectors and can accumulate large signal-to-noise ratio (SNR) for very sub-solar mass
boson stars. Compared to gravitational waves from boson star binaries, which fall within the
LIGO band, we find that much larger ranges of the mass and compactness of boson stars,
as well as the underlying particle physics parameter space, can be probed by EMRI. We
take tidal disruption of the boson stars into account and distinguish those which dissolve
before the inner-most-stable-circular-orbit (ISCO) and those which dissolve after it. Due
to the large number of cycles recorded, EMRIs can lead to a very precise mass determina-
tion of the boson star and distinguish it from standard astrophysical compact objects in the
event of a signal. Tidal effects in inspiralling binary systems, as well as possible correlated
electromagnetic signals, can also serve as potential discriminants.
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1 Introduction

Light scalars with long de Broglie wavelengths and suppressed couplings to the Standard
Model can form gravitationally bound Bose-Einstein condensates (BEC) leading to macro-
scopic objects called boson stars [1–3]. The study of such condensates has a rich history in
the context of early Universe cosmology. Analytic and numerical investigations pertaining to
the evolution, stability, and decay of boson stars have been undertaken by various groups (we
refer to [4–6] for reviews). These questions are also of interest to particle physicists, given the
central place that light fundamental scalars occupy in theories beyond the Standard Model.
The hope is that astrophysical constraints on boson stars will translate into constraints on
the scalar field itself, such as its mass and interactions.

Gravitational waves [7] can play a significant role in these questions. The general idea
is that for macroscopic exotic compact objects (ECOs) formed of light bosons, with masses
comparable to stellar black holes and compactness sufficiently large that a binary system can
form, gravitational wave signals will be generated. Current and future gravitational wave
detectors can constrain the mass and compactness of the ECOs. Since these attributes are in
turn determined by the physics at the microscopic scale such as the mass and self-interaction
of the field, the probed regions of the mass-compactness plane will shed light on the underlying
particle physics parameters. Several cases have been pursued by different groups: mergers of
mini-boson and solitonic boson stars [8–12], oscillations [13], Proca stars [14], and repulsive
boson stars [15, 16]. These studies focused on binary systems with comparable masses, similar
to stellar black holes, which produce gravitational waves within the band of LIGO [17].
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The purpose of this paper is to point out that extreme mass ratio inspirals (EMRI)
are very effective in probing boson stars and future space-based interferometers which target
EMRI can potentially constrain a large part of the mass versus compactness parameter space.
The standard EMRI consists of a stellar black hole, neutron star or white dwarf circling
around a supermassive black hole (SMBH) at the center of each galaxy. ECOs, if they exist,
can also create EMRI systems and constitute an entirely new target species for space-based
gravitational wave detectors. Compared to the binary system detected by LIGO, an ECO
can linger around the inner-most-stable-circular-orbit (ISCO) of the SMBH for a very long
time and accumulate a large signal-to-noise ratio (SNR) in the LISA band even it has very
sub-solar mass.1 Another factor further enhances the SNR: since astrophysical observations
suggest that the spins of SMBHs in galaxies tend to have a value very close to 1, this results
in a decreased radius of the ISCO and allows the ECOs to be closer to the SMBH, leading
to larger SNR.

An important aspect of our work is to stress that in the event of a discovery, EMRIs
would naturally allow for an unambiguous identification of the participant as an ECO and not
a standard astrophysical compact object. Due to the large number of cycles recorded, even
for very sub-solar ECOs, EMRIs can lead to a very precise determination of the parameters
in the system, such as the masses of the SMBH and the boson star, and the SMBH spin,
with errors as small as 10−5 [24, 25]. Therefore if gravitational waves are observed from an
EMRI system and it is determined that the smaller object has sub-solar mass, this would
definitely rule out the possibility of impostors like stellar black holes, neutron stars or white
dwarfs. In particular, for those ECOs that are disrupted before reaching ISCO, we can also
estimate their radius (hence compactness) to break the degeneracy with primordial black
holes. Moreover, tidal effects in inspiralling binary systems, as well as possible correlated
electromagnetic signals, can also serve as a potential discriminant between ordinary compact
objects and boson stars.

The typically large SNR for even very sub-solar mass ECOs thus provides an extensive
probe of the ECO parameter space, extending the coverage of mass and compactness to much
lower regions, and serves as a powerful probe of the underlying particle physics.

Before proceeding, we note that in our work we remain agnostic about the connection
between dark matter and boson stars, an aspect that has been explored by several authors
(see [26] for a recent review on dark compact object). In particular, we do not impose dark
matter constraints on the particle physics model, except that we require the scalar to be
complex so that it has conserved particle number, massive, and having repulsive quartic
interaction. Our aim is to present a case for using EMRIs to probe boson stars, and we study
this case using a phenomenological model. The drawback in such an approach is that it is
then difficult to provide the predicted EMRI event rate, since abundances are free to vary.
We briefly provide an event rate estimation in section 4, assuming that ECOs constitute the
entire dark matter halo at the center of the galaxy, although we do not further explore the
consequences of such an assumption in our model, at the level of the particle physics.

