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Executive Summary
The purpose and direction of this document is to provide U.S. government agencies, specifically National Aeronautics

and Space Administration (NASA) and Department of Defense (DoD) space related centers, with a foundational

summary of astrodynamics concepts for trajectory design, navigation, and operations in the cislunar, lunar, and libration

point regions. This document is provided in response to an Interagency Agreement (IAA) between NASA and the

National Geospatial-Intelligence Agency (NGA).

With applications to these regions of the Earth-Moon system, this document summarizes: the definitions of standard

and unique coordinate systems for Positioning, Navigation, Timing and targeting (PNT), transformations between

those coordinate frames, definitions of common time systems, a description of numerical integration, description of

a widely-used and approximate dynamical model of a three-body system for preliminary analysis and nomenclature

definition, description of higher-fidelity models of cislunar space, and the application of these concepts to sample

scenarios with a focus on common steps in trajectory and maneuver design for a spacecraft in cislunar space. This

information is critical to mission design and navigation far above the geosynchronous orbit region, where lunar

perturbations are required to be modeled accurately and consistently but render trajectory design and analysis a complex

procedure. Software tools such as the Goddard Space Flight Center (GSFC) open source General Mission Analysis Tool

(GMAT) is used as a reference, along with a wide variety of resources constructed by NASA and other government

agencies, academia, and industry, for mathematical specifications and practical considerations.

This document has been prepared by and under the auspices of NASA. The GSFC Mission Engineering and

Systems Analysis (MESA) Division (Code 590) and the Navigation and Mission Design Branch (Code 595) are part of

NASA. Their engineers and scientists have expertise in lunar, cislunar, and libration point region trajectory guidance

and navigation and timing. NASA GSFC has supported many successful lunar and cislunar missions over the past

several decades. These missions include the Lunar Reconnaissance Orbiter (LRO), the two Acceleration, Reconnection,

Turbulence and Electrodynamics of the Moon’s Interaction with the Sun (ARTEMIS) spacecraft, Transiting Exoplanet

Survey Satellite (TESS), Lunar Prospector, Lunar Crater Observation and Sensing Satellite (LCROSS), Clementine, and

several Sun-Earth libration point missions such as WIND and Deep Space Climate Observatory (DSCOVR), dating

back four decades. NASA GSFC also supports the upcoming Gateway lunar mission, the Artemis Lunar Program

and Human Landing Systems, and leads both the Lunar IceCube low thrust mission and concept design for the Lunar

Communication Relay and Navigation System (LCRNS).
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1 Introduction
Of paramount importance to the planning of robotic and human missions to various Earth-Moon (cislunar), libration,

and lunar regions is to document established and demonstrated conventions and applications that are necessary to achieve

such missions. It is also important to provide these standards and conventions to the at large astrodynamics community

for general purpose and consistency in successful mission design, navigation, and operational support endeavors.

The purpose and direction of the Astrodynamics Convention and Modeling Reference for Lunar, Cislunar, and

Libration Point Orbits technical document is to provide U.S. government agencies, specifically National Aeronautics and

Space Administration (NASA) and Department of Defense (DoD) space related centers including NGA and commercial

entities with a foundational summary of astrodynamics concepts for trajectory design and operations in the Earth-Moon

system. The contents of this document are based on decades of previous coordinate system definitions specified by

NASA and more recent development on multi-body dynamics by the astrodynamics community. This document is meant

to fulfill a basic understanding of coordinate systems and transformations that can be applied to complex trajectory

designs. In addition, with many missions now using similar coordinate systems and dynamics to accomplish challenging

designs, an example mission scenario is constructed to provide basic guidance in order to meet performance and mission

requirements for new environments.

With applications to cislunar, lunar, and libration point orbits, this document includes seven technical sections which

address: the definitions of standard and unique coordinate systems for positioning, navigation, timing, and targeting

(PNT), definition of common time systems, overview of common coordinate system transformations, overview of

approaches for numerical generating trajectories, preliminary modeling of cislunar space via the circular restricted

three-body problem, the description of higher-fidelity models of cislunar space, and the application of these concepts to

trajectory and maneuver design for a sample mission concept in these regions of space.

The authors would like to acknowledge that the contents of this document are dependent upon the advancements

made by the world-wide astrodynamics community for the general knowledge, guidance, and algorithms employed and

discussed herein. A list of numerous references is offered, though there are many other peer reviewed materials, guides,

documents, and books which are available to assist in understanding these topics in greater detail. Embedded within

each section are blue colored call-out boxes that supply the reader with insight, guidelines, and information based on

past mission operations and research findings within the astrodynamics community. In addition, the equations and

definitions developed in earlier sections are used in the Use Case and Practical Considerations section.

Section 2 supplies an overview of reference systems and frames that are commonly used by NASA GSFC for

operational support of missions operating in the cislunar, lunar, and libration point regions. It describes the fundamental

terminology and the definitions and construction of selected Earth and Moon centered systems. These systems include

inertial and fixed frames along with synodic frames. Specific coordinate systems that are used to describe the state of an

object with respect to a central body or reference location are defined. While there are various useful coordinate systems

7
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for various applications and analysis tasks, those that are most applicable to regions beyond geosynchronous orbit (GEO),

including the cislunar, lunar, and libration point regions, are covered. In this section, the coordinate frame descriptions

follow both NASA standards of practice and terminology that are widely used throughout the astrodynamics community.

Section 3 describes the definitions of time standards that are critical for coordinate system definition as well as

operational, navigation, and scientific purposes. For navigation solutions, time errors directly translate into position and

velocity errors, influencing the resulting prediction. Furthermore, scientists not only need to accurately locate collected

data but also accurately time-tag it. There are a wide array of useful time systems for various applications and data

analysis tasks, as outlined in many well-known textbooks and in the references listed in this document. A time system

used for a specific application must be appropriate for the orbital regime and central body, and must properly account

for relativistic effects. Accordingly, this section presents a brief overview of the time systems that are, at the time of

writing, most applicable to coordinate system definitions and spacecraft operations within cislunar, lunar, and libration

point regions. This section may be updated and expanded in subsequent editions following current work within the

technical community to prepare improved time standards for cislunar operations. These common time scales tend to be

defined using various initial epochs and one of the following physical phenomena: atomic transitions, sidereal motion

of the Earth, the rotation of pulsars, or the motion of celestial bodies. This section also addresses at a high level the

incorporation of relativistic effects.

Section 4 focuses on state transformations between two coordinate systems for an object in cislunar space, libration

orbits, and lunar orbits. It requires a combination of some or all of the following steps: rotation between distinct axes,

translation of the origin, a conversion between distinct types of coordinates, and a transformation between quantities

expressed in distinct units or scales. A rotation is required when transforming, for example, between body-fixed and

inertial coordinate systems or between inertial and synodic coordinates. When the coordinate systems use distinct

origins, such as the center of the Earth or Moon or the barycenter of the Earth-Moon system, a translation must also be

performed using knowledge of their relative position vectors, typically calculated using ephemerides. The subsections

present common foundational concepts used across the presented transformations and are described not only with

common equations and notations but also using figures to display the rotation directions and angles and any translations.

Section 5 summarizes methods used to numerically generate satellite trajectories. In the context of this document, a

trajectory reflects the path a satellite (natural or human-made) follows in space over a specified time interval. The goal

of this section is to present a high-level overview of commonly-used numerical approaches to compute trajectories

and the associated challenges, with a focus on applicability to the lunar/cislunar region. Subsections address several

well-known approaches to solving initial value problems. Common approaches to solving two point boundary value

problems as described, including shooting and continuation methods that are routinely used for trajectory design or

targeting for orbit maintenance. Collocation and optimization techniques are also addressed at a high level.

Section 6 discusses low-fidelity modeling of cislunar space and key technical concepts. Spacecraft operating in
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cislunar space are significantly influenced by a wide variety of forces, including, but not limited to: the irregular

gravitational fields of the Earth and Moon, the gravitational influence of the Sun and other celestial bodies throughout

the solar system, solar radiation pressure, and relativistic effects. Analyzing the structure of the cislunar dynamical

environment when incorporating all of these force contributions is challenging, numerically intensive, and limits the

discovery of fundamental insights into the solution space. NASA and the astrodynamics community often use an

approximate dynamical model labeled the circular restricted three-body problem (CR3BP) for a preliminary exploration

of cislunar space and construction of an initial guess prior to higher-fidelity analyses. This dynamical model seeds much

of the terminology used to describe regions of cislunar space and fundamental motions. This section presents a brief

summary with the goal of supplying a high level understanding of the foundational theoretical insights derived from this

low-fidelity model of cislunar space; references to more detailed discussions are provided throughout the text for the

interested reader. A subsection is also devoted to the computation of well-known families of periodic orbits throughout

the Earth-Moon CR3BP. Similar concepts can be applied to other multi-body systems such as the Sun-Earth system.

Section 7 focuses on higher-fidelity modeling of cislunar space. Modeling the motion of a spacecraft at a high fidelity

involves constructing a dynamical model that approximates the true environment as closely as possible. This section

summarizes the most significant forces that may be modeled and impart an acceleration on a spacecraft, including:

gravity, solar radiation pressure, atmospheric drag, and thrust applied by a propulsion system. Beyond simply including

these forces in a dynamical model, deviations from the true environment still exist due to uncertainty in the parameters

governing each force. Additional accelerations impacting the path of the spacecraft include random perturbations such

as those that might occur due to regular momentum unloads. This section also provides data on the relative contributions

of each force and a comparison of these accelerations that can be used to gauge their importance in modeling the cislunar

and libration orbit dynamics.

The final section demonstrates the practical implementation of and considerations required in using the outlined

coordinate systems, transformations, time descriptions, numerical methods and modeling approaches in the context

of a mission concept. This mission concept involves a spacecraft operating as a lunar communications relay; such a

concept has been explored from a mission and trajectory design perspective by NASA GSFC. This section specifically

focuses on the following aspects of this use case: 1) designing a feasible mission orbit in cislunar space subject to

hardware and mission requirements, from preliminary analysis in a low-fidelity model to high-fidelity analysis in NASA

GSFC’s General Mission Analysis Tool (GMAT); 2) designing a transfer from the Earth to the selected mission orbit;

and 3) designing station-keeping maneuvers to maintain the path in the vicinity of a reference orbit. These examples are

designed for the non-expert to understand and implement.

In summary, this document is intended to be used as a reference in the construction, applications, and modeling of

cislunar, libration, and lunar orbits. The contents reflect the general knowledge of the authors who have operational

experience that can be directly applied to this challenging dynamical region of space.
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2 Definitions of Selected Reference Systems and Frames
This section supplies an overview of reference systems and frames that are commonly used by NASA GSFC for

operational support of missions in the cislunar, lunar, and libration point regions. First, fundamental terms for specifying

a coordinate system are defined. Then, specific coordinate systems that describe the state of an object with respect to a

central body or reference location are defined. While there are a larger array of useful coordinate systems for various

applications and data analysis tasks, only those that are most applicable to regions beyond geosynchronous orbit (GEO),

including the cislunar, lunar, and libration point regions, are covered. In this section, the coordinate frame descriptions

follow both NASA standards of practice and terminology that are widely used throughout the astrodynamics community.

2.1 Fundamental Terminology

A reference system is a set of “constants, conventions, models, and parameters, which serve as the necessary basis

for the mathematical representation of geometric and physical quantities” (Drewes, 2009, pg. 3 [1]). Reference systems

are specified by defining an origin (e.g., the center of mass of a celestial body), a set of axes (e.g., a right-handed,

orthogonal set of vectors), a scale (the magnitude of the vector defining the axis), an orientation (e.g., the third axis is

aligned with a body’s spin axis), and a time evolution (i.e., the time derivatives of the origin, axis orientation, and scale).

Furthermore, a datum is a reference system equipped with a reference surface. Examples of a datum are a reference

ellipsoid (i.e., a smooth surface that approximates the shape of the Earth), or a geoid (i.e., a model of global mean sea

level characterized by points with the same geopotential). An example of a reference ellipsoid is the latest version of

the World Geodetic System (WGS), i.e., WGS84. An example of geoid is the EGM2008 that contains geopotential

coefficients that define a global potential surface to coincide with mean sea level.

The concept of a ‘coordinate’ characterizes how points are defined in the reference system. In a three-dimensional

space, three components of a vector are required to define a position of an object. Hence, a coordinate system is the

definition of the three components of a vector that define the position of an object in space with respect to a reference

system. Well-known types of coordinate systems include, but are not limited to [2]:

• Cartesian coordinate system: each component is the projection of a vector onto each one of the axes in a reference

system

• Spherical coordinate system: two components are the angles that represent the longitude and latitude (or right

ascension and declination), and the third component is the distance of the object from the origin

• Elliptic coordinate system: two components are the angles that represent the longitude and latitude, and the third

component is the height with respect to a reference ellipsoid

The definition of a reference system does not specify the values of the parameters that characterize it; only their

definition. A reference frame is a realization of “the reference system physically, i.e., by a solid materialization of points,

and mathematically, i.e., by the determination of parameters (e.g., geometric coordinates)” (Drewes, 2009, pg. 3 [1]).
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The parameters of a reference frame are typically characterized by a set of computed coordinates at selected points.

In some reference systems, the associated basis vectors or axes are defined using a meaningful reference plane and

direction for the first basis vector. Then, the third basis vector is selected normal to this plane to complete either a

right-handed or left-handed triad [3]. Previous definitions of common Earth-centered coordinate systems used several

foundational reference planes and directions including:

• The ecliptic plane that is defined, based on recommendations from the International Astronomical Union (IAU)

2006 Resolution B1, as the plane normal to the mean orbital angular momentum vector of the Earth-Moon

barycenter relative to the solar system barycenter [4].

• The equatorial plane of a celestial body, i.e., the plane that is normal to the spin axis of the body and passes

through its center [3].

• The direction to the vernal equinox, commonly used as a reference direction for defining a basis vector in many

coordinate systems. The direction to the vernal equinox is aligned with the ascending node of the ecliptic plane

when measured relative to the Earth’s equatorial plane [3]. The vernal equinox is not a fixed direction, but drifts

by about 1.4 deg/century, with variation in this drift on the order of <1 arc-sec/year [3].

• A local meridian, which corresponds to half a great circle on a celestial body, with a constant longitude.

Due to the complex gravitational environment within our solar system, calculation and specification of these common

reference planes and directions typically requires additional terminology. For instance, the rotational axis of a celestial

body may experience precession, nutation, and polar motion [5]. Accordingly, calculating an equatorial plane and/or

vernal equinox direction requires specification of the model used to capture the orientation of the spin axis of the

celestial body in three-dimensional space. For instance, coordinate system specifications that leverage an equatorial

plane and include the terminology ‘mean’ in the label indicate that the equatorial plane is calculated using a spin axis

that is modeled using only the precession of the celestial body over time [6]. The terminology ‘true’, however, indicates

that the equatorial plane is calculated using a spin axis that is modeled with both the precession and nutation of the body

[6]. Calculating these planes also requires information about the time instant or interval used to calculate its orientation

in three-dimensional space. The terminology ‘of date’ indicates that the plane is calculated using nutation information at

each instant of time within a simulation or mission, while ‘of epoch’ indicates that the plane is calculated using nutation

information at a fixed, specified epoch [6]. The most common epoch used in reference plane calculation is currently the

J2000 epoch, defined as January 1st, 2000, 12:00.000 in Barycentric Dynamical Time (described in Sec. 3.4). However,

due to the challenges of consistently expressing and calculating the vernal equinox and equatorial plane of the Earth, an

alternative convention was later introduced.

The IAU, International Earth Rotation Service (IERS), and associated technical communities have developed and

adopted a set of standards for accurately defining and calculating the transformation between newer Earth-centered

reference systems. The associated terminology is not currently widely used in cislunar space exploration beyond
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specialized texts. Accordingly, an overview and brief summary of this terminology is presented [7]:

• Celestial Intermediate Pole (CIP): the pole that is normal to the equatorial plane of the Earth calculated using

precession and nutation.

• Celestial Intermediate Origin (CIO): a nonrotating axis that lies within the equatorial plane of the Earth, calculated

using precession and nutation, and is used to define the first axis of an Earth-centered inertial system

• Terrestrial Intermediate Origin (TIO): the first axis of the Earth-fixed system labeled the Terrestrial Intermediate

Reference System, described below.

The well-known coordinate systems that are presented in this section are organized according to their properties. An

inertial coordinate system requires a set of basis vectors that are non-rotating and an origin that is non-accelerating. In

practice, there are no known precisely inertial coordinate systems but only our best estimate of basis vectors that do not

rotate relative to stars. However, the astrodynamics community still denotes these coordinate frame and systems as

‘inertial’; accordingly, this terminology will be used throughout this document. These inertial systems are often used as

a basis for constructing and numerically integrating the equations of motion in many simulation tools such as GMAT,

where perturbing accelerations from gravitational bodies and spacecraft characteristics (maneuvers, solar radiation

pressure, out-gassing) may be added in the same frame to produce a high-fidelity dynamical model. Alternatively, the

basis vectors associated with a body-fixed frame rotate with the body, whereas a synodic frame is defined using the

motion of two celestial bodies in their orbits.

2.2 International Celestial Reference System

The International Celestial Reference Frame (ICRF) is a realization of the International Celestial Reference System

(ICRS) that is managed by the IERS [7]. The ICRF uses the solar system barycenter as the origin and axes that

are calculated using precise coordinates of extragalactic radio sources to be fixed relative to quasars. Based on

recommendations from the IERS, the axes are also defined with the first two unit vectors lying in a plane that is close to

the mean equatorial plane of the Earth on the J2000 epoch and the first vector lying close to the vernal equinox on

this epoch [7]. There have been multiple realizations of the ICRS, based on improvements and expansion in the data

acquired to support calculations. The most recent realization, ICRF3 (referred to in this document as ICRF), which

was adopted on January 1, 2019, was constructed using observations of 4,536 extragalactic objects through very long

baseline interferometry (VLBI) [8].
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Implementation Note

An important aspect of using the ICRF consistently is specifying the location of the solar system barycenter. The

most recent planetary and lunar Development Ephemeris (DE) files, DE440 and DE441, prepared by NASA’s

Navigation and Ancillary Information Facility (NAIF), calculate the location of the solar system barycenter using

“the Sun, barycenters of eight planetary systems, the Pluto system barycenter, 343 asteroids, 30 KBOs [Kuiper

Belt Objects], and a KBO ring representing the main Kuiper belt.” (Park et al., 2021, pg. 2 [9]). Park et al. note

that the solar system barycenter calculated in these most recent ephemerides is displaced by approximately 100

km relative to the value used in the previous DE430 ephemeris file, primarily due to the inclusion of Kuiper belt

objects in the calculations [9]. Accordingly, transformations to or from the ICRF between distinct software or

users requires specification of the data used to locate the solar system barycenter. In addition, because there are

multiple realizations of the ICRF, it is important to identify which version is selected for the various products

used to build a coordinate system and ensure that these definitions are consistent with other parameters used

such as Earth Orientation Parameters (EOP) and ephemerides. For example, DE440 uses the third realization of

the ICRF, i.e., ICRF3, to report the planetary and lunar ephemerides [9].

2.3 Selected Earth-Centered Systems

2.3.1 Earth-Centered Inertial Systems

There are a wide variety of Earth-centered, equatorial inertial systems that have been used in practice; those that are

commonly used are summarized here.