The paper is organized as follows. We start with a description of boson stars in section 2,
where we discuss the phenomenological model and compute the profile of the boson star in
the mass-compactness plane. We then discuss the EMRI system as well as gravitational
waves from such systems in section 3. In section 4, we show the results of our analysis,
including the region of boson star profile that LISA is sensitive to, the corresponding scalar

1The EMRI system consisting of a supermassive ECO and a lighter ordinary compact object was considered
in refs. [18–23].
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theory parameter space, and an estimate of the event rate. We also briefly discuss possible
connections to dark matter physics. In section 5, we conclude with a summary of the main
results.

2 Boson stars

Boson stars are macroscopic quantum states formed in the Universe, protected against gravi-
tational collapse by the Heisenberg Uncertainty Principle (for non-interacting or attractively
self-interacting bosons [15, 27, 28]) or by repulsive self-interactions [1, 15, 29]. If the star is
composed of real scalars, it can decay with lifetime shorter than the age of the Universe [30].
In addition to the decay led by the intrinsic dispersion of the wave packet, nonlinear mode
coupling that arises from self-interaction [31–33] and particle decay due to coupling with
other species [34] constitute extra decay channels of the boson star.2 In what follows, we
assume a phenomenological model of complex scalars which are naturally long-lived since the
particle number is protected by the underlying U(1) symmetry. We discuss the mass profile
of the resulting boson star.

We first note that boson stars are unstable against gravitational collapse into black
holes above a critical maximum mass against central density [29, 35]. In addition to this
critical bound, the mass is also constrained by requiring wave function stability against
radial perturbations, which arise from the nonlinear dispersion. This stability bound is
explicit when the bosons are attractively self-interacting [31–33, 36–38]. On the other hand,
the bound is implicit in the case of non-interacting and repulsive theories and is revealed only
when spacetime backreaction is taken into account [15]. For negligible self-interactions, boson
stars have a maximal mass ∼M2

Pl/m, where m is the mass of the scalar. On the other hand,
for bosons with a repulsive λφ4 interaction, the maximal mass scales as ∼

√
λM3

Pl/m
2. We

refer to [5] for a review of boson stars resulting from different types of boson self-interactions,
and [39] for particle physics models that lead to repulsive φ4 interaction. In what follows
we focus on boson stars that result from complex |φ|4 theory of repulsive interaction, whose
strength ranges from being stronger than gravity to being negligible (essentially a m2|φ|2
theory).

2.1 The particle physics model

We first discuss the particle physics model and set our notation and conventions. Up to
renormalizable terms, the complex scalar theory is given by

L =
1

2
gµν∂µφ

∗∂νφ−
1

2
m2|φ|2 − λ

4

(
m2

f2

)
|φ|4, (2.1)

where f has mass dimension one, and λ is of order one and positive. Higher dimensional op-
erators are suppressed by powers of (m/f). This parametrization is motivated by identifying
the scalar field as a pseudo Nambu-Goldstone boson (pNGB) whose mass is protected by an
approximate shift symmetry. Interactions between φ and the Standard Model are assumed
to be suppressed and do not change the wave function significantly. We use the (+,−,−,−)

2In [31] it is argued that very small and dilute axion stars may have lifetimes comparable to the age of the
Universe. Nevertheless, we do not consider the case of real scalars any further in this work.
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signature, and assume spherical symmetry. The energy momentum tensor is given by

T νµ =
δL

δ(∂νφ)
∂µφ+

δL
δ(∂νφ∗)

∂µφ
∗ − δνµL

=
1

2
gνν

′
∂ν′φ

∗∂µφ+
1

2
gνν

′
∂ν′φ∂µφ

∗ − δνµ
(

1

2
gµ
′ν′∂µ′φ

∗∂ν′φ−
1

2
m2|φ|2 − λ

4

(
m2

f2

)
|φ|4

)
.

(2.2)

2.2 The Einstein-Klein-Gordon system

Depending on the compactness of the boson star, the metric can deviate significantly from
the flat limit. Assuming spherical symmetry, the metric can be parametrized as

ds2 = B(r)dt2 −A(r)dr2 − r2dθ2 − r2 sin2 θdφ2. (2.3)

The Einstein tensor Gνµ is diagonal, with the following non-zero components:

Gtt = − A′(r)

rA(r)2
+

1

r2A(r)
− 1

r2
,

Grr =
B′(r)

rA(r)B(r)
+

1

r2A(r)
− 1

r2
. (2.4)

In the above, A(r), B(r), and φ(r) are three scalar degrees of freedom. Two constraints
are obtained from solving the t

t and r
r components of Einstein equation, while the third is

obtained from the equations of motion of the scalar field. Together, they form the Einstein-
Klein-Gordon system:

4πGN
B(r)

∂tφ∂tφ
∗+

4πGN
A(r)

∂rφ∂rφ
∗+4πGNm

2|φ|2+2GNπλ

(
m2

f2

)
|φ|4− A′(r)

rA(r)2
+

1

r2A(r)
− 1

r2
= 0,

4πGN
B(r)

∂tφ∂tφ
∗+

4πGN
A(r)

∂rφ∂rφ
∗−4πGNm

2|φ|2−2GNπλ

(
m2

f2

)
|φ|4− B′(r)

rA(r)B(r)
− 1

r2A(r)
+

1

r2
= 0,

1

A
∂2rφ−

1

B
∂2t φ+∂rφ

(
B′(r)

2A(r)B(r)
− A′(r)

2A(r)2
+

2

A(r)r

)
−m2φ−λ

(
m2

f2

)
|φ|2φ = 0.

(2.5)

We assume the harmonic ansatz φ(r, t) = Φe−iµt, and rescale the dimensionful variables as
follows:

r = r̃

(
1

m

)
, Φ = Φ̃ (4π GN )−1/2,

µ = µ̃ m, λ = λ̃ (4π GNf
2). (2.6)

The Einstein-Klein-Gordon system can then be written with dimensionless variables.(
µ̃2

B
+ 1

)
Φ̃2 +

1

A
Φ̃′2 +

1

2
λ̃Φ̃4 − A′

r̃A2
+

1

r̃2A
− 1

r̃2
= 0,(

µ̃2

B
− 1

)
Φ̃2 +

1

A
Φ̃′2 − 1

2
λ̃Φ̃4 − B′

r̃AB
− 1

r̃2A
+

1

r̃2
= 0,

1

A
Φ̃′′ +

(
µ̃2

B
− 1

)
Φ̃ + Φ̃′

(
B′

2AB
− A′

2A2
+

2

Ar̃

)
− λ̃Φ̃3 = 0, (2.7)
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Note that all derivatives are taken with respect to the rescaled variables. From the above,
we can solve the wave function and the background geometry simultaneously.

2.3 The boson star mass profile

After the wave function and the metric are solved, the ADM mass of the boson star is
computed as

MBS =

∫ ∞
0

d3x T 0
0

=

∫ ∞
0

dr 4πr2
(
µ2

2B
Φ2 +

1

2
m2Φ2 +

1

2A
∂rΦ

2 +
1

4
λΦ4

)
.

(2.8)

The extended nature of the boson wave function implies that its surface has to be defined
as a sphere which contains a given percentage of its total mass. We choose the radius R90

that encloses 90% of the total mass. The star mass is denoted as MBS.

The boson stars parametersMBS and R90 are not independent for a given particle theory.
For a given central density φ(0) = x, the wave function can be solved uniquely, leading to
a pair of solutions (MBS(x), R90(x)). Varying the central density φ(0) yields a curve in the
MBS–R90 plane, which is the boson star mass profile. The gravitational wave signals that we
will be interested in are largely affected by the compactness of the inspiralling object. We
define the compactness as CBS = GNMBS/(R90c

2) in SI units, and show the star mass profile
in the CBS–MBS plane in figure 1.

2.4 Linear vs. nonlinear regime

We notice from figure 1 that the stable branch of the boson star admits two regimes where
MBS and CBS scale differently. In the linear regime, the boson star mass scales as MBS ∝
C

1/2
BS , while in the nonlinear regime, the scaling goes as MBS ∝ CBS. These scalings can be

understood as follows. In the non-relativistic limit, the following two parameter ansatz can
be taken

Φ ≈
√

N

πmR3
e−r/R. (2.9)

The boson star energy is approximated as

H(N,R) ≈ N

2mR2
+

λN2

32πf2R3
− 5GNm

2N2

16R
. (2.10)

In the regime of linear scaling, the gradient (first term) balances with gravity (last term).
This leads to N ∼ 1/(m3R), which is

CBS ∼
mN

R
∼ m2M2

BS. (2.11)

For a fixed compactness, the mass of the boson star is inversely proportional to the scalar
mass, MBS ∝ 1/m; for a fixed scalar mass, the compactness is proportional to the boson star

mass squared, MBS ∝ C1/2
BS .
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f=1015 GeV, m=10-12 eV

f=1016 GeV, m=10-12 eV

f=1017 GeV, m=10-12 eV

f=1017 GeV, m=10-10 eV

10-8 10-6 10-4 10-2

0.001

0.010

0.100

1

10

100

1000

CBS

M
B
S
(M

⊙
)

Figure 1. The profile of boson stars resulting from the scalar theory shown in eq. (2.1). The mass
curves are results from solving eq. (2.7) numerically. Each curve corresponds to a single theory point
(m, f). All three solid curves have the same scalar mass, m = 10−12 eV, and differ in f . The red
dot-dashed curve corresponds to f = 1017 GeV, m = 10−10 eV. Note that we solve the curves of
f = 1017 GeV up to the unstable regime (the spiral end where the star mass decreases,) and only
show the relevant stable branch for f = 1016 GeV and f = 1015 GeV. The dashed curve corresponds

to the slope of MBS ∝ C
1/2
BS . The dotted curve corresponds to MBS ∝ CBS. See the main text for

more details.