Geocentric Celestial Reference System: The Geocentric Celestial Reference Frame (GCRF) is a realization of the

Geocentric Celestial Reference System (GCRS). The GCRF is defined using an origin located at the center of the Earth

and the same basis vectors as the ICRF [7]. The GCRS is the currently adopted standard for an Earth-centered inertial

system due to its independence from definitions of the ecliptic and vernal equinox.

Earth-Centered Mean Equator and Equinox of the J2000 Epoch (EME) Inertial System: Also sometimes labeled an

Earth-centered inertial (ECI) system or Geocentric Equatorial Inertial (GCI). This system uses the Earth as an origin

and basis vectors (𝒙̂, 𝒚̂, 𝒛̂) that are defined as follows:

• 𝒙̂: direction from the center of the Earth to the vernal equinox, evaluated as the intersection of the mean equatorial

plane and mean ecliptic plane, on the J2000 epoch.

• 𝒚̂: perpendicular to both the 𝒙̂ and 𝒛̂ axes, forming a right-handed triad.

• 𝒛̂: normal to the Earth’s mean equatorial plane at the J2000 epoch.

True of Date (TOD) Equatorial Earth-Centered System: The TOD Earth-centered system uses the true equator and true

vernal equinox at each epoch in a simulation or mission. This system uses an origin placed at the center of the Earth and
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basis vectors (𝒙̂, 𝒚̂, 𝒛̂) that are defined as follows:

• 𝒙̂: direction from the center of the Earth to the true vernal equinox at the current epoch.

• 𝒚̂: perpendicular to both the 𝒙̂ and 𝒛̂ axes, forming a right-handed triad.

• 𝒛̂: normal to the Earth’s true equatorial plane at the current epoch.

Mean of Date (MOD) Equatorial Earth-Centered System: The MOD Earth-centered system uses a mean equator and

mean equinox at each epoch in a simulation or mission. This system uses an origin at the center of the Earth and basis

vectors (𝒙̂, 𝒚̂, 𝒛̂) that are defined as follows:

• 𝒙̂: direction from the center of the Earth to the mean vernal equinox at the current epoch.

• 𝒚̂: perpendicular to both the 𝒙̂ and 𝒛̂ axes, forming a right-handed triad.

• 𝒛̂: normal to the Earth’s mean equatorial plane at the current epoch.

2.3.2 International Terrestrial Reference System

The International Terrestrial Reference Frame (ITRF) is a realization of the International Terrestrial Reference

System (ITRS) that is managed by the IERS and calculated using information about sites located on the Earth’s surface

[7]. The Earth-fixed ITRF uses as an origin the center of the Earth system (including the oceans and atmosphere). The

three basis vectors for defining the axes of the ITRF rotate with the Earth and are selected to ensure that there is no net

rotation relative to horizontal plate motion on the Earth; these axes are regularly updated with improved modeling of

ground stations due to plate tectonics. For recent realizations of the ITRS, these axes are also selected to ensure close

alignment with previous realizations [7].

2.3.3 World Geodetic System 1984

The US military employs a specified set of reference coordinate systems. Information pertaining to a position on the

Earth or in the Earth’s atmosphere uses the standard geospatial reference frame defined by the World Geodetic System

1984 (WGS 84) and maintained by the NGA [10]. Information referring to a position in space must be expressed in

terms of the Celestial Reference Frame (CRF), defined by the U.S. Naval Observatory (USNO). References to time must

be provided in the standard temporal reference defined by Coordinated Universal Time (UTC) and maintained by the

USNO master clock [11].

On pg. 27, the Time, Frequency, Ephemeris, Geodesy and Weather Reference and Guidance Handbook [12] provides

the following criteria for the WGS 84, quoted directly here:

• “It is geocentric, the center of mass being defined for the whole Earth including oceans and atmosphere” [12]

• “Its scale is that of the local Earth frame, in the meaning of a relativistic theory of gravitation” [12]

• “Its orientation was initially given by the Bureau International de l’Heure (BIH) orientation of 1984.0” [12]

• “Its time evolution in orientation will create no residual global rotation with regards to the crust” [12]
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• “The WGS 84 Coordinate System is a right-handed, Earth-fixed orthogonal coordinate system” [12]

Within the WGS 84 standard, the reference system uses an origin placed at the center of the Earth and basis vectors

(𝒙̂, 𝒚̂, 𝒛̂) that are defined as follows [10]:

• 𝒙̂: intersection of the IERS reference meridian and the plane normal to the IERS reference pole

• 𝒚̂: perpendicular to both the 𝒙̂ and 𝒛̂ axes, forming a right-handed triad

• 𝒛̂: parallel to the IERS reference pole, essentially the axis of rotation of a WGS84 ellipsoid model of the Earth.

To support expressing the position of an object in geodetic coordinates, a geocentric, equipotential ellipsoid is

often employed. The WGS 84 ellipsoid is defined to possess a semi-major axis of 6378.137 km and a flattening

of 1/298.257223563; the gravitational constant is 3.986004418×10+14𝑚3/𝑠2 and the angular rotational velocity is

7.292115×10−5 rad/s [10].

The WGS 84 uses various geoids, such as the Earth Gravitational Model 1996 (EGM 96), EGM 2008, and EGM

2020, depending on the user’s intended application. Reference [12] provides guidance to military users on which

reference frame and EGM to use, depending on the application. Refer to Section 6 of reference [12] for more information.

2.4 Selected Moon-Centered Systems

2.4.1 Moon-Inertial System

One definition of a Moon-inertial system uses the Moon center as the origin and three basis vectors that are set equal

to the axes associated with the most recent realization of the ICRF, as described in Sec. 2.2 [9].

When locating an object in a Moon-inertial system, it may be useful to use selenocentric, spherical coordinates: the

selenocentric longitude is measured positive eastward as the angle from the 𝑥-axis of a Moon-centered frame to a vector

from the center of mass of the Moon to the object; the selenocentric latitude is measured as the north-south angle from

the 𝑥𝑦-plane of a Moon-centered frame to a vector directed from the center of mass of the Moon to the object; and the

distance is measured from the center of mass of the Moon to the object.
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Implementation Note

Although we use a specific definition throughout this document, alternate definitions for the axes of a Moon-

inertial system may be used in practice and constructed using the axes associated with various Earth-centered

inertial systems. For instance, GMAT offers an option for defining right-handed body-inertial systems (associated

with celestial bodies that are not the Earth) with the following default configuration: using the intersection of

the body’s equatorial plane and the 𝑥𝑦-plane of the Earth-centered mean equator and equinox of the J2000

epoch system to define the first axis 𝒙̂ and the spin axis of the body on the J2000 epoch to define the third

axis 𝒛̂, with 𝒚̂ completing the right-handed triad. [13]. The non-uniqueness of definitions used for an inertial

system that is associated with a body that is not the Earth throughout the well-known software and literature

may result in differences when expressing the position and velocity vectors for an object in a Moon-inertial

system. However, we suggest defining a Moon-inertial coordinate system using the axes associated with the

ICRF due to its precision and continued maintenance.

2.4.2 Moon-Fixed Systems

The most common definitions for a Moon-fixed system use the center of the Moon as the origin and rely on two

types of axes: the mean-Earth/polar (ME) axes and the Principal Axes (PA). Note that the ME axes are also referred to

as mean-Earth/mean-rotation (MER) axes [9].

Mean-Earth / Polar (ME) Axes: The ME or MER axes are a Moon-fixed set of basis vectors (𝒙̂, 𝒚̂, 𝒛̂) that are defined as

follows [9, 14, 15]:

• 𝒙̂: direction from the center of mass of the Moon to the intersection of the Moon’s equatorial plane and the

Moon’s prime meridian. The Moon’s prime meridian is calculated as the mean direction to the Earth, consistent

with the Moon’s rotational period matching its orbital period relative to the Earth [14].

• 𝒚̂: perpendicular to both the 𝒙̂ and 𝒛̂ axes, forming a right-handed triad.

• 𝒛̂: aligned with the mean axis of rotation of the Moon.

Lunar Principal Axes (PA): The PA axes are a Moon-fixed set of basis vectors (𝒙̂, 𝒚̂, 𝒛̂) that are calculated as the principal

axes of the Moon, assuming that its mantle is not distorted due to tides and rotation [9]. As outlined by Park et al., these

axes are calculated using data from the Gravity Recovery and Interior Laboratory (GRAIL) mission [9]. Because the

Moon is not a perfect synchronously rotating triaxial ellipsoid, the PA and ME axes do not exactly coincide. In fact,

these two systems differ by about 1 km at the lunar surface [14].
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Implementation Note

The PA axes are often updated with new Lunar Laser Ranging (LLR) data as they become available. Use of

the PA axes relies on the Moon’s orientation information. An approximation of this information is provided

in specific DE files prepared by NASA’s NAIF and determined using 50+ years of LLR data [16]. Thus, this

information must be reported when using the PA axes. For instance, the LRO project used DE421 to define the

PA axes [14]. The next recommended baseline after DE421 was DE430, which incorporated five more years of

data into its solution. The differences between the two ephemerides are minimal over a 50 year timespan: about

0.5 mas in right ascension and declination and less than 0.25 m in radius [17]. However, there are currently only

four LLR stations on Earth and in Northern Hemisphere. In addition, the Apollo sites on the Moon that are lased

are necessarily on the Earth-facing side and in or toward the Moon’s northern hemisphere. These conditions

represent the limitations of the current LLR/DE data set. In addition, the ME axes are defined as a constant

rotation from the PA axes. Thus, the specific DE files used to specify the ME axes should also be reported.

When locating an object in a Moon-fixed frame it is common to use selenographic, spherical coordinates: the

selenographic longitude is measured positive eastward as the angle from the 𝑥-axis of a Moon-centered frame to a vector

that both passes through the projected point and is normal to the surface of a three-dimensional representation of the

Moon; the selenographic latitude is measured as the north-south angle from the 𝑥𝑦-plane of a Moon-centered frame

to a vector that both passes through the projected point and is normal to the surface of the same three-dimensional

representation of the Moon; and the distance is reported using the height of the object above the associated projection

onto the surface of the representative shape.

Polar stereographic coordinates [18] are also used by the LRO project to define their lunar digital elevation models

(LDEM) [19]. The LRO products use either South pole or North pole stereographic coordinates (𝑥, 𝑦) expressed in a

Moon-fixed reference frame with ME axes and a Moon radius of 1737.4 km. For a given set of coordinates (𝑥, 𝑦) on the

lunar map, the LDEM product provides the height 𝑧 above the assumed Moon radius.
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Implementation Note

The Moon possesses a small flattening coefficient, equal to approximately 0.0012, which is three times smaller

than the Earth. Accordingly, the IAU cartographic working group does not recommend using an ellipsoid to

represent the Moon [20]; the Moon is often sufficiently approximated using a sphere. Smith et. al. provide a

value of the mean Moon radius of 1737.151 km based on data from the Lunar Orbiter Laser Altimeter (LOLA)

[19].When using a spherical model with altitude quantities representing the distance or range, it is important to

clearly specify the assumed radius used to calculate this relative quantity, because it varies across products and

applications [14]. For example, all LRO map products assume a Moon radius of 1737.4 km, which is the value

recommended by the IAU in Table 5 of [15], whereas gravity field parameters use a Moon radius of 1738.0 km

[9]. GMAT uses another value, 1737.2 km for its default radius. As the technical community develops new

standards for lunar reference frames, a recommended value for the assumed lunar radius should also be specified.

2.5 Selected Synodic Frames

Synodic coordinate frames are defined using the motion of two primary bodies. These noninertial frames are

commonly employed when studying multi-body gravitational environments where multiple celestial bodies significantly

influence the path of an object, particularly when comparing trajectories to known fundamental solutions that exist in

low-fidelity models.

2.5.1 Earth-Moon Rotating Frame

The Earth-Moon rotating frame uses basis vectors (𝒙̂, 𝒚̂, 𝒛̂) that are defined as follows:

• 𝒙̂: directed from the center of the Earth to the center of the Moon.

• 𝒚̂: perpendicular to both the 𝒙̂ and 𝒛̂ axes, forming a right-handed triad.

• 𝒛̂: parallel to the instantaneous orbital angular momentum vector of the Moon relative to the Earth.

The origin used for specifying the position of an object is the Earth-Moon barycenter. For libration point missions or

missions operating close to one celestial body, variations on this frame use the same axes but a different origin. For an

origin located at a libration point, the associated frame is often labeled a Rotating Libration Point (RLP) frame.

2.5.2 Sun-Earth-Moon Rotating Frame

The Sun-Earth-Moon rotating frame uses basis vectors (𝒙̂, 𝒚̂, 𝒛̂) that are defined as follows:

• 𝒙̂: directed from the center of the Sun to the instantaneous Earth-Moon barycenter.

• 𝒚̂: perpendicular to both the 𝒙̂ and 𝒛̂ axes, forming a right-handed triad.

• 𝒛̂: parallel to the instantaneous orbital angular momentum vector of the Earth-Moon barycenter relative to the

center of the Sun
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The origin used for specifying the position of an object is the system barycenter. For libration point missions or missions

operating close to one celestial body, variations on this frame, e.g., an RLP frame, use the same axes but a different

origin, e.g., a libration point.

2.5.3 Sun-Earth Rotating Frame

The Sun-Earth rotating frame uses basis vectors (𝒙̂, 𝒚̂, 𝒛̂) that are defined as follows:

• 𝒙̂: directed from the center of the Sun to the center of the Earth

• 𝒚̂: perpendicular to both the 𝒙̂ and 𝒛̂ axes, forming a right-handed triad.

• 𝒛̂: parallel to the instantaneous orbital angular momentum vector of the Earth relative to the center of the Sun.

The origin used for specifying the position of an object is the Sun-Earth barycenter. For libration point missions or

missions operating close to one celestial body, variations on this frame, e.g., an RLP frame, use the same axes but a

different origin, e.g., a libration point.

2.5.4 Geocentric Solar Ecliptic

The Geocentric Solar Ecliptic (GSE) system is a type of synodic reference system that is defined using the motion of

the Sun and Earth; however, its definition differs from a traditional Sun-Earth rotating frame as defined above. The GSE

system uses an origin placed at the center of the Earth and basis vectors (𝒙̂, 𝒚̂, 𝒛̂) that are defined as follows:

• 𝒙̂: directed from the center of the Earth to the center of the Sun.

• 𝒚̂: perpendicular to both the 𝒙̂ and 𝒛̂ axes, forming a right-handed triad.

• 𝒛̂: normal to the ecliptic plane.

2.6 Selected Spacecraft-Centered Systems

The following spacecraft-centered systems use the spacecraft location as the origin, with axes defined using

information about the spacecraft state.

2.6.1 Local Vertical, Local Horizontal System

The local vertical, local horizontal (LVLH) system is often used in relative motion applications. With an origin at

the spacecraft, the basis vectors (𝒙̂, 𝒚̂, 𝒛̂) are defined as follows:

• 𝒙̂: aligned with the position vector from a central body to the spacecraft; also often labeled the radial direction

• 𝒚̂: perpendicular to both the 𝒙̂ and 𝒛̂ axes, forming a right-handed triad; also often labeled the along-track direction

• 𝒛̂: aligned with the orbital angular momentum vector of the spacecraft; also often labeled the cross-track direction.

and requires specification of the associated central body for a complete definition.
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2.6.2 Velocity, Normal, Co-Normal Axes

The velocity, normal, co-normal (VNC) axes are often used in defining maneuver directions. The basis vectors

(𝑽̂, 𝑵̂, 𝑪̂) are defined as follows:

• 𝑽̂: aligned with the instantaneous velocity vector of the spacecraft relative to a central body

• 𝑵̂: normal to the orbit plane

• 𝑪̂: perpendicular to both the 𝑽̂ and 𝑵̂ axes, forming a right-handed triad; also often labeled the co-normal

direction.

and requires specification of the associated central body for a complete definition.

2.7 Describing the State of a Spacecraft in Cislunar Space using Two-Line Elements

Two line elements (TLE) are derived based on a paired down force model and require a specific propagator referred

to as SGP (Simplified General Perturbation). TLE were developed in the 1960’s and are still widely used for Earth object

tracking [21, 22]. NORAD provides regular updates of its Earth space object catalog using TLE based on tracking data

[22]. TLE data is publicly available on the https://www.celestrak.com/ website. These elements are useful in

that they can be propagated analytically to estimate a spacecraft state much faster than if using a full ephemeris force

model. It is worth noting with the improvement made in computer performance, the propagation performance gain

from TLE is not as much a driver as it used to be when the TLE were first developed. However, moving away from a

TLE-based formulation requires a significant re-architecting of existing tools reliant on that model. Figure 1 provides a

high level description of the current version of the TLE.

SatID

1 99999U          25001.68750000 -.00411272  00000-0 -54743+3 0 00006

2 99999 029.0582 350.3290 9700723 197.0805 003.8041 00.129400690 00011

Satellite ID

Satellite 
Number

International 
designator

Inclination 
(deg)

Right 
Ascension 
of the 
Ascending 
Node 
(deg)

Eccentricity Argument 
of Perigee
(deg)

Mean 
Anomaly
(deg)

Mean 
Motion
(rev/day)

Revolution 
number at 
epoch

check 
sum

Year
Day of Year 
(plus fraction)

Mean Motion 
derivative* 
(rev/day/2)

Mean Motion 
second derivative* 
(rev/day2/6)

Bstar (/ER)

Ephemeris 
Type

Element 
Number

*Terms in red only used for SGP Model 
for atmospheric drag modeling

Fig. 1 Definition of the two-line element set.
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The TLE data generated can be used to obtain approximate location of mission assets even international ones

without direct information on their current operations. With the increased number of mission in the cislunar/lunar

domain, the question rose as to whether the TLE generated for these missions can be used to estimate asset location in

that regime. Indeed since TLE assume a certain force model (Main Earth zonal harmonics up to J5, simplified drag

model/third body and solar radiation pressure), their accuracy and applications are mainly limited to Earth orbiting

objects although some development was done to cover more deep space applications [21, 23]. A new and improved

model (SGP4-XP) has been derived and published to provide higher accuracy in applications with higher altitudes

relative to the Earth and still allow for fast propagation [24]. However this new formulation is not compatible with the

previous model or TLEs. Another limitation of the TLE formulation is that it is lacking covariance information which

is key to certain applications such as conjunction assessment. Accordingly, TLEs may be supplemented with Vector

Covariance Messages (VCMs). In addition, because TLEs are derived from tracking data which can be sparse, unknown

maneuvers especially of large magnitude can be hard to resolve. Finally, it is possible to use TLE information outside

the confine of the general perturbation model by converting them to osculating elements and fitting the converted TLE

over a certain period [25]. This fitted osculating state can then be propagated in a full ephemeris model.
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3 Definitions of Common Time Systems
Time standards are critical for coordinate system definition as well as operational, navigation, and scientific purposes.

For navigation solutions, time errors directly translate into position and velocity errors, influencing the resulting

prediction. Furthermore, scientists not only need to accurately locate collected data but also accurately time-tag it. There

are a wide array of useful time systems for various applications and data analysis tasks, as outlined in many well-known

textbooks and comprehensive references [3, 5, 6, 26]. However, the time system used for a specific application must be

appropriate for the orbital regime and central body. In addition, the time system selected must properly account for

relativistic effects. Accordingly, this section presents a brief overview of the time systems that are, at the time of writing,

most applicable to coordinate system definitions and spacecraft operations within cislunar, lunar, and libration point

regions. This section may be updated and expanded in subsequent editions following current work within the technical

community to prepare improved time standards for cislunar operations. These common time scales tend to be defined

using various initial epochs and one of the following physical phenomena: atomic transitions, sidereal motion of the

Earth, the rotation of pulsars, or the motion of celestial bodies [26]. Ref [27] provides an additional overview of the

various time scales and their relationships. Finally, this section also covers the incorporation of relativistic effects.

3.1 International Atomic Time (TAI)

TAI is an atomic time standard that is computed by the International Bureau of Weights and Measures as a realization

of terrestrial time [7, 28]. TAI is computed using a weighted average of over 400 atomic clocks distributed throughout

the world, without astronomical corrections. This time system uses as a fundamental unit the Système International

(SI) second at sea level on the Earth, defined by the International Bureau of Weights and Measures as “equal to the

duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of

the unperturbed ground state of the [cesium-133] atom" (Bureau International des Poids et Mesures, [28]). Note that

worldwide synchronization is to within a couple tenths of a nanosecond [29].

3.2 Terrestrial Time (TT)

TT (formerly Terrestrial Dynamic Time, TDT) is used as an independent variable for geocentric ephemerides and

defined with a fundamental unit equal to the SI second on a geoid [7, 13, 27]; because it serves an independent variable

in the equations of motion for an object, it is a form of dynamical time [6]. TT also replaces the former standard for an

astronomical time scale, labeled ephemeris time (ET). TT is related to TAI via the following relationship:

𝑇𝑇 = 𝑇𝐴𝐼 + 32.184sec (1)
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The origin of this time scale, i.e., the ”time zero" is defined by a reference epoch. One commonly used reference epoch

for TT is the J2000.0 epoch, defined as 2000 January 1, 12:00:00.000 Barycentric Dynamical Time (which is defined in

an upcoming subsection).

3.3 Geocentric Coordinate Time (TCG)

TCG is the time coordinate in the GCRS [5–7, 27]. Because TCG is a theoretical time scale, TCG is typically

calculated directly from TT via the following expression:

𝑇𝐶𝐺 = 𝑇𝑇 + 𝐿𝑔

1 − 𝐿𝑔 × (𝐽𝐷𝑇𝑇 − 2443144.5) × 86400 seconds (2)

where 𝐿𝑔 = 6.969290134 × 10−10 and 𝐽𝐷𝑇𝑇 indicates the Julian Date in TT [3, 6, 7, 26].

3.4 Barycentric Dynamical Time (TDB)

TDB is a dynamical time system that is used as an independent variable in the equations of motion for celestial

objects as formulated relative to the solar system barycenter and includes relativistic corrections [3, 6, 30]. TDB deviates

from TT by a periodic oscillation of less than 2 msec [30] and their relationship is approximated by the following

expression [3, 6, 13]:

𝑇𝐷𝐵 ≈ 𝑇𝑇 + 0.001658 sin(𝑀𝐸 ) + 0.000014 sin(2𝑀𝐸 ) seconds (3)

where 𝑀𝐸 is the mean anomaly of the Earth, calculated as:

𝑀𝐸 = 357.53 + 0.9856003(𝐽𝐷𝑇𝑇 − 2451545.0) degrees (4)

and 𝐽𝐷𝑇𝑇 is the Julian date in TT. For increased accuracy, more complex expressions are available [3, 30]. For example,

Eq. 9.6 in Ref. [26] presents an expression for TDB in terms of TT and the number of Julian centuries in TT from the

J2000 reference epoch; this expression results in errors below 10 microseconds from 1600 to 2200. An even more

precise expression appears in Ref. [31]

Implementation Note

For cislunar applications, TDB is recommended as it is the most accurate convention, particularly for navigation

analyses where time accuracy is critical. This time convention is used in the lunar and planetary ephemerides

published by NASA’s NAIF, which include past and future states of a variety of celestial bodies. These files are

used as part of high precision propagations or to determine shadows, sensor occultation, solar array illuminations,

or thermal analysis.
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3.5 Barycentric Coordinate Time (TCB)

TCB is the time coordinate used in the solar system barycentric celestial reference system [5, 7, 27]. TDB and TCB

coincided on January 1, 1977 and now differ by approximately 9.3 seconds. Because TCB is a theoretical time scale,

TCB is typically calculated directly from TDB as [7]:

𝑇𝐶𝐵 = 𝑇𝐷𝐵 + 𝐿𝑏 × (𝐽𝐷𝑇 𝐴𝐼 − 2443144.5) × 86400 + 𝑃0 seconds (5)

where 𝐿𝑏 = 1.550519768 × 10−08, 𝐽𝐷𝑇 𝐴𝐼 is the Julian date in TAI, and 𝑃0 ≈ 6.55 × 10−5s. Note that some physical

constants possess slightly different values when expressed in TCB. Furthermore, the rate difference between TCB and

TDB may become significant in long term measurements.

3.6 Universal Time (UT1)

UT1 is a realization of universal time that captures the Earth’s rotation about the CIP and is independent of observing

location [3, 5, 6, 27]. UT1 represents the mean solar time at 0◦ longitude and is calculated using very long baseline

interferometry observations and Global Positioning System (GPS) satellites [3, 27]. UT1 can be understood as a time

determined by the rotation of the Earth, and it is described by the following linear relationship with the Earth rotation

angle (ERA) 𝜃𝐸𝑅𝐴 in radians:

𝜃𝐸𝑅𝐴 = 2𝜋
(
𝜃0 + 𝑑𝜃0

𝑑𝑡
(𝐽𝐷𝑈𝑇 1 − 2451545.0)

)
(6)

where 𝜃0 = 0.7790572732640 rev is the ERA at J2000.0 in revolutions (units of 2𝜋 radians), 𝑑𝜃0/𝑑𝑡 = 1.00273781191135448

rev/UT1day is the rate of advance of ERA in revolution per UT1 day, and 𝐽𝐷𝑈𝑇 1 is the Julian date in UT1 (see

Refs. [7, 30] for further details).

3.7 Coordinated Universal Time (UTC)

UTC is a time system that uses the SI second as a fundamental unit but is defined to remain within 0.9 seconds of

UT1, which is governed by the Earth’s rotation, through the insertion of leap seconds [6, 27, 30]. The relationship

between UTC and TAI is defined as follows [6, 30]:

𝑈𝑇𝐶 = 𝑇𝐴𝐼 − (Number of leap seconds) (7)

where the leaps seconds are provided by the IERS as needed (usually on June 30th or December 31st) [32].
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Implementation Note

UTC is the time system commonly used for many data products and on-board spacecraft. Spacecraft time is used

for executing on-board commands such as maneuvers. Current Earth networks–including the space surveillance

network–have also adopted UTC as their time convention. However, the incorporation of leap seconds into UTC

may complicate operations due to the need to track the leap seconds used. For this reason, a more universal time

standard that does not rely on leap seconds, such as TAI, is recommended.

3.8 Time Formats

The most common calendar to represent time is the Gregorian calendar: a solar calendar with 12 months of 28–31

days each, along with a rule for leap years. In addition to the well-known Gregorian format, another common time

format for expressing an epoch is the Julian date (JD), which reports the number of days from the reference epoch of

January 1, 4713 BC at 12:00.000 [6]. Because the Julian dates for modern epochs are large quantities, a Modified Julian

Date (MJD) is often employed. One common definition for an epoch in MJD format, given an epoch in JD format is [6]:

𝑀𝐽𝐷 = 𝐽𝐷 − 2, 400, 000.5 (8)

Implementation Note

Equation 8 is not the only definition of an MJD. For instance, in the GMAT software, the same epoch in JD and

MJD form differ by 2,430,000 [13]. Thus, it is important to specify or confirm the definition of MJD in software

or data reporting.

3.9 GPS times

GPS time is the time provided as part of GPS ephemeris information. It is based on a time “0” of midnight on

January 6th, 1980 (UTC time) and uses the SI second as a fundamental unit of time. Other types of Global Navigation

Satellite System (GNSS) ephemeris broadcasts have their own time “0” and hence a unique offset from TAI, including:

• GPS Time (GPST) = TAI-19 sec

• GLONASS Time (GLONASST) = TAI - 34 sec

• Galileo System Time (GST) = TAI - 19 sec

• BeiDou Time (BDT) = TAI - 33 sec

3.10 Navigation Considerations and Relativistic Effects

For navigation applications involving ‘one-way’ measurement (where time of flight is a driver), there is a need for

extra precise knowledge of the relative time of emission and arrival of some feature of the signal. For example, for GPS
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applications, timing error on the order of 1 nanosecond will lead to position errors of 30 cm [33, 34]. This drives some

applications towards the need for Ultra-Stable Oscillators (USO), or even atomic clocks. In addition, there is a need

to accurately and precisely identify the relationship between the signal transmitting and signal receiving sources as

well as the stability of those respective clocks over the duration of signal transit and measurement integration interval.

Consequently, clock parameters are modeled as part of the estimation process. The fidelity of the clock model depends

on the requirement of the user for state knowledge (orbiting or surface). Solving for updates to the clock parameters

depends on the ability of the measurement set to provide adequate observability of those parameters.

When operating a mission in the cislunar or lunar regions and beyond, it is important to select a time convention

that takes into account relativistic effects to ensure the high accuracy required for navigation estimation is met. This is

especially true with on-board time management. On-board USO drift and stability need to take into account general

relativistic effects that include gravity. These relativistic effects are needed to synchronize clocks; that is, to relate the

times measured by the observers on their watches due to their motion to a common clock. The times measured by the

observers on their clocks are referred to as proper times. The time measured on this common clock is, by definition,

a time that has the same value for a given event independently of where it is measured [35]. This reference clock

defines a time coordinate system referred to as coordinate time. In addition, two clocks with proper times 𝑡1 and 𝑡2

are synchronized if their values agree in a common time coordinate system. For the remainder of this discussion, this

common time coordinate system is assumed to be TCG, and this time is linked to the ECI reference frame.

In general, the elapsed TCG coordinate time Δ𝑇 corresponding to the measured elapsed time of a clock moving

under the gravity potential𝑈 between the proper times 𝑡1 and 𝑡1 with speed 𝑉 is equal to [35, 36]:

Δ𝑇 =
∫ 𝑡1

𝑡0

(
1 + 1

𝑐2𝑈 + 1
2𝑐2𝑉

2
)
𝑑𝜏𝑝 (9)

where 𝑐 is the speed of light. As a result, note that the relationship between coordinate time and proper time depends on

the speed of the clock and the gravitational potential at the location of the clock.

Considering the case of a clock on or in the vicinity of the Earth, the gravitational potential𝑈 is a function of the

distance 𝑟 to the origin of the ECI reference frame, and the geocentric latitude 𝜙, and longitude 𝜆, i.e.,𝑈 = 𝑈 (𝑟, 𝜙, 𝜆).
For practical applications, the gravitational potential𝑈 may be truncated to include only the 𝐽2 term [6] as:

𝑈 (𝑟, 𝜙, 𝜆) = 𝐺𝑀𝐸
𝑟

[
1 + 𝐽2

(
𝑅𝐸
𝑟

)2 1
2

(
1 − 3 sin2 𝜙

)]
(10)

Now consider two use cases: the case of a clock at rest on the surface of the Earth’s geoid, and the case of a clock on

satellite in a Keplerian orbit around the Earth. For these two use cases, their associated proper times differ from the

TCG time due to the relativistic effects.
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Assuming a clock on the geoid, note that it moves with respect to the ECI reference (and also with respect to the

coordinate time) with velocity 𝑽𝐸 = 𝝎 × 𝑹, where 𝝎 is the angular velocity of the Earth, and 𝑹 is the position vector of

the clock in the ECI frame. Hence, the elapsed coordinate time is:

Δ𝑇 =
∫ 𝑡1

𝑡0

(
1 + 1

𝑐2𝑈 + 1
2𝑐2 | |𝝎 × 𝑹 | |2

)
𝑑𝜏𝑝 =

∫ 𝑡1

𝑡0

(
1 + 1

𝑐2𝑊

)
𝑑𝜏𝑝 (11)

where 𝑊 = 𝑈 + (1/2) | |𝝎 × 𝑹 | |2. Following [37], consider 𝑊 constant because the gravity potential on the geoid is

constant by definition. Evaluating 𝑊 at the equator (this is, 𝜙 = 0◦) offers a sufficient approximation for practical

purposes. The best estimate of this quantity as of today is𝑊0 = 6.2636856 × 107𝑚2/𝑠2 [37]. As a result:

Δ𝑇 =

(
1 + 𝑊0

𝑐2

)
Δ𝜏𝑝 = (1 + 𝐿𝐺) Δ𝜏𝑝 (12)

where 𝐿𝐺 is a unitless constant that relates TT with TCG as defined in subsection 3.3. The relationship between a clock

measuring time in TT to the TCG coordinate time is defined as 𝑇𝑇 = (1 − 𝐿𝐺)𝑇𝐶𝐺.

The same reasoning enables estimation of the coordinate time of a satellite in a Keplerian orbit around the Earth.

For a Keplerian orbit, it is known that the energy is conserved as:

𝐸 =
1
2
𝑉2
𝑆 −𝑈 = −𝐺𝑀𝐸

2𝑎
(13)

where 𝑎 is the semimajor axis of the orbit. Accordingly, the term 1
2𝑉

2
𝑆 may be expressed as a function of the potential𝑈

and the semimajor axis 𝑎. Then, the coordinate time Δ𝑇 of a clock in a Keplerian orbit between the proper times 𝑡0 and

𝑡1 is:

Δ𝑇 =
∫ 𝑡1

𝑡0

(
1 + 2

𝑐2𝑈 − 1
𝑐2
𝐺𝑀𝐸
𝑎

)
𝑑𝜏𝑝 (14)

This integral admits an approximated closed-form expression as follows [38]:

Δ𝑇 =

(
1 + 3

2𝑐2
𝐺𝑀𝐸
𝑎

)
Δ𝜏𝑝 + 2

𝑐2 𝑒 sin(𝐸)
√︁
𝐺𝑀𝐸𝑎 (15)

where 𝑒 is the orbit’s eccentricity and 𝐸 is the eccentric anomaly.

These results enable comparison between the proper times of a clock on a satellite to a clock at rest on the geoid.

The main idea is to convert the time to 𝑇𝑇 , and the relationship between the two proper times is:

Δ𝜏𝐺 =

(
1 + 3

2𝑐2
𝐺𝑀𝐸
𝑎

− 1
𝑐2𝑊0

)
Δ𝜏𝑆 + 2

𝑐2 𝑒 sin(𝐸)
√︁
𝐺𝑀𝐸𝑎 (16)

where Δ𝜏𝐺 and Δ𝜏𝑆 are the proper times recorded by a clock in the geoid and in a satellite respectively, and 𝑅𝐸 is the
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radius of the Earth. The details of this derivation can be found in [38]. Finally, further guidance and recommendations

on how to compare clocks on the Earth’s surface or satellites orbiting within the solar system in several reference frames

can also be found in [38].
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4 Overview of Common Coordinate System Transformations
Transforming between two coordinate systems used to describe the state of an object in cislunar space requires a

combination of some or all of the following steps: rotation between distinct axes, translation of the origin or basepoint,

a conversion between distinct types of coordinates, and a transformation between quantities expressed in distinct units or

scales. A rotation is required when transforming, for example, between body-fixed and inertial coordinate systems or

between inertial and synodic coordinates. When the coordinate systems use distinct origins, such as the center of the

Earth or Moon or the barycenter of the Earth-Moon system, a translation must also be performed using knowledge of

their relative position vectors, typically calculated using ephemerides.

4.1 Transformation Background

This subsection presents common foundational concepts used across the presented transformations. First, the

following general mathematical notation is used to describe the position vector of a point 𝑏 relative to another point 𝑎 in

the axes of a coordinate system 𝑐: 𝒓𝑐𝑎,𝑏 . The associated velocity vector, 𝒗𝑐𝑎,𝑏 , is calculated as the time derivative of the

position vector assuming an observer fixed in coordinate system 𝑐.

To transform the position and velocity vectors for an object 𝑝 from one coordinate system (labeled with the

superscript 𝑖) with origin 𝑂𝑖 to another coordinate system (labeled with the superscript 𝑓 ) with the origin 𝑂 𝑓 and

distinct axes, the following general expressions are used:

𝒓 𝑓𝑂 𝑓 , 𝑝
=

[
𝑓 𝑹𝑖 (𝑡)] 𝒓𝑖𝑂𝑖 , 𝑝

+ 𝒓 𝑓𝑂 𝑓 ,𝑂𝑖
(17)

𝒗 𝑓𝑂 𝑓 , 𝑝
=

[
𝑓 𝑹𝑖 (𝑡)] 𝒗𝑖𝑂𝑖 , 𝑝

+
[
𝑓

.
𝑹𝑖 (𝑡)

]
𝒓𝑖𝑂𝑖 , 𝑝

+ 𝒗 𝑓𝑂 𝑓 ,𝑂𝑖
(18)

where
[
𝑓 𝑹𝑖 (𝑡)] represents a general rotation matrix from coordinate system 𝑖 to coordinate system 𝑓 and

[
𝑓

.
𝑹𝑖 (𝑡)

]
is

its time derivative. Then, 𝒓 𝑓𝑂 𝑓 ,𝑂𝑖
and 𝒗 𝑓𝑂 𝑓 ,𝑂𝑖

are the relative position and velocity vectors, respectively of the origin 𝑂𝑖

relative to 𝑂 𝑓 , expressed in coordinate system 𝑓 . In this general scenario, the transformation includes terms that reflect

both the rotation between axes that do not coincide and translation to a distinct origin.

The transformation step of performing a rotation between two axes is typically described using a rotation matrix.

One approach to forming a rotation matrix for a complex rotation is to decompose it into a sequence of simple rotations,

each describing rotation about a single intermediate axis by an angle. The rotation matrix corresponding to a simple

rotation about each of the first, second and third axes in a system are, respectively, equal to the following for a general
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angle 𝜙 [6]:

[𝑹1 (𝜙)] =



1 0 0

0 cos(𝜙) sin(𝜙)

0 − sin(𝜙) cos(𝜙)


(19)

[𝑹2 (𝜙)] =



cos(𝜙) 0 − sin(𝜙)

0 1 0

sin(𝜙) 0 cos(𝜙)


(20)

[𝑹3 (𝜙)] =



cos(𝜙) sin(𝜙) 0

− sin(𝜙) cos(𝜙) 0

0 0 1


(21)

The transformations associated with each of these simple rotations is displayed graphically in Fig. 2 from the black axes

(𝒙̂1, 𝒚̂1, 𝒛̂1) to the blue axes (𝒙̂2, 𝒚̂2, 𝒛̂2). These three simple rotation matrices may be used to form a complex rotation

matrix through multiplication in the correct order. Because each of these matrices is orthogonal, the inverse of a simple

rotation matrix is written as either the transpose of the matrix or the matrix evaluated using the negative of the angle, i.e.,

[𝑹𝑖 (𝜙)]−1 = [𝑹𝑖 (𝜙)]𝑇 = [𝑹𝑖 (−𝜙)]. Another well-known approach to constructing a rotation matrix includes directly

writing the basis vectors of coordinate system 𝑓 in terms of their components in coordinate system 𝑖 and using those

expressions to form the rows or columns of the rotation matrix.