In the regime of nonlinear scaling, it is the repulsive term (second term) that balances
with gravity (last term) in eq. (2.10). This leads to R ∼ 1/(mf), which indicates

CBS ∼
MBS

R
∼ m · f ·MBS. (2.12)

For a given compactness, the star mass is affected by both m and f , with the relation
MBS ∝ 1/(mf); for a given theory point (m, f), the mass of the boson star scales with
compactness linearly, MBS ∝ CBS.

The above behavior in both linear and nonlinear regimes are observed in the numerical
solutions, shown in figure 1.

3 Extreme mass ratio inspiral and gravitational waves

Having obtained the profile of the boson star, we now turn to a calculation of the gravitational
waves from EMRI.

3.1 Stellar dynamics near the SMBH and EMRI

A SMBH resides in the center of most galaxies and its mass ranges from 106M� to 109M�.
Compared with the mass of a typical galaxy hosting it (1011M�), the mass of the SMBH is
negligibly small. It is only the innermost region of the galaxy, within several parsecs around

– 6 –
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the SMBH, where the SMBH can have a dominant effect. It is here that an EMRI system
can be formed. This region is defined by the radius of influence of the SMBH:

rh =
GM

σ2
= 2 pc

(
M

3× 106M�

)1/2

, (3.1)

where σ is the velocity dispersion in the galactic bulge and in the second equality above, the
M − σ region is used [40–42].

Within the radius of influence, the potential of the SMBH dominates and the total mass
of the stellar objects is roughly equal to the mass of the SMBH. Here, the stellar population
consists of neutron stars, stellar black holes, white dwarfs (see e.g. ref. [43]) and possibly
ECOs. This region is very crowded, hence the ECO being within the SMBH influence radius
does not guarantee a slow inspiral to be successfully finished. The main physical mechanisms
that affect the inspiral of the ECO include two-body relaxation and resonant relaxation. The
studies of the dynamics of the stars rely on a phase space analysis (we refer the reader to
ref. [44] for a recent review on this subject). As the SMBH devours any compact objects
that get sufficiently close to it, there is a loss cone in the phase space. The slow inspiral of
EMRI requires that the ECO be sufficiently close to the SMBH so that the time scale for
the EMRI to complete is smaller than the typical relaxation time scales and the EMRI can
finish without being interrupted by the other stars. It is for this kind of ECO in the slow
inspiral phase that an EMRI be formed with gravitational waves detectable by LISA.

3.2 Gravitational waves

The standard EMRI system consists of a stellar black hole of typical mass 10M� and a
SMBH of 106M�, resulting in a mass ratio that is an extremely small (or large) number.
Calculating the waveforms of the EMRI system is a technically challenging and ongoing
effort. In ref. [45], three different waveforms have been used to tackle the data analysis
issues for the EMRI systems. This includes the Kludge-family waveforms, which started
with the early work of ref. [24] and is now called the Analytical Kludge (AK) model. This
has subsequently grown into the numerical AK [46] and augmented AK [47] models. Also
considered in ref. [45] is the result presented in ref. [48] for circular orbits in the equatorial
plane, which is calculated based on the Teukolsky formalism [49, 50]. It was found that the
results of ref. [48] show overall consistency with the other waveforms.3 We thus assume, for
simplicity, that the compact object has a circular orbit in the equatorial plane.

The gravitational wave amplitude is described in terms of the dimensionless character-
istic strain, which is decomposed into a set of harmonics labelled by m [48]:

hc,1 =
5√

672π

η1/2M

ro
Ω̃1/6Hc,1 ,

hc,m =

√
5(m+ 1)(m+ 2)(2m+ 1)!m2m

12π(m− 1)[2mm!(2m+ 1)!!]2
η1/2M

ro
× Ω̃(2m−5)/6Hc,m, m ≥ 2 . (3.2)

where η = MBS/M is the mass ratio of boson star (MBS) and SMBH (M); ro is the distance
to the Earth; Ω is the ECO’s orbital angular frequency and is related to the frequency in

3The emission of gravitational waves tends to render the orbit of the compact object circular. However
astrophysical studies still suggest that the compact object can have significant eccentricity such as through
induction [51].
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the m-th harmonic fm by fm = mΩ/(2π); Ω̃ ≡MΩ = 1/(r̃3/2 + a) is a dimensionless orbital
angular frequency where r̃ ≡ r/M with r the Boyer-Lindquist radial coordinates of the orbit;
Hc,m captures the relativistic corrections.4

Given the above gravitational strain, the detectability of the EMRI gravitational waves
signal is quantified by the signal-to-noise ratio (SNR):

SNR2 =
∑
m

∫ [
hc,m(fm)

hn(fm)

]2
d ln fm, (3.3)

which is obtained with matched-filtering [52]. We choose SNR = 20 as the threshold for
detection [45], though a lower value of 15 has also been demonstrated to work [53].

In the above equation, the range of the frequency to be integrated over should be taken
as the overlap between the band of the detector and of the signal during the time when the
detector is operating. For simplicity, we choose the upper end of the frequency band as the
one at the ISCO when the compact object remains intact as it enters the event horizon of
the SMBH. Conversely, when tidal disruption happens outside the horizon (to be discussed
in the following section) the upper end of the band is chosen to be the frequency at the tidal
radius of the compact object. The radius at ISCO for a SMBH with mass M and spin a has
been given in ref. [54].

Another important quantity in our calculations is the time remaining to ISCO. For a
given value of the gravitational wave frequency, it is given by [48]

T =
5

256

1

η

M

Ω̃8/3
T , (3.4)

where T is a general relativistic correction factor, which is a function of the frequency and
the SMBH spin. This equation can be reversed to calculate the frequency, given the time
remaining to ISCO. For example, setting T to be 5 years gives the lower end of the frequency
band in the SNR for the fiducial detector of LISA in the case that the compact object enters
the horizon intact.

Since the boson star lingers around the ISCO for a very long time, it can travel a large
number of cycles around the SMBH. This number is given by [48]

N =
1

2π

∫
dΦ =

1

64π

1

ηΩ̃5/3
N , (3.5)

where N captures the general relativistic correction, similar to the previous quantity T . N
equals one as r → ∞ and vanishes as r → rISCO. A typical value for N in LISA band
is 106, much larger than the corresponding quantity in the LIGO case. Since the SNR is
proportional to the square root of N [52], it is greatly enhanced for the EMRI system. To
phrase this in an illuminating way, LISA will be able to see much further distances. Moreover,
due to the large cycles time recorded over several years, the analysis of the gravitational wave
waveforms from an EMRI system can lead to a very precise determination of the parameters
in the system, such as the masses of the system and the SMBH spin. The uncertainties can
be as small as 10−5 [24]. Therefore detection of gravitational waves from an EMRI system
where the smaller object has sub-solar mass would definitely rule out the possibility of it
being stellar black holes, neutron stars and white dwarfs.

4We use geometrized units here, i.e. GN = 1 and c = 1.
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Figure 2. The gravitational wave characteristic strain (blue solid line) from an EMRI system for
a boson star with MBS = 1M� orbiting a super massive black hole with MSMBH = 4.1 × 106M�,
a = 0.999 and a distance to Earth same to that of the Sgr A∗. The dots on this line denote the time
remaining to the ISCO for several choices of time stamps as labeled in the text. The vertical dashed
lines show the locations where the radial distance to ISCO is at several multiples of rISCO. The lower
border of the color-shaded regions are the sensitivity curves of several proposed future space-based
interferometer gravitational wave detectors.

As an example, the solid blue line in figure 2 shows the gravitational wave characteristic
strain in the dominant harmonic mode (m = 2) as a function of the frequency for a 1M� boson
star inspiralling into the SMBH of mass 4.1×106M� (see caption for more details), calculated
using eq. (3.2). The dots on this line denote several time stamps before reaching the ISCO.5

Also plotted in figure 2 are experimental sensitive regions for several proposed detectors,
including LISA with configuration C1 [25], the Taiji [55] and Tianqin projects [56], the
Big Bang Observer (BBO), the DECi-hertz Interferometer Gravitational wave Observatory
(DECIGO) [52], and Ultimate-DECIGO (UDECIGO) [57]. In addition, the number of cycles
remaining and the time remaining until the ISCO is shown in the left and right panels of
figure 3 respectively, as a function of r/rISCO. We see that the typical size of the number of
cycles remaining in the LISA band is indeed very large.

4 Results

In this section, we present our results. We first show the results of our EMRI analysis on
the mass versus compactness plane of boson stars. We then discuss the constraints in theory
space. We finally comment on the event rate and the possibility of correlated electromagnetic
signals.

4.1 Constraints on mass versus compactness

The EMRI analysis described in the previous section leads to strong constraints on the
properties of boson stars, which we now describe. Our results are presented in figure 4,

5To find the time stamp at a given f , one needs to invert eq. (3.4). This is done numerically by firstly
solving T for a list of frequencies and then use interpolations to find frequency as a function of T .
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Figure 3. The number of cycles remaining (left) and the time remaining (right) till the ISCO as a
function of the distance from the SMBH r normalized by the ISCO radius, for the same EMRI system
as in figure 2.

where we show the regions in the mass versus compactness plane of boson stars that can be
probed by LISA and LIGO (see caption for details). Gravitational waves from a boson star
binary that can be detected by LIGO are obtained in the upper-right corner, for large mass
and compactness. For the LIGO bounds, a distance to Earth larger than 0.2 Gpc is taken,
and the detection threshold of the SNR is assumed to be 8 [58].