Calculating the position and velocity vectors of the origin of a new coordinate system relative to a distinct origin of

another coordinate system requires accurate knowledge of their relative states. For some origins, such as those that

are located at the center of a celestial body or barycenter of a system, this relative state information may be accessed

x̂1 = x̂2

ŷ1

ẑ1

ŷ2

ẑ2

q

(a) Simple rotation about the x̂1 =
x̂2 axis, as described by [X1 (q)].

x̂1

ŷ1 = ŷ2

ẑ1

x̂2

ẑ2 q

(b) Simple rotation about the ŷ1 =
ŷ2 axis, as described by [X2 (q)].

x̂1
ŷ1

ẑ1 = ẑ2

x̂2

ŷ2
q

(c) Simple rotation about the ẑ1 =
ẑ2 axis, as described by [X3 (q)].

Figure 2: Transformations from (Ĝ1, Ĥ1, Î1) to (Ĝ2, Ĥ2, Î2) axes, corresponding to a simple rotation about
each of the first, second and third axes by an angle q.

x̂GCRF

ŷGCRF

ẑGCRF

3U0

3U0

x̂MJ2000

b0

b0

ŷMJ2000

ẑMJ2000

-[0

-[0

Figure 3: Transformation between the GCRF (black) and Earth-Centered Mean Equator and Equinox at
J2000 inertial system (red), governed by [H⇢ ] = [X1(�[0)] [X2(b0)] [X3(3U0)].

2

Fig. 2 Transformations from (𝒙̂1, 𝒚̂1, 𝒛̂1) to (𝒙̂2, 𝒚̂2, 𝒛̂2) axes, corresponding to a simple rotation about each of
the first, second and third axes by an angle 𝜙.
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using ephemerides available in DE data files, made available by NASA’s NAIF [9, 39]. However, accessing these data

involves specifying key information such as [40]:

• the desired coordinate frame, requiring careful analysis of the documentation to understand the definition and,

sometimes, additional transformations to a desired frame

• the two origins for calculating the relative state vector, requiring careful analysis of documentation to understand

any assumptions in calculation

• the epoch specified in the required format, and any abberration corrections, e.g., light time and stellar abberration

The resulting relative position and velocity vectors might also depend on:

• the ephemeris file that is used to supply this information, these may be compiled from different sources or

correspond to different versions

• the interpolation scheme used to calculate state information

• the availability of ephemeris data for the original and/or new origins at a specific epoch

New versions of the DE are regularly published using new planetary and LLR measurements; the latest version and

the completed revision information of these ephemerides may be found at Ref. [41]. Additional sources for lunar and

planetary ephemerides include: (1) INPOP which produces ephemerides within 5 cm of the DE 430 and (2) Ephemeris

of Planets and the Moon (EPM) [42, 43]. For origins that correspond to calculated locations, such as the Lagrange

points, the position and velocity vectors relative to the barycenter of a system or center of a celestial body may be

influenced by the masses of the celestial system associated with the Lagrange points and the normalization schemes

used if their location is originally calculated in nondimensional coordinates. Slight differences of the specifications in

either of these scenarios between distinct software or users may produce slight differences in the position and velocity

vectors calculated via a coordinate system transformation and, potentially, grow over time with numerical integration.

4.2 Transformation Roadmap

Figure 3 supplies an overview of the coordinate transformations presented in this chapter, organized by their origin

and type. This diagram includes the well-known reference systems and frames, along with the rotation matrices

and, where relevant, translation steps that relate them; the arrows indicate directionality of the transformation that is

described by the annotated rotation matrices. A condensed version of this diagram is also used throughout the remaining

subsections to supply context to the reader.

4.3 Transforming Between Earth-Centered Inertial and Body-Fixed Systems

The procedure for performing a transformation between body-fixed and inertial coordinate systems using the same

origin is sometimes also referred to as ‘reduction’ [6, 13]. The procedure for transforming between these systems has

changed over time as the IAU’s definition of an inertial or celestial system has evolved along with Earth orientation
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Fig. 3 Roadmap of the transformations covered within this section; matrices are defined throughout the text.

modeling convention [44]. Current convention adopted by the IAU eliminates previous dependencies on the ecliptic of

date [44] to use a non-rotating origin; this newer approach is sometimes referred to as a CIO-based approach as opposed

to the equinox-based approach previously employed [7, 44]. The current CIO-based convention for transforming

between Earth-centered inertial and body-fixed coordinate systems includes three fundamental components:

1) Capturing the precession-nutation of the Celestial Intermediate Pole (CIP) in inertial space

2) Capturing the rotation of the body about the CIP, often labeled sidereal motion

3) Modeling polar motion, which reflects the shift of the CIP relative to surface of the body

This section delves deeper into each of these contributions. Recall the specialized terminology commonly employed

in the definition of and transformation between coordinate systems is summarized in Section 2.1. These steps, as

highlighted in Figure 4, are combined to transform between the GCRF and the ITRF.

4.3.1 Precession-Nutation

The ‘precession-nutation’ component of the conventional transformation between body-fixed and inertial coordinate

systems focuses on modeling the motion of the CIP in inertial space. Recall that the CIP is the pole that is normal to the
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Fig. 4 Highlighted segments of the transformation roadmap are covered in Sec 5.3.

equatorial plane of the Earth when only precession and nutation are modeled. This motion includes both periodic effects

with a period greater than two days in the inertial system and secular effects [7]. The physical phenomena that contribute

to precession and nutation of the CIP in inertial space include: the gravitational influence of the Sun, Moon and other

planets; the irregular shape and gravitational distribution of the Earth; and the evolution of the Moon’s orbit [6].

This ‘precession-nutation’ component of the transformation is summarized by a single, time-dependent rotation

matrix, [𝑹𝑃𝑁 (𝑡)], that explicitly depends on both the location of the CIO (i.e., the first axis of the GCRF) within the

equatorial plane (i.e., the plane that is perpendicular to the CIP) as well as the components of the CIP as expressed in

the inertial reference frame [7]. When this rotation is performed for geocentric reference frames, this rotation matrix

transforms a position vector from the GCRS, a celestial or inertial reference system, to an intermediate system labeled

the Celestial Intermediate Reference System (CIRS). The IERS defines the CIRS as a system that differs from the GCRS

by modeling the spin axis using only precession-nutation, rendering it similar to an Earth-centered true of date equinox

and equator system but with the first axis directed along the CIO as opposed to the vernal equinox [7, 13]. A similar

rotation may be used for systems where the celestial body used to define the origin is not the Earth, with an update to the

naming of each coordinate system to reflect that they are not geocentric.

There are a variety of approaches to computing the rotation matrix that captures the ‘precession-nutation’ component

of the transformation between body-fixed and inertial coordinate systems, based on distinct sequences of simple rotations

and input parameters. However, a simplified expression for this rotation matrix, from the GCRF to the CIRS that is also
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used in the GMAT software is written as [7, 13]:

[𝑹𝑃𝑁 (𝑡)] = [𝑹3 (−𝑠)]



1 − 𝑎𝑋2 −𝑎𝑋𝑌 −𝑋

−𝑎𝑋𝑌 1 − 𝑎𝑌2 −𝑌

𝑋 𝑌 1 − 𝑎(𝑋2 + 𝑌2)


(22)

where 𝑎 is equal to:

𝑎 =
1

1 +
√

1 − 𝑋2 − 𝑌2
(23)

The quantities 𝑋 (𝑡) and 𝑌 (𝑡) are the first two components of a unit vector aligned with the CIP expressed in the GCRF.

Then, the scalar, time-varying quantity 𝑠(𝑡) locates the CIO within the equatorial plane in the GCRF [7]; this quantity is

often labeled the CIO locator. This quantity uses the right ascension of the ascending node for the equatorial plane

measured relative to the plane formed by the first two axes of the GCRF. The quantity 𝑠(𝑡) then reflects the difference

between the right ascension measured from the first axis of the GCRS and that measured from the CIO. [7, 45, 46]. This

difference is incorporated via the transformation matrix [𝑹3 (−𝑠)] which is a time-dependent simple rotation matrix

about the 3rd axis by an angle 𝑠. This step of the transformation, between GCRF and CIRS, is graphically represented

in Fig. 5a) using the same notation as in this section.

Throughout the simplified expression for [𝑹𝑃𝑁 (𝑡)], three time-dependent quantities are required: 𝑋 (𝑡), 𝑌 (𝑡), and

𝑠(𝑡). These quantities may be calculated for a specific epoch using complex expressions that are each composed of

a polynomial in time and a series expansion to reflect frame bias terms, precession and nutation [7]. Truncation of

this series expansion influences the accuracy of the values used for these three quantities [47]. High-order truncations

of these expressions may be performed using IAU Standards of Fundamental Astronomy (SOFA) routines available

online at www.iausofa.org [45]. However, the GMAT documentation notes that using these routines may become

computationally expensive. Instead, GMAT leverages an alternative approach that is discussed by Seago and Vallado

and Coppola, Seago and Vallado [44, 48]: interpolating between values of 𝑋 (𝑡), 𝑌 (𝑡), and 𝑠(𝑡) computed at one day

time intervals. GMAT performs this interpolation using a 9-th order Lagrange interpolation [13]. Bradley, Sibois and

Axelrad present an assessment of the accuracy associated with alternative interpolation schemes for various regimes

near the Earth, along with a set of recommendations for suitable interpolation schemes that meet desired accuracy

requirements [49].

4.3.2 Sidereal Motion

The sidereal motion component of the adopted procedure for transforming between body-fixed and inertial coordinate

systems focuses on capturing the rotation of the Earth around the CIP. This single component of the transformation is

summarized by a single, time-dependent rotation matrix, [𝑹𝑆 (𝑡)], that explicitly depends on the Earth rotation angle,
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(a) Transformation from GCRF (black) to CIRS (red),
governed by [X%# (C)] to reflect precession-nutation
component (Sec. 5.3.1).
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(b) Transformation from CIRS (red) to TIRS (blue),
governed by [X( (C)] to reflect the sidereal motion
component (Sec. 5.3.2).
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(c) Transformation from TIRS (blue) to ITRF (black),
governed by [X%> (C)] to reflect the polar motion compo-
nent (Sec. 5.3.3).

Figure 1: Transformation between the GCRF and the ITRF, decomposed into a sequence of three rotations.
Note: Angles between axes may be exaggerated for visual clarity.

1

Fig. 5 Transformation between the GCRF and the ITRF, decomposed into a sequence of three rotations. Note:
angles between axes may be exaggerated for visual clarity.

𝜃𝐸𝑅𝐴. This step reflects one simple rotation about the third axis from the CIRS to a system labeled the Terrestrial

Intermediate Reference System (TIRS) [7]. This rotation matrix is expressed as [7]:

[𝑹𝑆 (𝑡)] = [𝑹3 (𝜃𝐸𝑅𝐴)] (24)

In this expression, the Earth rotation angle is calculated in radians as [7]:

𝜃𝐸𝑅𝐴 = 2𝜋 (0.7790572732640 + 1.00273781191135448 (𝐽𝐷𝑈𝑇 1 − 2451545.0)) (25)
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where 𝐽𝐷𝑈𝑇 1 is the Julian date in UT1. The rotation matrix from the CIRS to the TIRS possesses a nonzero time

derivative. Accordingly, its time derivative is equal to:

[ .
𝑹𝑆 (𝑡)

]
=



−𝜔𝐸 sin(𝜃𝐸𝑅𝐴) 𝜔𝐸 cos(𝜃𝐸𝑅𝐴) 0

−𝜔𝐸 cos(𝜃𝐸𝑅𝐴) −𝜔𝐸 sin(𝜃𝐸𝑅𝐴) 0

0 0 0


(26)

where 𝜔𝐸 is the rotation rate of the Earth [6, 44]. This step of the transformation, between CIRS and TIRS, is graphically

represented in Fig. 5b) using the same notation as in this section.

4.3.3 Polar Motion

The polar motion component of the adopted procedure for transforming between body-fixed and inertial coordinate

systems focuses on capturing the shift of the CIP relative to the surface of the body. This single component of the

transformation is summarized by a single, time-dependent rotation matrix, [𝑹𝑃𝑜 (𝑡)], that explicitly depends on both the

location of the CIP expressed in the ITRS and the location of the Terrestrial Intermediate Origin (TIO), which is the first

axis of the ITRS [7]. Using this information, the associated complex rotation from the TIRS to the ITRF to capture

polar motion is written using a sequence of simple rotations as [7]:

[𝑹𝑃𝑜 (𝑡)] =
[
𝑹1 (−𝑦𝑝)

] [
𝑹2 (−𝑥𝑝)

] [𝑹3 (𝑠′)] (27)

In this expression, the scalar variable 𝑠′ is labeled the TIO locator. The TIO locator is analogous to the CIO locator, but

reflects the location of the TIO within the equatorial plane [7]. This quantity, 𝑠′, is approximated as [7]:

𝑠′ ≈ (−47𝜇𝑎𝑠)𝑡 (28)

where 𝑡 is the time after JD 2,451,545.0 TT expressed in Julian TT century format [13]. This expression for 𝑠′ is

calculated via a linear fit to capture the mean amplitudes of variations in 𝑠′ derived from measurements [50]. Then,

the quantities 𝑥𝑝 and 𝑦𝑝 are coordinates of the CIP in the ITRS. The values of these coordinates may be calculated

using parameters published by the IERS, with additional corrections as needed to accommodate the influence of ocean

tides as well as libration effects with periods that are greater than two days and not included in the nutation model [7].

GMAT accesses discrete values from IERS and then performs a third-order Lagrange interpolation [13]. This step of the

transformation, between TIRS and ITRF, is graphically represented in Fig. 5c) using the same notation as in this section.
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4.3.4 Transformations Between GCRF and ITRF

The rotation matrices presented for each of the three components of the conventional CIO-based approach are

multiplied in the correct order to form a single transformation matrix between the GCRF, an inertial system, and the

ITRF, a body-fixed system with a common origin at the center of the Earth. To transform the position vector of an

object 𝑝 from the GCRF to the ITRF, the following expression is used:

𝒓𝐼𝑇 𝑅𝐹𝐸,𝑝 =
[
𝐼𝑇 𝑅𝐹𝑹𝐺𝐶𝑅𝐹 (𝑡)] 𝒓𝐺𝐶𝑅𝐹𝐸,𝑝 = [𝑹𝑃𝑜 (𝑡)] [𝑹𝑆 (𝑡)] [𝑹𝑃𝑁 (𝑡)] 𝒓𝐺𝐶𝑅𝐹𝐸,𝑝 (29)

The time derivative of this expression supplies the transformation for the velocity vector. When applying the product

rule during differentiation, software such as GMAT assumes that the only matrix that possesses a significant time

derivative is [𝑹𝑆 (𝑡)] [13, 44]. Thus, the transformation for the velocity vector of an object 𝑝 from the GCRF to the

ITRF uses the following expression:

𝒗𝐼𝑇 𝑅𝐹𝐸,𝑝 = [𝑹𝑃𝑜 (𝑡)] [𝑹𝑆 (𝑡)] [𝑹𝑃𝑁 (𝑡)] 𝒗𝐺𝐶𝑅𝐹𝐸,𝑝 + [𝑹𝑃𝑜 (𝑡)]
[ .
𝑹𝑆 (𝑡)

]
[𝑹𝑃𝑁 (𝑡)] 𝒓𝐺𝐶𝑅𝐹𝐸,𝑝 (30)

Alternatively, to transform the position vector of an object 𝑝 from the ITRF to the GCRF, the following expression is

used:

𝒓𝐺𝐶𝑅𝐹𝐸,𝑝 =
[
𝐺𝐶𝑅𝐹𝑹𝐼𝑇 𝑅𝐹 (𝑡)] 𝒓𝐼𝑇 𝑅𝐹𝐸,𝑝 = [𝑹𝑃𝑁 (𝑡)]𝑇 [𝑹𝑆 (𝑡)]𝑇 [𝑹𝑃𝑜 (𝑡)]𝑇 𝒓𝐼𝑇 𝑅𝐹𝐸,𝑝 (31)

Following the same procedure as above to take the time derivative of this expression, the transformation for the velocity

vector of an object 𝑝 from the ITRF to the GCRF uses the following expression:

𝒗𝐺𝐶𝑅𝐹𝐸,𝑝 = [𝑹𝑃𝑁 (𝑡)]𝑇 [𝑹𝑆 (𝑡)]𝑇 [𝑹𝑃𝑜 (𝑡)]𝑇 𝒗𝐼𝑇 𝑅𝐹𝐸,𝑝 + [𝑹𝑃𝑁 (𝑡)]𝑇
[ .
𝑹𝑆 (𝑡)

]𝑇
[𝑹𝑃𝑜 (𝑡)]𝑇 𝒓𝐼𝑇 𝑅𝐹𝐸,𝑝 (32)

Together, these expressions supply a transformation of the state vector for an object between the inertial GCRF and

body-fixed ITRF systems.

4.3.5 Transformations Between GCRF and Mean Equator and Equinox at J2000

Transforming between the GCRF and Earth-Centered Mean Equator and Equinox at J2000 inertial system relies on

a time-independent frame bias matrix that reflects the constant angular offset between two sets of axes. To transform

a position vector from the GCRF to the Mean Equator and Equinox at J2000 inertial system (indicated by the label

MJ2000), the following expression is used:

𝒓𝑀𝐽2000
𝐸,𝑝 =

[
𝑀𝐽2000𝑹𝐺𝐶𝑅𝐹

]
𝒓𝐺𝐶𝑅𝐹𝐸,𝑝 = [𝑩𝐸 ] 𝒓𝐺𝐶𝑅𝐹𝐸,𝑝 (33)
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where the rotation matrix is set equal to the frame bias matrix, [𝑩𝐸 ]. The frame bias matrix is a function of

three parameters [6, 13]: 𝜉0 = −16.6170 mas = −8.0561 × 10−8 rad and 𝜂0 = −6.8192 mas = −3.3060 × 10−8

rad reflect the angular deviations between the CIP on the J2000 epoch and the third axis of the GCRS, and

𝑑𝛼0 = −14.6mas = 7.0783 × 10−8 rad captures the deviation between the first axes of the two systems [6, 7, 13, 30].

Note that mas is an abbreviation for milliarcseconds. This transformation is displayed graphically in Fig. 6. The exact

expression for the frame bias matrix to convert from the GCRF to the Earth-Centered Mean Equator and Equinox at

J2000 inertial system is written as:

[𝑩𝐸 ] = [𝑹1 (−𝜂0)] [𝑹2 (𝜉0)] [𝑹3 (𝑑𝛼0)] (34)

However, there are two widely-used approximations of the frame bias matrix, with different levels of accuracy. A

first-order approximation of the frame bias matrix is written as [30]:

[𝑩𝐸 ] ≈



1 𝑑𝛼0 −𝜉0

−𝑑𝛼0 1 −𝜂0

𝜉0 𝜂0 1


(35)

while a second-order approximation of the frame-bias matrix is equal to [30]:

[𝑩𝐸 ] ≈



1 − 0.5
(
𝑑𝛼2

0 + 𝜉2
0
)

𝑑𝛼0 −𝜉0

−𝑑𝛼0 − 𝜂0𝜉0 1 − 0.5
(
𝑑𝛼2

0 + 𝜂2
0
) −𝜂0

𝜉0 − 𝜂0𝑑𝛼0 𝜂0 + 𝜉0𝑑𝛼0 1 − 0.5
(
𝜂2

0 + 𝜉2
0
)


(36)
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(a) Simple rotation about the x̂1 =
x̂2 axis, as described by [X1 (q)].
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(b) Simple rotation about the ŷ1 =
ŷ2 axis, as described by [X2 (q)].

x̂1
ŷ1

ẑ1 = ẑ2

x̂2

ŷ2
q

(c) Simple rotation about the ẑ1 =
ẑ2 axis, as described by [X3 (q)].