The color-shaded regions in figure 4 correspond to an EMRI system emitting gravita-
tional waves with SNR larger than 20 for the LISA detector assuming 5 years of mission
time. The EMRI system is composed of a boson star with the corresponding compactness
and mass, and a SMBH of mass MSMBH = 4.1×106M� and spin a = 0.999, the same as that
used in figure 2. The different colors denote different distance ranges where such detection
can be made. The red curve is a representative boson star solution for the parameter choice
of mφ = 10−10 eV and f = 1017 GeV. Also plotted are the regions of white dwarfs (WD),
neutron stars (NS) and black holes (BH) (stellar black holes (SBH) by vertical yellow line or
primordial black holes (PBH) by vertical red line).6

4.2 Tidal radius

We now turn to a discussion of the tidal radius. For an EMRI system where the small object
is a white dwarf, neutron star or primordial black hole, the object is compact enough so that it
can generally pass the ISCO without being tidally disrupted, resulting in a gravitational wave
signal that lasts until the ISCO. Boson stars, on the other hand, can have compactness well

6The color-shaded regions that LISA is sensitive to are obtained by scanning over the CBS–MBS plane
and calculating the distance where the SNR is just 20 (as defined in eq. (3.3)). Then the contours of these
distances can be found on this plot and correspond to the outer boundaries of each color-shaded regions. For
the vertical yellow band corresponding to SBH, while there is no definitive lower boundary of its mass, we plot
here from 3M�. For NS, the rectangular region marks roughly where this species lies on this plane, where we
plot for its mass from 0.3M� to 3M� and compactness from 0.13 to 0.23 (see e.g., [59] for a more accurate
description of the NS mass radius relation). For WD, the two branches correspond to non-relativistic (upper
branch) and relativistic (lower branch) Fermi gas modeling [60].
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Figure 4. The regions in the compactness-mass plane of boson stars that can be probed by LISA and
LIGO. The upper-right brown corner shows the region where the gravitational waves from a equal
mass boson star binary can be detected by LIGO for a distance to Earth larger than 0.2 Gpc, assuming
the detection threshold of the SNR to be 8. The other color-shaded regions denote the parameter
space for which an EMRI system, composed of a boson star (with corresponding compactness and
mass) and a supermassive black hole (with the mass and spin as in figure 2), can produce gravitational
waves with a threshold SNR of 20 for the LISA detector assuming a mission time of 5 years. The
different colors denote the different maximum distances where such detection can be made and with
the maximum distances corresponding to the outer boundaries labeled by the associated text. The
straight lines show the tidal radius in units of rISCO, and the one where rTidal coincides with the
ISCO is shown by the red line. The gray region in the top left corner gives a boson star radius that is
larger than the radius of ISCO. The red curve is a representative boson star solution for the parameter
choice of mφ = 10−10 eV and f = 1017 GeV. Also plotted are the regions of several species of other
compact objects, such as white dwarfs (WD), neutron stars (NS) and black holes (BH) (stellar black
holes (SBH) by vertical yellow line or primordial black holes (PBH) by vertical red line).

below 0.5 yet still are detectable at LISA. For a boson star with a fixed mass, decreasing the
compactness leads to an increase in the tidal radius. As the tidal radius reaches values greater
than the ISCO, the boson star will be tidally disrupted outside the ISCO. The gravitational
wave signal will then be cut off at the tidal radius and the maximal frequency recorded by
the detector will be smaller than what can be achieved at the ISCO.

We therefore see that for boson stars, the frequency range in the SNR needs to take
the tidal disruption into account. Thus for each choice of (MBS, CBS), we need to find the
corresponding tidal radius and compare it with rISCO to determine the correct frequency
band to be used in the SNR calculations.
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For a non-spinning SMBH with mass M , the tidal radius can be obtained simply by
equating the force of the SMBH at rTidal with the self-gravitating force of the BS. This gives
the well known result for rTidal:

7

rTidal = R90

(
M

MBS

)1/3

=
(MBS

2M)

CBS

1/3

, (4.1)

where in the second step we have traded R90 for CBS. Note that this radius is roughly the
same as the Roche radius. Since rTidal ∝M1/3 and rISCO ∝M , the tidal radius will be inside
the horizon for SMBH with mass larger than a threshold, known as the Hill mass [61].

In figure 4, several choices of the tidal radius are shown in units of rISCO. Since this is
a log-log plot, each rTical appears as a straight line. The straight lines show the tidal radius
in units of rISCO, and the one where rTidal coincides with the ISCO is shown by the red line.
The gray region in the top left corner gives a boson star radius that is larger than the radius
of ISCO.

With rTidal determined above, the next step is to find the corresponding frequency at
rTidal and the associated frequency 5 years before reaching rTidal, which is used as the lower
limit of the frequency band. Therefore, for the boson stars that experience tidal disruption,
the frequency band of the gravitational wave signal is (f(TTidal + 5year), f(TTidal)) instead
of (f(TISCO + 5year), f(TISCO)) because TTidal > TISCO.

For a Kerr SMBH, the ISCO radius decreases as its spin parameter increases from
negative (retrograde motion) to positive values (prograde motion). Therefore, an ECO can
in general get closer towards the SMBH for prograde orbits before it reaches the larger of
rISCO and rTidal, compared with the retrograde case whose rISCO is larger. Conversely, as
the SMBH spin decreases, rISCO expands and the condition rISCO = rTidal will be reached
for less compact BS when its mass is fixed, which means the boson stars are less likely to get
tidally disrupted. This corresponds to that the straight lines in figure 4 will shift towards
the left.