Figure 2: Transformations from (Ĝ1, Ĥ1, Î1) to (Ĝ2, Ĥ2, Î2) axes, corresponding to a simple rotation about
each of the first, second and third axes by an angle q.

x̂GCRF ŷGCRF

ẑGCRF = ẑ0

x̂0

ŷ0

3U0

(a) [X3 (3U0)]

x̂0

ŷ0 = ŷ00

ẑ0

x̂00

ẑ00 b0

(b) [X2 (b0)]

x̂00 = x̂MJ2000

ŷ00

ẑ00

ŷMJ2000
ẑMJ2000

-[0

(c) [X1 (�[0)]

Figure 3: Transformation between the GCRF (black) and Earth-Centered Mean Equator and Equinox at
J2000 inertial system (red), governed by [H⇢ ] = [X1(�[0)] [X2(b0)] [X3(3U0)].

2

Fig. 6 Conceptual representation of the simple rotations captured within the frame bias matrix to transform
from the GCRF to the Earth-Centered Mean Equator and Equinox at J2000 inertial system.
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The GMAT software uses the second-order approximation of the frame-bias matrix [13]. Because this matrix does not

vary with time, the velocity vector is transformed from the GCRF to the Earth-centered Mean Equator and Equinox at

J2000 inertial system via the following expression:

𝒗𝑀𝐽2000
𝐸,𝑝 =

[
𝑀𝐽2000𝑹𝐺𝐶𝑅𝐹

]
𝒗𝐺𝐶𝑅𝐹𝐸,𝑝 = [𝑩𝐸 ] 𝒗𝐺𝐶𝑅𝐹𝐸,𝑝 (37)

To transform the position and velocity vectors from the Earth-centered Mean Equator and Equinox at J2000 inertial

system to the GCRF, i.e., perform the inverse transformation, the following expressions are used:

𝒓𝐺𝐶𝑅𝐹𝐸,𝑝 = [𝑩𝐸 ]−1 𝒓𝑀𝐽2000
𝐸,𝑝 (38)

𝒗𝐺𝐶𝑅𝐹𝐸,𝑝 = [𝑩𝐸 ]−1 𝒗𝑀𝐽2000
𝐸,𝑝 (39)

Implementation Note

While there is a small angular offset between the axes of the Earth-centered Mean Equator and Equinox at J2000

inertial system and the GCRF, they are often used interchangeably for applications such as trajectory design

where the magnitude of the difference does not noticeably impact the results. This assumption is reasonable

because the J2000 mean pole differs by about 18 mas from the ICRS pole, as determined by VLBI observations,

while LLR observations have revealed that right ascensions to the first axes of the J2000 and ICRS differ by

about 15 mas [51]. The overall difference in orientation is about 24 mas. Such a difference between these two

sets of axes would translate to about 50 m at the lunar orbit radius when measured from the center of the Earth

and 0.5 m on the Moon surface when measured from the center of the Moon.

4.4 Transforming Between Inertial Systems with Distinct Origins

This subsection focuses on transformations between inertial systems with the same axis definitions but distinct

origins, requiring only a translation. The transformations summarized in this subsection are highlighted in Figure 7.

4.4.1 Transformations Between GCRF and ICRF

The transformation between the GCRF and ICRF coordinate systems includes only a translation component because

the axes associated with ICRF are used as the axes for the GCRF. This translation shifts the origin between the solar

system barycenter (indicated by the label SSB) and the center of the Earth (indicated by the label E). Accordingly, the

transformation of the position and velocity vectors of an object 𝑝 from the GCRF to ICRF is written as:

𝒓𝐼𝐶𝑅𝐹𝑆𝑆𝐵,𝑝 = 𝒓𝐺𝐶𝑅𝐹𝐸,𝑝 + 𝒓𝐼𝐶𝑅𝐹𝑆𝑆𝐵,𝐸 (40)
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Fig. 7 Highlighted segments of the transformation roadmap are covered in the labeled subsections.

𝒗𝐼𝐶𝑅𝐹𝑆𝑆𝐵,𝑝 = 𝒗𝐺𝐶𝑅𝐹𝐸,𝑝 + 𝒗𝐼𝐶𝑅𝐹𝑆𝑆𝐵,𝐸 (41)

where 𝒓𝐼𝐶𝑅𝐹𝑆𝑆𝐵,𝐸 and 𝒗𝐼𝐶𝑅𝐹𝑆𝑆𝐵,𝐸 are the position and velocity vectors of the center of the Earth relative to the solar system

barycenter. The inverse transformation, from the ICRF to GCRF is written as:

𝒓𝐺𝐶𝑅𝐹𝐸,𝑝 = 𝒓𝐼𝐶𝑅𝐹𝑆𝑆𝐵,𝑝 + 𝒓𝐺𝐶𝑅𝐹𝐸,𝑆𝑆𝐵 (42)

𝒗𝐺𝐶𝑅𝐹𝐸,𝑝 = 𝒗𝐼𝐶𝑅𝐹𝑆𝑆𝐵,𝑝 + 𝒗𝐺𝐶𝑅𝐹𝐸,𝑆𝑆𝐵 (43)

Note that the relative position and velocity vectors between the center of the Earth and solar system barycenter are

epoch dependent; they may be calculated using planetary ephemerides.

4.4.2 Transformations Between GCRF and Moon-Centered Inertial System

The transformation between the GCRF and Moon-centered inertial coordinate systems, following the definitions in

Section 2, includes only a translation component because the axes of each system are equal to the axes associated with

the ICRF. This translation shifts the origin between the center of the Moon (labeled M) and the center of the Earth

(indicated by the label E). Accordingly, transformation of the position and velocity vectors of an object 𝑝 from the

GCRF to Moon-centered inertial system (labeled using the superscript MI) is written as:

𝒓𝑀𝐼𝑀,𝑝 = 𝒓𝐺𝐶𝑅𝐹𝐸,𝑝 + 𝒓𝑀𝐼𝑀,𝐸 (44)

𝒗𝑀𝐼𝑀,𝑝 = 𝒗𝐺𝐶𝑅𝐹𝐸,𝑝 + 𝒗𝑀𝐼𝑀,𝐸 (45)

40



Astrodynamics Convention & Modeling Reference Version 1.1, 12/1/22

where 𝒓𝑀𝐼𝑀,𝐸 and 𝒗𝑀𝐼𝑀,𝐸 are the position and velocity vectors of the center of the Earth relative to the center of the Moon.

The opposite transformation, from the Moon-centered inertial system to the GCRF is written as:

𝒓𝐺𝐶𝑅𝐹𝐸,𝑝 = 𝒓𝑀𝐼𝑀,𝑝 + 𝒓𝐺𝐶𝑅𝐹𝐸,𝑀 (46)

𝒗𝐺𝐶𝑅𝐹𝐸,𝑝 = 𝒗𝑀𝐼𝑀,𝑝 + 𝒗𝐺𝐶𝑅𝐹𝐸,𝑀 (47)

Note that the relative position and velocity vectors between the centers of the Earth and Moon are epoch dependent; they

may be calculated using planetary and lunar ephemerides.

4.5 Transforming Between Moon-Centered Systems

Transforming between the Moon inertial coordinate system and a Moon-fixed system that uses either the ME or PA

axes relies on the use of Euler angles describing the time-dependent orientation of the principal axes of the Moon. A

realization of these parameters at the time of publication is available in the planetary and lunar ephemerides files made

available by NASA’s NAIF, e.g., DE440 and DE441 [9]. This subsection presents an overview of this process as well as

the procedure for calculating spherical coordinates for mapping applications. The transformations presented in this

subsection are highlighted in Figure 8.

Fig. 8 Highlighted segments of the transformation roadmap are covered in this subsection.

To transform a position vector for an object 𝑝 from the Moon inertial system (labeled as MI) to a Moon-fixed system

that uses the PA axes (labeled as PA), the following expression is used:

𝒓𝑃𝐴𝑀,𝑝 =
[
𝑃𝐴𝑹𝑀𝐼 (𝑡)] 𝒓𝑀𝐼𝑀,𝑝 (48)
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where the subscript 𝑀 indicates the center of the Moon. The rotation matrix
[
𝑃𝐴𝑹𝑀𝐼 (𝑡)] is written in terms of three

Euler angles [9]:

• 𝜓𝑚: the angle from the intersection of the mantle equator and the 𝑥𝑦-plane of the Moon inertial system to the

Moon’s prime meridian, measured within the mantle’s equatorial plane

• 𝜃𝑚: the angular tilt of the mantle’s equatorial plane relative to the 𝑥𝑦-plane of the Moon inertial system

• 𝜙𝑚: the angle from the first axis of the Moon inertial system to intersection of the mantle equator and the 𝑥𝑦-plane

of the Moon inertial system, measured within the 𝑥𝑦-plane of the Moon inertial system

Using these Euler angles, the rotation matrix
[
𝑃𝐴𝑹𝑀𝐼 (𝑡)] is calculated using a sequence of simple rotations as [9]:

[
𝑃𝐴𝑹𝑀𝐼 (𝑡)] = [𝑹3 (𝜓𝑚)] [𝑹1 (𝜃𝑚)] [𝑹3 (𝜙𝑚)] (49)

This complex transformation, formed through a sequence of three simple rotations, is displayed graphically in Fig. 9

and relates the black axes of the Moon inertial system to the blue PA axes. The dotted circles indicate the 𝒙̂ 𝒚̂-plane of

each system. Taking the time derivative of Eq. 48, the expression governing the transformation of the velocity vector

from the Moon inertial system to a Moon-fixed system with PA axes is then written as:

𝒗𝑃𝐴𝑀,𝑝 =
[
𝑃𝐴𝑹𝑀𝐼 (𝑡)] 𝒗𝑀𝐼𝑀,𝑝 + [

𝑃𝐴
.
𝑹𝑀𝐼 (𝑡)

]
𝒓𝑀𝐼𝑀,𝑝 (50)

where the time derivative of the rotation matrix,
[
𝑃𝐴

.
𝑹𝑀𝐼 (𝑡)

]
is calculated exactly as:

[
𝑃𝐴

.
𝑹𝑀𝐼 (𝑡)

]
=

[ .
𝑹3 (𝜓𝑚)

]
[𝑹1 (𝜃𝑚)] [𝑹3 (𝜙𝑚)] + [𝑹3 (𝜓𝑚)]

[ .
𝑹1 (𝜃𝑚)

]
[𝑹3 (𝜙𝑚)] + [𝑹3 (𝜓𝑚)] [𝑹1 (𝜃𝑚)]

[ .
𝑹3 (𝜙𝑚)

]

However, the GMAT software assumes that
[ .
𝑹1 (𝜃𝑚)

]
and

[ .
𝑹3 (𝜙𝑚)

]
are equal to the 3 × 3 zero matrices [13] such that:

[
𝑃𝐴

.
𝑹𝑀𝐼 (𝑡)

]
≈

[ .
𝑹3 (𝜓𝑚)

]
[𝑹1 (𝜃𝑚)] [𝑹3 (𝜙𝑚)]

where

[ .
𝑹3 (𝜓𝑚)

]


− .
𝜓𝑚 sin(𝜓𝑚)

.
𝜓𝑚 cos(𝜓𝑚) 0

− .
𝜓𝑚 cos(𝜓𝑚) − .

𝜓𝑚 sin(𝜓𝑚) 0

0 0 0


and

.
𝜓𝑚 is equivalent to the

.
𝑊 quantity presented in the GMAT Mathematical Specifications document [13].

To transform a position vector for an object 𝑝 from a Moon-fixed system that uses the PA axes to one that uses the
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x̂MI

ŷMI

ẑMI

q<

x̂PA

ŷPA

ẑPA

k<
\<

\<

Figure 4: Transformation between Moon inertial coordinate system (black) and the Moon fixed system using
the PA axes (red), governed by

⇥
%�X"� (C)⇤ = [X3(k<)] [X1(\<)] [X3(q<)].

3

Fig. 9 Transformation between the axes of the Moon inertial system (black) to the PA axes (blue) decomposed
into a sequence of three rotations.

ME axes, as calculated using DE421 ephemerides, a single time-independent frame bias matrix is employed:

𝒓𝑀𝐸𝑀,𝑝 =
[
𝑀𝐸𝑹𝑃𝐴

]
𝒓𝑃𝐴𝑀,𝑝 = [𝑩𝑀 ] 𝒓𝑃𝐴𝑀,𝑝 (51)

where the frame bias matrix is equal to the following product of simple rotations [9]:

[𝑩𝑀 ] = [𝑹1 (−0.2785 arcsec)] [𝑹2 (−78.6944 arcsec)] [𝑹3 (−67.8526 arcsec)] (52)

and the argument of each simple rotation is calculated using the coordinates of retroreflectors on the Moon’s surface in

each of the PA and ME axes. Note that the ME axes are calculated using the DE421 ephemerides which were used by

the LRO. Then, the transformation for the velocity vector from a Moon-fixed system that uses the PA axes to one that

uses the ME axes, as calculated using DE421 ephemerides, is expressed as

𝒗𝑀𝐸𝑀,𝑝 =
[
𝑀𝐸𝑹𝑃𝐴

]
𝒗𝑃𝐴𝑀,𝑝 = [𝑩𝑀 ] 𝒗𝑃𝐴𝑀,𝑝 (53)

because the frame bias matrix is time-independent.

Combining these transformations, position and velocity vectors expressed in the Moon inertial system are transformed

to a Moon-fixed system that uses ME axes via the following expressions:

𝒓𝑀𝐸𝑀,𝑝 = [𝑩𝑀 ] [𝑹3 (𝜓𝑚)] [𝑹1 (𝜃𝑚)] [𝑹3 (𝜙𝑚)] 𝒓𝑀𝐼𝑀,𝑝 (54)
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𝒗𝑀𝐸𝑀,𝑝 = [𝑩𝑀 ] [𝑹3 (𝜓𝑚)] [𝑹1 (𝜃𝑚)] [𝑹3 (𝜙𝑚)] 𝒗𝑀𝐼𝑀,𝑝 + [𝑩𝑀 ]
[
𝑃𝐴

.
𝑹𝑀𝐼 (𝑡)

]
𝒓𝑀𝐼𝑀,𝑝 (55)

The inverse transformation for position and velocity vectors expressed in a Moon-fixed system that uses ME axes to the

Moon inertial system is written as:

𝒓𝑀𝐼𝑀,𝑝 =
[
𝑀𝐼 𝑹𝑀𝐸

]
𝒓𝑀𝐸𝑀,𝑝 = [𝑹3 (−𝜙𝑚)] [𝑹1 (−𝜃𝑚)] [𝑹3 (−𝜓𝑚)] [𝑩𝑀 ]−1 𝒓𝑀𝐸𝑀,𝑝 (56)

𝒗𝑀𝐼𝑀,𝑝 = [𝑹3 (−𝜙𝑚)] [𝑹1 (−𝜃𝑚)] [𝑹3 (−𝜓𝑚)] [𝑩𝑀 ]−1 𝒗𝑀𝐸𝑀,𝑝 +
[
𝑀𝐼

.
𝑹𝑀𝐸

]
𝒓𝑀𝐸𝑀,𝑝 (57)

When spherical coordinates are used, the selenocentric longitude, latitude and distance may be directly calculated

from a Cartesian state expressed in a Moon-fixed frame; typically, these spherical coordinates are expressed in a

Moon-fixed frame with ME axes [14]. To demonstrate the procedure for calculating spherical coordinates, consider a

Cartesian position vector 𝒓𝑀𝐸𝑀,𝑝 = 𝑥𝒙̂ + 𝑦 𝒚̂ + 𝑧 𝒛̂ of an object 𝑝 relative to the center of the Moon and expressed in a

Moon-fixed coordinate system with ME axes. Then, the selenocentric longitude, 𝜆𝑠𝑐 , is calculated as:

𝜆𝑠𝑐 = tan−1
( 𝑦
𝑥

)
(58)

with values in the range [−180, 180] degrees. The selenocentric latitude, 𝜙𝑠𝑐 , is calculated as:

𝜙𝑠𝑐 = tan−1

(
𝑧√︁

𝑥2 + 𝑦2

)
(59)

and possesses values within the range [−90, 90] degrees. Finally, the distance 𝑟𝑠𝑐 from the center of the Moon to the

object is calculated as:

𝑟𝑠𝑐 =
√︃
𝑥2 + 𝑦2 + 𝑧2 (60)

The position vector of the object in the Moon-fixed coordinate system with ME axes (denoted 𝒙̂, 𝒚̂, 𝒛̂) is calculated from

the spherical coordinates 𝜆𝑠𝑐 , 𝜙𝑠𝑐 , 𝑟𝑠𝑐 as [52]:

𝒓𝑀𝐸𝑀,𝑝 = 𝑟𝑠𝑐 cos(𝜙𝑠𝑐) cos(𝜆𝑠𝑐)𝒙̂ + 𝑟 cos(𝜙𝑠𝑐) sin(𝜆𝑠𝑐) 𝒚̂ + 𝑟𝑠𝑐 sin(𝜙𝑠𝑐) 𝒛̂ (61)

For a given set of stereographic coordinates (𝑥, 𝑦) expressed in the Moon-fixed reference frame with ME axes and a

height 𝑧 above the Moon radius of 1737.4 km, these coordinates are transformed to selenocentric spherical coordinates

(𝜙, 𝜆, 𝑅𝑀 + 𝑧) as follows:

𝜌 =
√︃
𝑥2 + 𝑦2 (62)

𝑐 = 2 tan−1
(
𝜌

2𝑅𝑀

)
(63)
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𝜙 = sin−1
(
cos(𝑐) sin(𝜙0) + cos(𝜙0)𝑦 sin(𝑐)

𝜌

)
(64)

𝜆 = 𝜆0 + tan−1
(

𝑥 sin(𝑐)
cos(𝜙0)𝜌 cos(𝑐) − sin(𝜙0)𝑦 sin(𝑐)

)
(65)

where 𝜙0 and 𝜆0 are the latitude and longitude, respectively, of the projection pole when 𝑥 = 𝑦 = 0.

4.6 Transforming Between Inertial and Synodic Systems

Another type of transformation focuses on relating inertial and synodic coordinate systems. As described in 2.5,

a synodic coordinate system is defined using the motion of two massive bodies (each labeled the larger and smaller

primary according to their mass); thus, a rotation must be performed during the transformation. The matrix governing

this transformation is typically calculated directly from the relative state of the two primary bodies. In addition, the

origin of a synodic system is often located at a calculated point such as the barycenter of the primary system or a

Lagrange point; in some cases, the origin may be selected as one of the primary bodies. If the origin of a specific inertial

system does not coincide with the origin of the synodic coordinate system, a translation must also be performed. This

subsection supplies an overview of the general procedure for implementing this transformation; this procedure is then

applied to specific synodic systems. The specific transformations summarized in this subsection are highlighted in

Figure 10.

Fig. 10 Highlighted segments of the transformation roadmap are covered in this subsection.

4.6.1 General Procedure

Consider two primary bodies, 𝑃1 and 𝑃2, used to define a 𝑃1-𝑃2 synodic system with axes (𝒙̂, 𝒚̂, 𝒛̂) and origin 𝑂𝑠.