We need to ensure that the tidal radius is smaller than the radius of influence of the
SMBH, so that an EMRI is formed in the first place. This condition is generally straightfor-
ward to satisfy for most cases. For example, for a SMBH with mass 4.1× 106M�, the tidal
radius needs to be as large as (106 ∼ 107)rISCO to become comparable to the radius of influ-
ence ∼ 1 pc. Therefore boson stars that generate gravitational waves within the LISA band
are certain to be within the radius of influence. This can be seen in figure 4, where the regions
of parameter space probed by LISA can only be reached for tidal radius of O(10)rISCO.

Besides the tidal radius which affects less compact boson stars, other tidal interac-
tions can show up, modifying boson star profiles as well as the resulting gravitational wave
waveforms. A boson star can be tidally deformed before it reaches the tidal radius. The de-
formability can be characterized by the tidal love numbers and has been studied for neutron
stars [62] and boson stars [63–65]. The resulting impact on the gravitational wave waveforms,
however, is a secondary effect [24].

The same is true for the spin of the boson star, as well as the spin-orbital coupling
effect. Astrophysical studies of the tidal interactions of the stars near the SMBH show that
stars can accumulate spins through constantly squeezing at the pericenter. The same is
expected to happen for boson stars and a rotating boson star may be formed. Rotating

7We note that for a Kerr SMBH, a more precise definition of the tidal radius can be found by calculating
the general relativistic tidal tensor (see ref. [61] for a review). We leave a more detailed investigation of EMRI
with spinning SMBHs for a future publication.
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boson star solutions have been considered in ref. [66].8 However as far as gravitational waves
are concerned, these effects tend to be negligible.

We point out that tidal effects in inspiralling binary systems have been studied as a
potential discriminant between ordinary compact objects and boson stars [67].

4.3 Probed theory space

Based on the EMRI analysis, the probed region on the mass versus compactness parameter
space can now be translated into the theory space (m, f). Instead of translating all the probed
region to the theory parameter space, we look at a subset where boson stars experience tidal
disruption right before reaching rISCO. Because the early termination of the inspiral signal
gives us extra information about the compactness of the infalling object, we refer such boson
stars as distinguishable boson stars.

The distinguishable boson star compactness corresponding to the situation where tidal
forces severely disrupt it right before ISCO is given by the line of rTidal = rISCO in figure 4.
On the other hand, the infalling star needs to be large enough to accumulate enough SNR
at LISA. Therefore, for a given luminosity distance, we require the boson star mass profile
to be above the intersection point of rTidal = rISCO line and the sensitivity contour, which
guarantees a segment of the mass curve falling into the sensitivity region of LISA yet still
has an early termination feature. For the top three benchmark contours in figure 4, the
intersection points correspond to

DL = 0.01 Gpc, CBS = 2.1× 10−7, MBS = 2.5× 10−4 M�,

DL = 0.1 Gpc, CBS = 8.8× 10−7, MBS = 2.1× 10−3 M�,

DL = 1 Gpc, CBS = 4.4× 10−6, MBS = 2.4× 10−2 M�. (4.2)

Requiring the boson star mass profile being above these points leads to the upper limit of
the scalar mass in the theory space shown in figure 5. In addition, we require the boson star
mass curve has a segment such that a) it has overlap with LISA sensitivity region; b) lighter
than 1M�. This results in the lower bound on the scalar mass that corresponds to the left
edge of figure 5. We compute the region of transition between linear regime and nonlinear
regime numerically to get the solid part of the curves, and invoke the argument in section 2.4
to compute other regions analytically. The color shaded region show the parameter space
that allow for such distinguishable stars.

4.4 Correlated electromagnetic signals

We sketch some general ideas about the possibility of obtaining correlated gravitational
wave and electromagnetic signals coming from boson star-SMBH EMRIs. Tidal disruption
flares coming from ordinary stars near SMBH are an important target in the astrophysics
community. We refer to [68] for a review on current observations and [69] for a review of the
theory. Therefore such electromagnetic products coming from the tidal disruption of exotic
compact objects is an important and relatively unexplored topic. The signals would depend
on the coupling of the boson to Standard Model fields, and one would have to take into
account the resulting effects on the boson star profile. While such modeling is outside the
scope of our present work, we note that the possibility of unique tidal flares from boson stars
would constitute a key piece of observational evidence about their existence.

8The rotating boson star may have a different mass-radius relation compared to the non-rotating case.
The main effect is in changing the tidal radius.
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Figure 5. Parameter region which admits distinguishable boson stars. The right edges of the color
shaded regions correspond to the mass profile being above the intersection point of rTidal = rISCO

and the LISA contours in figure 4. The left edge corresponds to the requirement of a segment of the
boson mass curve overlaps with LISA sensitivity band and has mass smaller than 1M�. The solid
curves correspond to the transition region between the linear regime and the nonlinear regime, and
are solved numerically. The dashed curve are computed analytically based on the numerical evidence
discussed in section 2.4. See the main text for definition of distinguishable boson stars.