In the case of the Earth-Moon and Sun-Earth rotating frames, the three axes are commonly defined as follows: 𝒙̂ is
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directed from the larger primary 𝑃1 to the smaller primary 𝑃2, 𝒛̂ is aligned with the orbit angular momentum vector for

the primary system, and 𝒚̂ completes the right-handed triad. Note that in some groups, a modification to this definition

is employed: the first axis is directed from the smaller primary to the larger primary; this difference also occurs for the

Geocentric Solar Ecliptic frame. An inertial coordinate system is also denoted using the axes ( 𝑿̂, 𝒀̂ , 𝒁̂) and origin 𝑂𝑖 .

The rotation matrix governing the transformation from an inertial system to a synodic system is calculated using

the position and velocity vectors of 𝑃2 relative to 𝑃1 in the inertial frame. These vectors are labeled 𝑹12 and 𝑽12,

respectively, and are typically calculated using ephemerides. The rotation matrix,
[
𝑆𝑹𝐼 (𝑡)] , governing the rotation

from the axes ( 𝑿̂, 𝒀̂ , 𝒁̂) of the inertial frame to the axes (𝒙̂, 𝒚̂, 𝒛̂) of the rotating frame about a common origin, are then

written as [13]:

[
𝑆𝑹𝐼 (𝑡)] =



𝒙̂𝑇

𝒚̂𝑇

𝒛̂𝑇


(66)

where the following column vectors are written using components in the inertial frame:

𝒙̂ =
𝑹12

| |𝑹12 | |

𝒛̂ =
𝑹12 × 𝑽12

| |𝑹12 × 𝑽12 | |

𝒚̂ = 𝒛̂ × 𝒙̂

Thus, a position vector 𝒓𝐼𝑂𝐼 , 𝑝
that locates an object 𝑝 and is expressed in the inertial coordinate system is transformed to

a position vector 𝒓𝑆𝑂𝑆 , 𝑝
in a synodic system via the following expression:

𝒓𝑆𝑂𝑆 , 𝑝
=

[
𝑆𝑹𝐼 (𝑡)] 𝒓𝐼𝑂𝐼 , 𝑝

+ 𝒓𝑆𝑂𝑆 ,𝑂𝐼
(67)

where 𝒓𝑆𝑂𝑆 ,𝑂𝐼
is the position vector of the origin of the inertial system relative to the origin of the synodic system and

expressed in the synodic frame, capturing the necessary translation step when the origins of the two coordinate systems

do not coincide. Because the matrix
[
𝑆𝑹𝐼 (𝑡)] is orthogonal, transformation of a position vector 𝒓𝑆𝑂𝑆 , 𝑝

in the synodic

coordinate system to a position vector 𝒓𝐼𝑂𝐼 , 𝑝
in an inertial system is calculated as

𝒓𝐼𝑂𝐼 , 𝑝
=

[
𝑆𝑹𝐼 (𝑡)]𝑇 𝒓𝑆𝑂𝑆 , 𝑝

+ 𝒓𝐼𝑂𝐼 ,𝑂𝑆
(68)

using the transpose of the rotation matrix in Eq. 66 and 𝒓𝐼𝑂𝐼 ,𝑂𝑆
, which is the position vector of the origin of the synodic

system relative to the origin of the inertial system and expressed in the inertial frame.
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One approach to transforming the velocity vector of an object from the synodic coordinate system to the inertial

coordinate system involves directly calculating the time derivative of the rotation matrix. This time derivative of the

rotation matrix governing the rotation from the axes ( 𝑿̂, 𝒀̂ , 𝒁̂) of the inertial frame to the axes (𝒙̂, 𝒚̂, 𝒛̂) of the synodic

frame about a common origin is calculated as [13]:

[
𝑆

.
𝑹𝐼 (𝑡)

]
=



(
𝑑 𝒙̂
𝑑𝑡

)𝑇
(
𝑑𝒚̂
𝑑𝑡

)𝑇
(
𝑑𝒛̂
𝑑𝑡

)𝑇


(69)

The time derivatives of the first and second axes of the synodic frame are column vectors written using components in

the inertial frame and are calculated as:
𝑑𝒙̂

𝑑𝑡
=

𝑽12
| |𝑹12 | | − 𝒙̂

(
𝒙̂ · 𝑽12
| |𝑹12 | |

)

𝑑 𝒚̂

𝑑𝑡
=
𝑑 𝒛̂

𝑑𝑡
× 𝒙̂ + 𝒛̂ × 𝑑𝒙̂

𝑑𝑡

The GMAT software then calculates the time derivative of the 𝒛̂ axis by assuming that the 𝒛̂-axis associated with the

synodic frame does not shift significantly relative to the inertial frame. The result is that:

𝑑 𝒛̂

𝑑𝑡
≈ 0

This assumption is reasonable in the Sun-Earth and Earth-Moon rotating frames. However, for a higher-fidelity

transformation, the Goddard Trajectory Determination System (GTDS) and the Systems Tool Kit (STK) software both

report using an exact expression for the time derivatives of the three axes of the synodic frame written using components

in the inertial frame [52, 53]. This expression is derived by directly taking the time derivative of the expression for 𝒛̂ to

produce:
𝑑 𝒛̂

𝑑𝑡
=

𝑹12 × 𝑨12
| |𝑹12 × 𝑽12 | | −

[(𝑹12 × 𝑨12) · (𝑹12 × 𝑽12)] (𝑹12 × 𝑽12)
| |𝑹12 × 𝑽12 | |3

where the variable 𝑨12 is the acceleration of 𝑃2 relative to 𝑃1, i.e., the time derivative of the velocity vector for an

observer fixed in the inertial frame. If 𝑹12 and 𝑽12 are calculated using ephemerides, this acceleration vector may be

approximated using equations of motion that sufficiently reflect the dynamical environment governing the motion of 𝑃2

relative to 𝑃1 to a desired accuracy level.

The transformation for the velocity vector from the inertial coordinate system to the synodic system is written to

incorporate both the rotation and translation components. Specifically, the velocity vector for an object 𝑝 in the synodic
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coordinate system is calculated using state information in the inertial coordinate system as:

𝒗𝑆𝑂𝑆 , 𝑝
=

[
𝑆𝑹𝐼 (𝑡)] 𝒗𝐼𝑂𝐼 , 𝑝

+
[
𝑆

.
𝑹𝐼 (𝑡)

]
𝒓𝐼𝑂𝐼 , 𝑝

+ 𝒗𝑆𝑂𝑆 ,𝑂𝐼
(70)

where 𝒗𝑆𝑂𝑆 ,𝑂𝐼
is the velocity of the origin of the inertial frame relative to the origin of the synodic frame and expressed

in the synodic frame. In addition, the transformation for the velocity vector from the synodic to inertial coordinate

systems is written as:

𝒗𝐼𝑂𝐼 , 𝑝
= − [

𝑆𝑹𝐼 (𝑡)]𝑇 [
𝑆

.
𝑹𝐼 (𝑡)

] [
𝑆𝑹𝐼 (𝑡)]𝑇 𝒓𝑆𝑂𝑆 , 𝑝

+ [
𝑆𝑹𝐼 (𝑡)]𝑇 𝒗𝑆𝑂𝑆 , 𝑝

+ 𝒗𝐼𝑂𝐼 ,𝑂𝑆
(71)

This transformation is calculated by writing Eq. 67 and 70 in matrix form and performing an inversion that is written in

terms of the submatrices. However, this transformation may also be expressed in a similar form to Eq. 67 and 70 by

starting with the transformation matrix
[
𝐼 𝑹𝑆 (𝑡)] that is calculated as the transpose of

[
𝑆𝑹𝐼 (𝑡)] .

4.6.2 Transformations Between GCRF and Earth-Moon Rotating Frame

To transform the position and velocity vectors of an object 𝑝 from the GCRF, an Earth-inertial frame, to the

Earth-Moon rotating frame (indicated by the superscript EMR), the following expressions are used:

𝒓𝐸𝑀𝑅𝐸𝑀𝐵,𝑝 =
[
𝐸𝑀𝑅𝑹𝐺𝐶𝑅𝐹 (𝑡)] 𝒓𝐺𝐶𝑅𝐹𝐸,𝑝 + 𝒓𝐸𝑀𝑅𝐸𝑀𝐵,𝐸 (72)

𝒗𝐸𝑀𝑅𝐸𝑀𝐵,𝑝 =
[
𝐸𝑀𝑅

.
𝑹𝐺𝐶𝑅𝐹 (𝑡)

]
𝒓𝐺𝐶𝑅𝐹𝐸,𝑝 + [

𝐸𝑀𝑅𝑹𝐺𝐶𝑅𝐹 (𝑡)] 𝒗𝐺𝐶𝑅𝐹𝐸,𝑝 + 𝒗𝐸𝑀𝑅𝐸𝑀𝐵,𝐸 (73)

where
[
𝐸𝑀𝑅𝑹𝐺𝐶𝑅𝐹 (𝑡)] = [

𝐺𝐶𝑅𝐹𝑹𝐸𝑀𝑅 (𝑡)]𝑇 and the subscript 𝐸 indicates the Earth center and 𝐸𝑀𝐵 corresponds to

the Earth-Moon barycenter. Although the Earth-Moon barycenter is considered the traditional origin for an Earth-Moon

rotating frame, alternative origins are often employed when analyzing trajectories in a multi-body systems; in that case,

the subscript 𝐸𝑀𝐵 would be replaced with an alternative subscript such as 𝐸 , 𝑀 or 𝐿𝑖 to indicate the origin as the

Earth, Moon or an Earth-Moon Lagrange point, respectively. The relationship between these two frames is depicted

graphically in Fig. 11.

The inverse transformation for the position and velocity vectors, from the Earth-Moon rotating frame to the GCRF is

written as:

𝒓𝐺𝐶𝑅𝐹𝐸,𝑝 =
[
𝐸𝑀𝑅𝑹𝐺𝐶𝑅𝐹 (𝑡)]𝑇 𝒓𝐸𝑀𝑅𝐸𝑀𝐵,𝑝 + 𝒓𝐺𝐶𝑅𝐹𝐸,𝐸𝑀𝐵 (74)

𝒗𝐺𝐶𝑅𝐹𝐸,𝑝 = − [
𝐸𝑀𝑅𝑹𝐺𝐶𝑅𝐹 (𝑡)]𝑇 [

𝐸𝑀𝑅
.
𝑹𝐺𝐶𝑅𝐹 (𝑡)

] [
𝐸𝑀𝑅𝑹𝐺𝐶𝑅𝐹 (𝑡)]𝑇 𝒓𝐸𝑀𝑅𝐸𝑀𝐵,𝑝+

[
𝐸𝑀𝑅𝑹𝐺𝐶𝑅𝐹 (𝑡)]𝑇 𝒗𝐸𝑀𝑅𝐸𝑀𝐵,𝑝+𝒗𝐺𝐶𝑅𝐹𝐸,𝐸𝑀𝐵

(75)

48



Astrodynamics Convention & Modeling Reference Version 1.1, 12/1/222 Synodic Frame Figures
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Figure 5: Transformation from GCRF to the Earth-Moon rotating frame, governed by [EMRXGCRF(C)].
Distances and angles between axes may be exaggerated for visual clarity.
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x̂SER
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Figure 6: Transformation from GCRF to the Sun-Earth rotating frame, governed by [SERXGCRF(C)]. Dis-
tances and angles between axes may be exaggerated for visual clarity.

4

Fig. 11 Conceptual representation of the relationship between the GCRF and Earth-Moon rotating frame.
Note: distances and angles may be exaggerated for visual clarity.

4.6.3 Transformations Between Moon Inertial and Earth-Moon Rotating Frame

To transform the position and velocity vectors of an object 𝑝 from a Moon-centered inertial frame (indicated by the

superscript MI) to the Earth-Moon rotating frame (indicated by the superscript EMR), the following expressions are

used:

𝒓𝐸𝑀𝑅𝐸𝑀𝐵,𝑝 =
[
𝐸𝑀𝑅𝑹𝑀𝐼 (𝑡)] 𝒓𝑀𝐼𝑀,𝑝 + 𝒓𝐸𝑀𝑅𝐸𝑀𝐵,𝑀 (76)

𝒗𝐸𝑀𝑅𝐸𝑀𝐵,𝑝 =
[
𝐸𝑀𝑅

.
𝑹𝑀𝐼 (𝑡)

]
𝒓𝑀𝐼𝑀,𝑝 +

[
𝐸𝑀𝑅𝑹𝑀𝐼 (𝑡)] 𝒗𝑀𝐼𝑀,𝑝 + 𝒗𝐸𝑀𝑅𝐸𝑀𝐵,𝑀 (77)

where the subscript 𝑀 indicates the Moon center and 𝐸𝑀𝐵 corresponds to the Earth-Moon barycenter. Although the

Earth-Moon barycenter is considered the traditional origin for an Earth-Moon rotating frame, alternative origins may

be employed; in that case, the subscript 𝐸𝑀𝐵 would be replaced with an alternative subscript such as 𝐸 , 𝑀 or 𝐿𝑖 to

indicate the origin as the Earth, Moon or an Earth-Moon Lagrange point, respectively.

The inverse transformation for the position and velocity vectors, from the Earth-Moon rotating frame to the

Moon-centered inertial frame is written as:

𝒓𝑀𝐼𝑀,𝑝 =
[
𝐸𝑀𝑅𝑹𝑀𝐼 (𝑡)]𝑇 𝒓𝐸𝑀𝑅𝐸𝑀𝐵,𝑝 + 𝒓𝑀𝐼𝑀,𝐸𝑀𝐵 (78)

𝒗𝑀𝐼𝑀,𝑝 = − [
𝐸𝑀𝑅𝑹𝑀𝐼 (𝑡)]𝑇 [

𝐸𝑀𝑅
.
𝑹𝑀𝐼 (𝑡)

] [
𝐸𝑀𝑅𝑹𝑀𝐼 (𝑡)]𝑇 𝒓𝐸𝑀𝑅𝐸𝑀𝐵,𝑝 +

[
𝐸𝑀𝑅𝑹𝑀𝐼 (𝑡)]𝑇 𝒗𝐸𝑀𝑅𝐸𝑀𝐵,𝑝 + 𝒗𝑀𝐼𝑀,𝐸𝑀𝐵 (79)

4.6.4 Transformations Between GCRF and Sun-Earth Rotating Frame

To transform the position and velocity vectors of an object 𝑝 from the GCRF to the Sun-Earth rotating frame

(indicated by the superscript SER), the following expression is used:

𝒓𝑆𝐸𝑅𝑆𝐸𝐵,𝑝 =
[
𝑆𝐸𝑅𝑹𝐺𝐶𝑅𝐹 (𝑡)] 𝒓𝐺𝐶𝑅𝐹𝐸,𝑝 + 𝒓𝑆𝐸𝑅𝑆𝐸𝐵,𝐸 (80)
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2 Synodic Frame Figures
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Moon’s path
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ẑEMR
ŷEMR
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EMB,E

Figure 5: Transformation from GCRF to the Earth-Moon rotating frame, governed by [EMRXGCRF(C)].
Distances and angles between axes may be exaggerated for visual clarity.
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Figure 6: Transformation from GCRF to the Sun-Earth rotating frame, governed by [SERXGCRF(C)]. Dis-
tances and angles between axes may be exaggerated for visual clarity.

4

Fig. 12 Conceptual representation of the relationship between the GCRF and Earth-Moon rotating frame.
Note: distances and angles may be exaggerated for visual clarity.

𝒗𝑆𝐸𝑅𝑆𝐸𝐵,𝑝 =
[
𝑆𝐸𝑅

.
𝑹𝐺𝐶𝑅𝐹 (𝑡)

]
𝒓𝐺𝐶𝑅𝐹𝐸,𝑝 + [

𝑆𝐸𝑅𝑹𝐺𝐶𝑅𝐹 (𝑡)] 𝒗𝐺𝐶𝑅𝐹𝐸,𝑝 + 𝒗𝑆𝐸𝑅𝑆𝐸𝐵,𝐸 (81)

where the subscript 𝐸 indicates the Earth center and 𝑆𝐸𝐵 corresponds to the Sun-Earth barycenter. Although the

Sun-Earth barycenter is considered the traditional origin for a Sun-Earth rotating frame, alternative origins may be

employed; in that case, the subscript 𝑆𝐸𝐵 would be replaced with an alternative subscript such as 𝑆, 𝐸 or 𝐿𝑖 to indicate

the origin as the Sun, Earth or a Sun-Earth Lagrange point, respectively. The relationship between these two frames is

depicted graphically in Fig. 12.

The inverse transformation for the position and velocity vectors, from the Sun-Earth rotating frame to the GCRF is

written as:

𝒓𝐺𝐶𝑅𝐹𝐸,𝑝 =
[
𝑆𝐸𝑅𝑹𝐺𝐶𝑅𝐹 (𝑡)]𝑇 𝒓𝐺𝐶𝑅𝐹𝑆𝐸𝐵,𝑝 + 𝒓𝐺𝐶𝑅𝐹𝐸,𝑆𝐸𝐵 (82)

𝒗𝐺𝐶𝑅𝐹𝐸,𝑝 = − [
𝑆𝐸𝑅𝑹𝐺𝐶𝑅𝐹 (𝑡)]𝑇 [

𝑆𝐸𝑅
.
𝑹𝐺𝐶𝑅𝐹 (𝑡)

] [
𝑆𝐸𝑅𝑹𝐺𝐶𝑅𝐹 (𝑡)]𝑇 𝒓𝑆𝐸𝑅𝑆𝐸𝐵,𝑝 +

[
𝑆𝐸𝑅𝑹𝐺𝐶𝑅𝐹 (𝑡)]𝑇 𝒗𝑆𝐸𝑅𝑆𝐸𝐵,𝑝 + 𝒗𝐺𝐶𝑅𝐹𝐸,𝑆𝐸𝐵

(83)

4.6.5 Transformations Between GCRF and Geocentric Solar Ecliptic Frame

To transform the position and velocity vectors of an object 𝑝 from the GCRF to the Geocentric Solar Ecliptic

frame (indicated by the superscript GSE), the mathematical foundation presented in Section 4.6 is employed with some

modifications. Specifically, the three column vectors for the axes of the GSE frame are calculated using the position

vector from the Earth to the Sun (as opposed to the vector from the Sun to the Earth in the Sun-Earth rotating frame)

such that:

𝒙̂ =
𝑹𝐸𝑆

| |𝑹𝐸𝑆 | |

𝒛̂ =
𝑹𝐸𝑆 × 𝑽𝐸𝑆

| |𝑹𝐸𝑆 × 𝑽𝐸𝑆 | |

𝒚̂ = 𝒛̂ × 𝒙̂
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where the subscript 𝐸 indicates the Earth center and 𝑆 indicates the Sun center, such that 𝑹𝐸𝑆 and 𝑽𝐸𝑆 are the position

and velocity vectors of the Sun center relative to the Earth center, expressed in the Earth-inertial system. In addition, the

origin of the GSE system is the Earth center. Accordingly, the transformation between the GSE and Earth-centered

inertial frames does not require a translation. With these modifications to the approach used in Section 4.6, the following

expression is used:

𝒓𝐺𝑆𝐸𝐸,𝑝 =
[
𝐺𝑆𝐸𝑹𝐺𝐶𝑅𝐹 (𝑡)] 𝒓𝐺𝐶𝑅𝐹𝐸,𝑝 (84)

𝒗𝐺𝑆𝐸𝐸,𝑝 =
[
𝐺𝑆𝐸

.
𝑹𝐺𝐶𝑅𝐹 (𝑡)

]
𝒓𝐺𝐶𝑅𝐹𝐸,𝑝 + [

𝐺𝑆𝐸𝑹𝐺𝐶𝑅𝐹 (𝑡)] 𝒗𝐺𝐶𝑅𝐹𝐸,𝑝 (85)

A similar transformation may be constructed from an inertial coordinate system that uses the Sun or Moon as an origin;

in that case, a translation term must be included in these expressions.

The inverse transformation for the position and velocity vectors, from the GSE system to the GCRF is written as:

𝒓𝐺𝐶𝑅𝐹𝐸,𝑝 =
[
𝐺𝑆𝐸𝑹𝐺𝐶𝑅𝐹 (𝑡)]𝑇 𝒓𝐺𝐶𝑅𝐹𝐸,𝑝 (86)

𝒗𝐺𝐶𝑅𝐹𝐸,𝑝 = − [
𝐺𝑆𝐸𝑹𝐺𝐶𝑅𝐹 (𝑡)]𝑇 [

𝐺𝑆𝐸
.
𝑹𝐺𝐶𝑅𝐹 (𝑡)

] [
𝐺𝑆𝐸𝑹𝐺𝐶𝑅𝐹 (𝑡)]𝑇 𝒓𝐺𝑆𝐸𝐸,𝑝 + [

𝐺𝑆𝐸𝑹𝐸𝐼 (𝑡)]𝑇 𝒗𝐺𝑆𝐸𝐸,𝑝 (87)

which possesses a similar form as in the Sun-Earth rotating frame but with modifications outlined at the beginning of

this subsection.
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5 Numerically Generating Trajectories
This section summarizes methods used to numerically generate satellite trajectories. In the context of this document,

a trajectory reflects the path a satellite (natural or human-made) follows in space over a specified time interval. The goal

of this section is to present a high-level overview of commonly-used numerical approaches to computing trajectories and

the associated challenges, with a focus on applicability to a satellite that is already in space and located within the lunar

and cislunar regions. Hence, we will not discuss the generation of trajectories from the launch pad to the injection orbit.

5.1 Numerical Integration of the Equations of Motion

A common task in studying the motion of a spacecraft in cislunar space is solving the equations of motion numerically

to closely approximate a true solution. These equations of motion govern the motion of a satellite experiencing an

acceleration 𝒂 that captures the forces acting on it and, potentially, frame transformation terms. To solve the equations

of motion numerically, information about the state, reflected by the position and velocity vectors 𝒓 and 𝒗, at an initial

time 𝑡0 is required, i.e., 𝒓 (𝑡0) = 𝒓0, and 𝒗(𝑡0) = 𝒗0. Then, the goal is to generate a solution to the following system of

first-order differential equations that is associated with the specified set of initial conditions

.
𝒓 (𝑡) = 𝒗(𝑡)
.
𝒗(𝑡) = 𝒂(𝑡, 𝒓, 𝒗)

𝒓 (𝑡0) = 𝒓0, 𝒗(𝑡0) = 𝒗0

(88)

This problem is often labeled an Initial Value Problem (IVP), and the rest of this section focuses on numerical approaches

to solving this problem. This section uses the following notation: given an IVP as in Eq. (88) for a state vector

𝒙(𝑡) = [𝒓 (𝑡), 𝒗(𝑡)]𝑇 , 𝒙𝑘 = 𝒙(𝑡𝑘 ) is the solution of the state vector at time 𝑡𝑘 . With this definition, consider a general

and compact representation of an IVP that is written as follows:

.
𝒙(𝑡) = 𝒇 (𝑡, 𝒙)

𝒙(𝑡0) = 𝒙0

(89)

where 𝒙 ∈ R𝑛, and 𝒇 : R × R𝑛 −→ R𝑛, 𝑛 ≥ 1 is a smooth enough function.

5.1.1 Euler Methods

When the time stepsize ℎ0 ∈ R+ is small enough, .
𝒙 may be approximated (to first order) as:

.
𝒙(𝑡0) ≈ 𝒙(𝑡0 + ℎ0) − 𝒙(𝑡0)

ℎ0
(90)
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Noting that .
𝒙 = 𝒇 (𝑡, 𝒙), defining 𝑡1 = 𝑡0 + ℎ0, and rearranging Eq. (90), the following expression for approximating

𝒙1 = 𝒙(𝑡1) is obtained:

𝒙1 = 𝒙0 + ℎ0 𝒇 (𝑡0, 𝒙0)

Then, at the 𝑘-th step, the following expression is obtained for 𝒙𝑘+1:

𝒙𝑘+1 = 𝒙𝑘 + ℎ𝑘 𝒇 (𝑡𝑘 , 𝒙𝑘 ) (91)

This general expression reveals that the state at a nearby, future time 𝑡𝑘+1 may be approximated by updating the current

state at 𝑡𝑘 using the product of the time step size with the evaluation of the vector field 𝒇 (𝑡𝑘 , 𝒙𝑘 ); this relationship is used

to form a foundational numerical integration scheme for solving an IVP that is labeled the forward Euler method. The

(local) error 𝝐𝑘 (ℎ) = 𝒙𝑘 (𝑡𝑘 ) − 𝒙̃(𝑡𝑘 ), where 𝒙̃(𝑡𝑘 ) is the actual state at time 𝑡𝑘 , is 𝝐𝑘 (ℎ) ∼ O(ℎ2) for this method. This

mathematical expression means that for this particular numerical integration scheme, the error in the state approximation

that it produces is on the order of the time step size squared. In general, if the error is 𝝐𝑘 (ℎ) ∼ O(ℎ𝑝+1), then the

numerical integration method is labeled an order-𝑝 method.

Other numerical integration schemes can be derived by approximating .
𝒙 in a different manner. For instance, an

alternative approximation of the state derivative at a time 𝑡𝑘 is written as:

.
𝒙(𝑡𝑘 ) ≈ 𝒙(𝑡𝑘 ) − 𝒙(𝑡𝑘 − ℎ𝑘 )

ℎ𝑘

and, more generally at the (𝑘 + 1)-th step:

𝒙𝑘+1 = 𝒙𝑘 + ℎ𝑘 𝒇 (𝑡𝑘+1, 𝒙𝑘+1) (92)

Unlike Eq. (91), the unknown state 𝒙𝑘+1 is calculated from the state at 𝑡𝑘 by evaluating the vector field at the future time

𝑡𝑘+1 with 𝒙𝑘+1. Given that 𝒙𝑘+1 is the variable of interest, this method is labeled a backward or implicit Euler method

and is usually solved by iteration.

5.1.2 Nomenclature

These two examples of distinct types of Euler methods support defining important concepts for describing numerical

integration schemes that solve ordinary differential equations in general:

1) The stepsize ℎ𝑘 does not need to be constant at each step. Methods that maintain a constant stepsize are labeled

fixed-stepsize methods, as opposed to variable-stepsize methods.

2) Methods that compute the state 𝒙𝑘+1 at time 𝑡𝑘+1 as a function of only the previous state 𝒙𝑘 are called single-step
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methods, whereas multiple-step methods compute 𝒙𝑘+1 as a function of multiple earlier 𝒙𝑘 , ..., 𝒙𝑘−𝑠 for 𝑠 > 0.

3) In Eq. (91), the unknown state 𝒙𝑘+1 can be solved explicitly, meaning that it does not appear in the right side of

the equation within a term such as 𝒇 (𝒙𝑘+1). Methods with this property are called explicit methods. On the

other hand, as in Eq. (92), the unknown state also appears in 𝒇 (𝒙𝑘+1) on the right hand side. Methods with this

property are labeled implicit methods.

These three properties of numerical integration methods that solve ordinary differential equations supply a useful

categorization scheme: fixed-stepsize vs. variable-stepsize, single-step vs. multiple-step, and explicit vs. implicit. In

the following paragraphs, some of the most popular families of methods are presented.

5.1.3 Runge-Kutta Methods

The numerical integration schemes in the Runge-Kutta family are single-step and variable-stepsize methods that can

be formulated as either explicit or implicit. This section summarizes the main principles of Runge-Kutta methods with a

focus on explicit methods.

The classical explicit Runge-Kutta method computes the state at time 𝑡𝑘+1 = 𝑡𝑘 + ℎ from a state 𝒙𝑘 at time 𝑡𝑘 that is

known to solve the IVP in Eq. (89) using an expression of the form (see [54]):

𝒙𝑘+1 = 𝒙𝑘 + ℎ
𝑠∑︁
𝑖=1

𝑏𝑖𝒌𝑖 = 𝒙𝑘 + ℎΦ(𝑡𝑘 , 𝒙𝑘 ; ℎ) (93)

where the integer 𝑠 ≥ 1 is the number of stages of the method. These stages reflect the number of evaluations of the

vector field 𝒇 across the time interval from 𝑡𝑘 to 𝑡𝑘+1, captured by the vectors 𝒌𝑖 as follows:

𝒌1 = 𝒇 (𝑡𝑘 , 𝒙𝑘 )

𝒌2 = 𝒇 (𝑡𝑘 + 𝛼2ℎ, 𝒙𝑘 + ℎ𝛽21𝒌1)

𝒌3 = 𝒇 (𝑡𝑘 + 𝛼3ℎ, 𝒙𝑘 + ℎ(𝛽31𝒌1 + 𝛽32𝒌2))
...

𝒌𝑠 = 𝒇 (𝑡𝑘 + 𝛼𝑠ℎ, 𝒙𝑘 + ℎ(𝛽𝑠1𝒌1 + · · · + 𝛽𝑠,𝑠−1𝒌𝑠−1))

(94)

In Eqs. (93) and (94), the coefficients 𝑏1, ..., 𝑏𝑠 , 𝛼2, ..., 𝛼𝑠 , 𝛽𝑖 𝑗 , 1 < 𝑖 ≤ 𝑠, 0 < 𝑗 ≤ 𝑠 are real numbers. A convenient
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way to display these coefficients is through the use of a Butcher table:

0

𝛼2 𝛽21 𝛽22

...
... . . .

𝛼𝑠 𝛽𝑠1 𝛽𝑠2 · · · 𝛽𝑠,𝑠−1

𝑏1 𝑏2 · · · 𝑏𝑠−1 𝑏𝑠

Examples on how to determine these parameters for different stages appear in [55–57]; the following paragraphs present

some examples.

As a first example, consider the Butcher table for 𝑠 = 1:

0

1

which produces the forward Euler method because Φ(𝑡𝑘 , 𝒙𝑘 ; ℎ) = 𝑓 (𝑡𝑘 , 𝒙𝑘 ). Hence, the Euler method belongs to the

Runge-Kutta family. Note that there is an important observation about the relationship between the order of the method

(𝑝) and number of stages (𝑠): in general, given an order 𝑝, 𝑠 ≥ 𝑝, and 𝑠 ≥ 𝑝 + 1 if 𝑝 ≥ 5 (see [57]). Accordingly, it is

not possible for a Runge-Kutta implementation to possess an order higher than the number of vector field evaluations.

However, the higher the order, the more expensive the method is in terms of computational time.

An example of a fourth-order Runge-Kutta with four stages is described by the following Butcher table (see [57]):

0

1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

Note that, given a fixed number of stages 𝑠, the coefficients that characterize a Runge-Kutta integrator are not unique.
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Another example of a fourth-order Runge-Kutta with four stages is described by the following Butcher table (see [57]):

0

1
2

1
4

1
2 0 1

2

1 1 −2 2

1
6 0 2

3
1
6

These are two examples of Butcher tables for fourth order Runge-Kutta methods, but of course there are higher order

versions (see, for example, [56]). Typically, for astrodynamics applications, seventh order methods or higher are used if

a Runge-Kutta method is employed.

Based on this foundation in defining Runge-Kutta methods, a natural question is to define which stepsize to use for

every step. The next paragraphs describe the Runge-Kutta-Felhberg method, a member of the Runge-Kutta family that

is very popular in the astrodynamics community in its higher order version due to its adaptive stepsize selection.

The Runge-Kutta-Felhberg method uses two Runge-Kutta instantiations, one of order 𝑝, and another of order 𝑝 + 1.

Together, these integration schemes are summarized as:

𝒙̃𝑘+1 = 𝒙𝑘 + ℎΦ𝑝
1 (𝑡𝑘 , 𝒙𝑘 , ℎ)

𝒙̄𝑘+1 = 𝒙𝑘 + ℎΦ𝑝+1
2 (𝑡𝑘 , 𝒙𝑘 , ℎ)

where Φ𝑝
1 (𝑡𝑘 , 𝒙𝑘 , ℎ) (resp. Φ𝑝+1

2 (𝑡𝑘 , 𝒙𝑘 , ℎ)) corresponds to the 𝑝-order (resp. (𝑝 + 1)-order) Runge-Kutta scheme.

See [57] for a discussion on how the coefficients that characterize Φ𝑝
1 and Φ𝑝+1

2 are selected to ensure that the

evaluations of the vector field needed for Φ𝑝
1 can be reused for Φ𝑝+1

2 . With two approximations of the state that solve

the IVP at 𝑡𝑘 , given by 𝒙𝑝+1
𝑘+1 and 𝒙𝑝𝑘+1, stepsize control is performed using the difference between the two solutions,

𝛿(ℎ) = | |𝒙𝑝+1
𝑘+1 − 𝒙𝑝𝑘+1 | |, and a user-defined tolerance 𝜀 > 0. If 𝛿(ℎ) < 𝜀, then the current stepsize value is used. If on

the other hand, 𝛿(ℎ) ≥ 𝜀, then the stepsize is adjusted via the following formula:

ℎ𝑛𝑒𝑤 = 0.9ℎ
(
𝜀

𝛿(ℎ)

) 1
𝑝+1

(95)

where ℎ𝑛𝑒𝑤 is the updated stepsize, and 0.9 is a safety factor. This formula can also be used to increase the step size

when the error is too small. See [54] for the derivation of Eq. (95).
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5.1.4 Adams-Bashforth-Moulton Methods

This section discusses two families of multi-step methods: the Adams-Bashforth and Adams-Moulton methods. As

discussed in Sec. 5.1, a multi-step method computes the state 𝒙𝑘+𝑠 = 𝒙(𝑡𝑘+𝑠), 𝑠 ≥ 1 of the IVP problem in Eq. (89)

based on 𝑠 previous known states 𝒙𝑘 , 𝒙𝑘+1, ..., 𝒙𝑘+𝑠−1. In this section, assume that all states are equidistant in time, i.e.,

𝑡𝑘−𝑖 − 𝑡𝑘−𝑖−1 = ℎ, 𝑖 = 0, 1, ..., 𝑠 − 1 for a fixed stepsize.

In its general form, a multi-step method predicts the state 𝒙𝑘+𝑠 as follows:

𝒙𝑘+𝑠 = 𝒙𝑘+𝑠−1 + ℎ
𝑠∑︁
𝑖=0

𝛽𝑖 𝒇 (𝑡𝑘+𝑖 , 𝒙𝑘+𝑖) (96)

where

𝛽𝑖 =
∫ 1

0

𝑠∏
𝑗=0, 𝑗≠𝑖

𝑟 − (𝑠 − 𝑗 − 1)
𝑖 − 𝑗

𝑑𝑟 (97)

The formulae for the coefficients 𝛽𝑖 , 𝑖 = 0, 1, ..., 𝑠 in Eq. (97) are based on the Lagrange interpolation formula.

(See [54, 58] for a complete derivation of the method.) Consider the particular case where 𝛽𝑠 = 0 and 𝛽0 ≠ 0. In this

case, the method is explicit, meaning that the unknown 𝒙𝑘+𝑠 does not appear on the right side of Equation (96). This

implementation is known as the Adams-Bashforth method. On the other hand, if 𝛽𝑠 ≠ 0 and 𝛽0 = 0, the method is

implicit, and leads to the Adams-Moulton method. As an example, the 𝛽-coefficients for 𝑠 = 4 are presented in Table 1

(see [58].)

Adams-Bashforth Adams-Moulton
𝛽0

55
24 –

𝛽1 - 59
24

9
24

𝛽2
37
24

19
24

𝛽3 - 9
24 - 5

24
𝛽4 – 1

24
Table 1 𝛽-coefficients for the Adams-Bashforth and Adams-Moulton formulae for 𝑠 = 4

For implicit methods, a natural question is how to solve these expressions given that the unknown cannot be explicity

isolated. Typically these equations are solved by means of an iterative scheme, which at the 𝑗-th update, is expressed as:

𝒙 ( 𝑗+1)
𝑘+𝑠 = 𝒙 ( 𝑗)

𝑘+𝑠−1 + 𝛽𝑠 𝒇 (𝑡
( 𝑗)
𝑘+𝑠 , 𝒙

( 𝑗)
𝑘+𝑠) + ℎ

𝑠−1∑︁
𝑖=0

𝛽𝑖 𝒇 (𝑡𝑘+𝑖 , 𝒙𝑘+𝑖) (98)

for 𝑗=0, 1, 2... There are two notable considerations for implementing the iterative scheme described by this expression:

how to initialize the iteration, and when to stop iterating. The initial guess is required to be good enough to ensure

convergence. This initial guess, or prediction, is formed using the Adams-Bashforth explicit method. With this initial

guess, the implicit Adams-Moulton corrects the prediction by applying the iteration scheme in Eq. (98). The correction
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process terminates when the state difference between two consecutive iterations is below a user-defined threshold, usually

after one or two iterations. Such a scheme is often labeled a predictor-corrector method. Finally, it is worth noting

that the requirement of a fixed step-size can be relaxed. See [58] for an example of a fourth-order predictor-corrector

multistep method with variable step-size derived from the classical Adams-Bashforth and Adams-Moulton formulae.

5.1.5 Other Methods

The numerical integration schemes described in Sec. 5.1.3 and 5.1.4 are amongst the most popular methods used in

astrodynamics. For example, popular tools for mission design such as GMAT, FreeFlyer, and STK offer all or some

of these methods in their standard set of integrators while allowing the user to selected the absolute and/or relative

tolerances that govern variable stepsize schemes. There are, however, other families of methods that are worth briefly

summarizing: the Taylor method, and symplectic integrators.

The Taylor Method

Consider the IVP in Eq. (89) and a solution at time 𝑡𝑘 , 𝒙𝑘 = 𝒙(𝑡𝑘 ). Fixing a stepsize ℎ such that 𝑡𝑘+1 = 𝑡𝑘 + ℎ, the

state 𝒙𝑘+1 = 𝒙(𝑡𝑘+1) = 𝒙(𝑡𝑘 + ℎ) can be approximated by its Taylor series around 𝑡𝑘 as:

𝒙𝑘+1 = 𝒙(𝑡𝑘 + ℎ) = 𝒙(𝑡𝑘 ) + ℎ 𝑑𝒙
𝑑𝑡

����
𝑡=𝑡𝑘

+ ℎ
2

2
𝑑2𝒙

𝑑𝑡2

����
𝑡=𝑡𝑘

+ · · · + ℎ
𝑝

𝑝!
𝑑 𝑝𝒙

𝑑𝑡 𝑝

����
𝑡=𝑡𝑘

where, by definition:
𝑑𝒙

𝑑𝑡

����
𝑡=𝑡𝑘

= 𝒇 (𝑡𝑘 , 𝒙𝑘 )

𝑑2𝒙

𝑑𝑡2

����
𝑡=𝑡𝑘

=
𝜕 𝒇

𝜕𝒙

����
𝑡=𝑡𝑘

𝒇 (𝑡𝑘 , 𝒙𝑘 ) + 𝜕 𝒇

𝜕𝑡

����
𝑡=𝑡𝑘

These definitions can be continued until order 𝑝. Note that to construct high-order Taylor integrators, high-order

derivatives of 𝒇 are required; however, their computation may not be practical. This limitation may be overcome by

using automatic differentiation. Details on how to implement automatic differentiation are out of the scope of this

document, but an introduction and links to a publicly available software package appears in [59]. Although automatic

differentiation mitigates the challenges of calculating higher-order derivatives, only functions that belong to a special

class can benefit from this advantage. Many functions that appear in the mathematical models used in astrodynamics

(e.g., the two-body problem, or the circular restricted three body problem) belong to this class. However, when the

models use, for example, functions reflecting gravitational acceleration or interpolate ephemeris states, using automatic

differentiation in a Taylor method is not useful. This is usually the case for practical mission design.