4.5 Event rate

The estimation of the event rate of the EMRI from the ECO depends on its population in
the radius of influence of the SMBH, which in turn depends on its formation mechanism and
how the ECOs sank into the galactic center. Without a prior knowledge of these, an upper
limit of the event rate can be set by assuming that the ECOs formed from material that was
part of the dark matter halo. While we do not give a solid connection between ECO and
dark matter, there have already been many studies of this scenario in the literature [15]. If
ECOs indeed form from the dark matter halo, then the event rate for the EMRI from the
ECOs can be related to the halo profile.

Here we briefly sketch a few factors that may affect the EMRI event rate. Since EMRI
is formed in the galactic center, the event rate of the EMRI depends on the halo density
in the innermost parsec region of the galaxy. While collisionless dark matter simulations
lead to cuspy NFW profile, dwarf galaxies usually turns out to be cored, due to baryonic
feedback [70, 71], or new physics such as dark matter self-interaction [72] or fuzzy dark
matter [73, 74]. The accuracy in modeling the central density profile [75, 76] will affect the
estimate of the EMRI event rate. On the other hand, without a good prior on the central
density, the measured EMRI event rate could shed light on the environment in the very
center of the galaxy. In addition, the presence of the SMBH may lead to a spike of the dark
halo [77–79], which might be further enhanced by the spinning of the SMBH [80]. Therefore
variations can arise due to the different choices of the halo profiles.

For a given dark matter halo profile, the halo provides an initial ECO population near rh.
Within the radius of influence, the ECOs will be redistributed due to collisions (gravitational
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encounters) with other stars within the potential well of the SMBH. For a relaxed ECO
population, a density cusp can be formed, in analogy to the Bahcall-Wolf stellar cusp [81].
Furthermore, due to the effect of mass segregation [82–84], heavier ECOs will sink deeper
toward the SMBH while lighter ECOs will be pushed outward, leading to an additional
enhancement (reduction) of the profile for heavy (light) ECOs at small r, respectively. This
introduces a dependence of the event rate on ECO mass. If we assume an NFW profile and
that the ECO makes up the whole dark halo, then LISA, assuming 5 years of observation
time, will be able to see ∼ 3000 EMRIs for ECOs heavier than ∼ 0.03M� (but lighter than
∼ 10M� so that there is a sufficient number of ECOs for a given halo profile). This estimate
is based on a similar analysis for primordial black hole dark matter [85].

5 Summary

In this paper, we have proposed to use gravitational waves from EMRIs as a new method
to search for boson stars. We first introduced the particle physics model and computed the
profile of the boson star in the mass-compactness plane. The results of numerically solving
the Einstein-Klein-Gordon system were displayed in figure 1, after which we discussed the
linear and nonlinear regimes of the stable branch.

In section 3, we provided the calculation of the gravitational waves from EMRI. The
gravitational wave characteristic strain relevant for us is displayed in figure 2. One of the
most important features of the EMRI system is that a boson star can linger around the ISCO
for a very long time, implying that a large number of cycles N ∼ 106 around the SMBH are
possible. Since the SNR is proportional to ∼

√
N , it is greatly enhanced for an EMRI. The

number of cycles remaining as a function of the distance from the SMBH, normalized by the
ISCO radius, is shown in figure 3.

Our main results are presented in figure 4, where we show the regions in the mass versus
compactness plane of boson stars that can be probed by EMRI at LISA. Clearly, our methods
are able to probe boson stars down to very sub-solar mass and compactness. We are careful
to incorporate the effect of tidal disruption before the boson star reaches the ISCO; in such
cases the signal is cut off at the tidal radius and the maximal frequency recorded by the
detector is smaller than what can be achieved at the ISCO.

Due to the large number of cycles recorded, EMRIs can lead to a very precise mass
determination of the boson star and distinguish it from standard astrophysical compact
objects. From figure 4, where standard astrophysical compact objects are also shown, it
is clear that a precise determination of the mass of the participating body will distinguish
between ECOs and usual compact objects. Tidal effects in inspiralling binary systems further
break the mass degeneracy of boson stars with other ECOs candidates. Possible correlated
electromagnetic signals, can also serve as potential discriminants.

On the particle physics side, our main results are shown in figure 5. We looked into
the theory parameter region that admits boson stars in the LISA sensitivity contour yet
experience tidal force disruption before reaching rISCO. At the same time, we require the
boson stars to be lighter than 1M�. The result shows a large parameter region where such
boson stars are allowed.

There are several future directions to be considered. This work paves the way for future
more detailed analysis including improvements on the following sides: consideration of more
generic eccentric orbits and using more accurate waveforms, studying changes to the waveform
due to tidal deformability of the ECO to distinguish different species of ECOs, dedicated
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analysis of the tidal disruption events, application to BS with more complicated structures
and to other species of ECOs, etc. In addition, when the coupling to the Standard Model
particles are taken into account, richer phenomenology is expected, such as electromagnetic
signals that accompany the merger events. We leave this for future study. From a particle
model building point of view, |φ|4 potential can be a generic approximation of the specific
form of the scalar potential. In refs. [15, 39], the authors study how the specific potential
from a UV completed theory affects the boson star mass profile. In general, it is found that a
cosine potential decreases the compactness. It is interesting to further study it in the context
of EMRI, as well as EMRI’s potential to distinguish different BEC systems.
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