Symplectic Integrators

Symplectic integrators are a family of methods used exclusively in the context of Hamiltonian dynamical systems.

These dynamical systems are relevant because a lot of the models considered in astrodynamics and celestial mechanics
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(e.g., the 𝑛-body problem, or the circular restricted three body problem) can be formulated under the Hamiltonian

formalism. The detailed description of Hamiltonian systems and their properties is out of the scope of this document.

The interested reader is referred to [60] for a introduction on Hamiltonian systems and their application to celestial

mechanics. However, the main property exploited in the symplectic integrators is the fact that the flow 𝜙 of a Hamiltonian

system preserves the symplectic structure of the phase space (see [60]). In the language of Hamiltonian mechanics, this

means that the flow defines a canonical transformation. In other words: the flow 𝜙 defines a coordinate change that

preserves the Hamiltonian structure. Hence, the idea behind the symplectic integrators is to find a numerical solution to

a Hamiltonian system that is a symplectic transformation for sufficiently small stepsizes.

This type of integrator is used in celestial mechanics for long-term integrations. However, they are limited in

application to Hamiltonian systems. Models used in practical mission design usually consider non-conservative

forces, hence they do not fall under the umbrella of the Hamiltonian systems and symplectic integrators are not useful.

References [61, 62] provide good introduction to this family of integrators.

5.2 Solving Two-Point Boundary Value Problems

A common problem in astrodynamics is solving a Two-Point Boundary Value Problem (TPBVP). Solving a TPBVP

involves calculating a solution to the equations of motion, .
𝒙 = 𝒇 (𝑡, 𝒙), over a time interval [𝑡0, 𝑡 𝑓 ] given a set of

boundary conditions 𝑮 (𝒙0, 𝒙 𝑓 ) = 0 that are a function of information at the beginning and/or end of the time interval

[63]. Such a problem is encountered, for example, in the preliminary design of a spacecraft trajectory from one position

vector to another in cislunar space. While the equations of motion may be known, a trajectory that connects these two

position vectors may not be known. In this example, the goal is to find the initial velocity vector and, potentially the

flight time, that produces a trajectory connecting these two position vectors (if such a trajectory exists). When there are

multiple solutions that satisfy this TPBVP, an analyst may be interested in generating either an array of solutions or

one solution that also minimizes or maximizes a specified objective function. This subsection presents an overview of

shooting methods and collocation, each used to solve a TPBVP. Then, well-known continuation schemes that are used to

generate an array of solutions are presented, followed by a brief overview of constrained optimization.

5.2.1 Shooting Methods

Shooting methods recast the process for solving a TPBVP into an initial value problem by focusing on identifying a

state at the beginning of the time interval that, when propagated using the equations of motion over the time interval of

interest, satisfy the specified boundary conditions [63]. This approach is useful in recovering either natural trajectories or

those that use impulsive or continuous control. There are two fundamental types of shooting methods: single-shooting

and multiple-shooting.

In a single-shooting method, displayed conceptually in Fig. 13 a), a trajectory is represented by a single arc across
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the time interval [𝑡0, 𝑡 𝑓 ] and described by its initial state 𝒙(𝑡0). An initial guess for the initial state 𝒙(𝑡0) might produce

the black arc in Fig. 13 a) over an integration time 𝑡 𝑓 − 𝑡0. However, consider a scenario where a trajectory is sought

that satisfies boundary conditions such as possessing a state at the end of the arc equal to 𝒙𝑑𝑒𝑠 (𝑡 𝑓 ); the trajectory that

satisfies this constraint is displayed in blue. Then, in a single-shooting scheme, the initial state and/or integration time of

the arc are updated from the black initial guess until they produce a trajectory that is sufficiently close to the blue arc.

Multiple-shooting, however, discretizes a trajectory into multiple sequential arcs spanning smaller time intervals

within [𝑡0, 𝑡 𝑓 ] [64]. A conceptual representation of a multiple-shooting approach appears in Fig. 13 b) with an initial

guess for the trajectory comprised of multiple, potentially discontinuous arcs, in black. The 𝑖-th arc along the trajectory

is then described by the initial state 𝒙𝑖,0, the integration time Δ𝑡𝑖 , and/or any other parameters necessary to uniquely

specify the arc. The solution of interest may, however, need to satisfy constraints at the boundaries of the larger time

interval, such as possessing a desired state at the end of the arc equal to 𝒙𝑑𝑒𝑠 (𝑡 𝑓 ). Due to the discretization of the

trajectory, continuity constraints must also be satisfied between neighboring arcs that comprise the larger trajectory. For

a natural trajectory, such a continuity constraints may be described as follows: the state 𝒙𝑖, 𝑓 at the end of the 𝑖-th arc

must equal the state 𝒙𝑖+1,0 at the beginning of the 𝑖 + 1-th arc. This desired solution, satisfying the continuity constraints

and boundary condition, is displayed in blue. In a multiple-shooting scheme, the initial states, integration times, and

any additional parameters describing all of the arcs are simultaneously updated until satisfying all of the boundary,

continuity and additional constraints to within a specified tolerance. The resulting solution then lies sufficiently close to

the desired solution over the interval [𝑡0, 𝑡 𝑓 ]. Although single-shooting usually supports a simpler problem specification

and implementation, multiple-shooting often reduces the sensitivity associated with iteratively adjusting the free variable

vector to produce shorter arcs that together form a trajectory in a complex, nonlinear dynamical system.

One approach to implementing a shooting method to solve a TPBVP involves converting it into a vectorial root-finding

problem through the definition of a free variable vector, 𝑽, and a constraint vector, 𝑭(𝑽) [54]. The (𝑛 × 1)-dimensional

free variable vector reflects the 𝑛 problem variables such as the initial state and integration time and is defined as:

𝑽 = [𝑉1, 𝑉2, . . . , 𝑉𝑛−1, 𝑉𝑛]𝑇 (99)

Fig. 13 Conceptual representation of a) single-shooting and b) multiple-shooting approaches to compute
solutions to a two-point boundary value problem.
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where 𝑉𝑖 is the 𝑖-th free variable in the problem. Next, an (𝑚 × 1)-dimensional constraint vector captures the boundary

conditions and any other constraints that the trajectory must satisfy. The constraint vector, which is a function of the

free variable vector, is defined as:

𝑭(𝑽) = [𝐹1, 𝐹2, . . . , 𝐹𝑚−1, 𝐹𝑚]𝑇 (100)

where 𝐹𝑗 is the 𝑗-th scalar constraint, expressed as a function of the free variables to equal 0 when satisfied. Then,

the goal in a shooting method is to calculate the free variable vector 𝑽𝑑 producing 𝑭(𝑽𝑑) = 0 to within a specified

tolerance. However, in a nonlinear dynamical model, the relationship between the two vectors may be quite complex,

meaning that identifying a solution to such a problem is often nontrivial. Thus, iterative numerical procedures are often

used to gradually adjust a guess for the free variable vector until it sufficiently satisfies the constraints.

In one approach to identifying a solution that satisfies the constraints, the free variable vector is iteratively updated

from an initial guess using a multivariate Newton’s method. Assuming that the initial guess for the free variable vector,

𝑽0, lies sufficiently close to 𝑽𝑑 , a first-order Taylor series expression approximates the relationship between these two

vectors as:

0 ≈ 𝑭(𝑽0) + [𝐷𝑭(𝑽0)] (𝑽𝑑 − 𝑽0) (101)

where [𝐷𝑭(𝑽)] is the (𝑚 × 𝑛) Jacobian matrix composed of the partial derivatives of each constraint with respect to

each free variable [54]:

[𝐷𝑭(𝑽)] = 𝜕𝑭(𝑽)
𝜕𝑽

=



𝜕𝐹1
𝜕𝑉1

. . . 𝜕𝐹1
𝜕𝑉𝑛

... . . .
...

𝜕𝐹𝑚
𝜕𝑉1

. . . 𝜕𝐹𝑚
𝜕𝑉𝑛


(102)

The individual partial derivatives of [𝐷𝑭(𝑽)] may be computed using analytical expressions, finite-difference

approximations or automatic differentiation. This relationship between the initial guess and desired solution to the

TPBVP is generalized to produce an update equation that is used at the 𝑖-th iteration to update the current guess for the

free variable vector with the goal of bringing the guess gradually closer to an unknown solution that is assumed to be

located nearby. If there are more free variables than independent constraints (i.e., 𝑚 < 𝑛), the update equation at the 𝑖-th

iteration is commonly written using a minimum-norm formulation as

𝑽𝑖+1 = 𝑽𝑖 − [𝐷𝑭(𝑽𝑖)]𝑇
(
[𝐷𝑭(𝑽𝑖)] [𝐷𝑭(𝑽𝑖)]𝑇

)−1
𝑭(𝑽𝑖) (103)

If the number of independent constraints equals the number of free variables (i.e. 𝑚 = 𝑛), the update equation at the 𝑖-th

iteration is written in a simpler form

𝑽𝑖+1 = 𝑽𝑖 − [𝐷𝑭(𝑽𝑖)]−1𝑭(𝑽𝑖) (104)
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One of these update equations is then applied to iteratively update the initial guess for the free variable vector until

either | |𝑭(𝑽𝑖) | | = 0 to within a desired tolerance or any additional termination criteria are satisfied.

Implementation Note

Given this formulation of a shooting method to leverage a multi-variate Newton’s method, conditions that are

required for quadratic convergence to a solution include [65]:

1) The initial guess for the free variable vector lies ‘sufficiently’ close to the actual solution, 𝑽𝑑 , that satisfies

the constraints and produces 𝑭(𝑽𝑑) = 0 to within a specified tolerance.

2) The Jacobian matrix of the constraint vector with respect to the free variable vector is always full-rank.

3) The constraint vector is a continuous function of the free variable vector.

As a result, the performance and success of shooting methods in recovering solutions to a TPBVP depends

on the initial guess for the free variable vector and the problem formulation. When designing trajectories that

satisfy a desired set of boundary conditions in cislunar space, constructing an initial guess that lies ‘sufficiently’

close to a true solution that is not known a priori is sometimes a significant challenge. In some cases, it also

challenging to define a suitable problem formulation that does not unnecessarily overconstrain the trajectory.

5.2.2 Collocation

Collocation is another technique for identifying a solution to a TPBVP and relies on translating a TPBVP into a

nonlinear programming (NLP) problem via transcription. To describe the result of the transcription process, consider

the problem of recovering a controlled trajectory that uses a continuous acceleration at all instants of time. Note,

however, similar problems can be constructed to recover natural trajectories or trajectories with impulsive maneuvers.

Collocation then uses polynomial approximations of multiple arcs along a solution that satisfies the equations of

motion as well as the boundary constraints 𝑮 (𝒙0, 𝒙 𝑓 ) = 0 and any additional path equality/inequality constraints. In

this problem, the free variable vector 𝑿 ∈ R𝑁 contains all the states, controls and any other parameters necessary

for fully specifying motion in the dynamical model of interest for a set of 𝑀 instants of time 𝑡𝑖 , 𝑖 = 1, ..., 𝑀 where

𝑡0 ≤ 𝑡1 < 𝑡2 < ... < 𝑡𝑀 = 𝑡 𝑓 . Hence, if we define the states as 𝒙𝑖 = 𝒙(𝑡𝑖) ∈ R𝑛, 𝑖 = 1, ..., 𝑀, the control vectors as

𝒖𝑖 = 𝒖(𝑡𝑖) ∈ R𝑛, 𝑖 = 1, ..., 𝑀, and fix the instants of time at which these states and controls apply, the free variable

vector becomes 𝑿𝑇 =
[
𝒙𝑇0 , ..., 𝒙

𝑇
𝑀 , 𝒖

𝑇
0 , ..., 𝒖

𝑇
𝑀

] ∈ R𝑁 , and 𝑁 = 𝑀 × (𝑚 + 𝑛).
The first step of transcription is to divide a trajectory into phases. Using different phases enables the definition of

different dynamics, state representations, coordinate frames, etc, in each phase. Hence, the use of phases to break down

the trajectory provides a framework for combining problems that span a variety of regimes or descriptions into a single

TPBVP. For example, in the case of a lunar mission, the trajectory could be divided in three phases: launch and early

orbit, transfer trajectory, and lunar insertion. For the sake of providing a brief overview, this section will assume one
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phase, and explain how to rewrite a TPBVP as a NLP problem.

A phase is first discretized into 𝑀 segments, 𝑆1, 𝑆2, ..., 𝑆𝑀 defined as 𝑆𝑖 = [𝑡𝑖−1, 𝑡𝑖], 𝑖 = 1, ..., 𝑀 . The boundaries

of the segments, 𝑡𝑖−1, 𝑡𝑖 , 𝑖 = 1, ..., 𝑀 , are called the nodes. Note that in the case where there is more than one phase, two

adjacent phases share one node. By imposing specific conditions on those nodes, the transition between phases can be

smooth. Next, in each segment 𝑆𝑖 , both the state and the control components are approximated by polynomials of a

pre-defined degree 𝑑. In other words, if 𝜉𝑖 is an arbitrary component of the state or control vector in the segment 𝑆𝑖 , its

polynomial approximation is written as 𝜉𝑖 = 𝑎𝑖0 + 𝑎𝑖1𝑠 + ... + 𝑎𝑖𝑑𝑠𝑑 , 𝑠 ∈ 𝑆𝑖 , 𝑖 = 1, ..., 𝑀. Accordingly, the problem of

calculating time-dependent functions 𝒙 and 𝒖 is reduced to finding the polynomial coefficients that approximate each of

their components. As a result, approximations of 𝒙(𝑡) and 𝒖(𝑡) are fully characterized by a finite number of coefficients.

This means not having to solve for functions that, in general, will not have closed analytical expressions.

The next step in the transcription process is to define the conditions on points in a segment to ensure that the

dynamics are captured. This procedure requires, first, an initial guess of the solution. Consider a collocation problem

that uses 𝑑 = 3, i.e., approximating the components of the state and control vectors with cubic polynomials. For the sake

of simplifying the notation, and without loss of generality, time is normalized to produce boundary conditions such that

𝑡0 = 0, and 𝑡𝑀 = 1, i.e., time along the segment spans the unit interval [0, 1]. From here on, the superscript 𝑖 is dropped

from 𝜉𝑖 for conciseness, and simply represents an arbitrary component of the state or control vector. Then, nodes are

defined along the unit interval 𝑠0 = 0, 𝑠1 = 1 by imposing the following conditions:

𝜉 (0) = 𝑎0 = 𝜉0

𝑑𝜉
𝑑𝑠 |𝑠=0 = 𝑎1 = 𝜉 ′0

𝜉 (1) = 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 = 𝜉1

𝑑𝜉
𝑑𝑠 |𝑠=1 = 𝑎1 + 2𝑎2 + 3𝑎3 = 𝜉 ′1

(105)

where 𝜉0, 𝜉
′
0, 𝜉1, 𝜉

′
1 are specificed, initially, by the initial guess. Note that Eq. (105) defines a system of linear equations

that can be solved to obtain the coefficients 𝑎0, ..., 𝑎3. Hence, 𝜉 is generated via the cubic polynomial that is calculated

based on the values of the points 𝜉0, 𝜉
′
0, 𝜉1, 𝜉

′
1:

𝜉 (𝑠) = 𝑎0 + 𝑎1𝑠 + 𝑎1𝑠
2 + 𝑎𝑑𝑠3, 𝑠 ∈ [0, 1]

This approach is completed for all the components of the state and control vectors, producing the state and control

vectors 𝒙̃(𝑠), 𝒖̃(𝑠), 𝑠 ∈ [0, 1].
The state description enables measurement of how this approximation compares to the actual solution to the

dynamics by incorporating knowledge about how the system evolves with respect to time, i.e., via the equations of
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motion. Consider the state vector and the control vector at 𝑠 1
2
= 1/2, i.e., 𝒙̃(𝑠 1

2
) and 𝒖̃(𝑠 1

2
). The polynomial expression

for the state vector also enables calculation of the approximation of the state derivative: taking the derivative of the

polynomial expression for the state vector with respect to time and evaluating the resulting polynomial description

for the state derivative at 𝑠 1
2
= 1/2 produces 𝒙̃′(𝑠 1

2
). Next, the equations of motion are evaluated using the state

approximation at the center of the segment, producing the vector 𝑓𝜉 for component 𝜉: 𝑓𝜉 = 𝑓 (𝒙̃(𝑠 1
2
), 𝒖̃(𝑠 1

2
)) | 𝜉 . This

quantity is used to define the quantity Δ𝜉 = 𝑓𝜉 − 𝜉 ′( 1
2 ) which estimates the error in capturing the dynamics at the

center of the segment induced through the polynomial approximation. This quantity is often labeled the defect at 𝑠 1
2
.

To produce an approximation of a solution to the equations of motion, collocation requires the constraint that Δ𝜉 = 0.

Note that the previous discussion can be generalized to states and controls approximated using polynomials of odd

degree 𝑑 = 2𝑘 + 1, 𝑘 ∈ N. In that general case, the collocation problem relies on information at 𝑘 instants of time to

calculate the polynomial coefficient and 𝑘 − 1 defect points to apply the defect constraints. Figure 14 provides a visual

representation of the relationship between the estimated component 𝜉 and the dynamical model defined by 𝑓𝜉 .

Fig. 14 Visual representation of the interplay between the estimated components and dynamical model. (Figure
inspired by [70].)

Based on this brief summary in the context of a single phase, an NLP problem may be formally stated. The goal in a

collocation approach to solving a TPBVP is to solve for the free variable vector 𝑿𝑇 =
[
𝒙𝑇0 , ..., 𝒙

𝑇
𝑀 , 𝒖

𝑇
0 , ..., 𝒖

𝑇
𝑀

] ∈ R𝑁

that satisfies the constraints ℎ 𝑗 (𝑿) = Δ𝒙 𝑗
= (Δ𝒙 𝑗 0, ...,Δ𝒙 𝑗 𝑛

) = 0, 𝑗 = 0, ..., 𝑀 along with the boundary conditions

𝑮 (𝒙0, 𝒙 𝑓 ) = 0 and any additional path constraints. This problem is typically solved by iteratively refining an initial

guess until the constraints are met through techniques such as Newton’s method.

5.2.3 Continuation

In some cases, solutions to a TPBVP are not unique and, rather, exist in continuous families. Such a scenario

is commonly encountered when calculating trajectories with various flight times between two position vectors or
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families of fundamental solutions that exist in an autonomous dynamical model. Solutions that exist within continuous

families may be computed efficiently from other known solutions along the same family using numerical continuation

methods. Two continuation schemes that are commonly used in astrodynamics are natural parameter continuation and

pseudo-arclength continuation. These continuation schemes are used in the same fundamental structure: given a known

solution, new solutions are predicted and then corrected via techniques such as shooting methods or collocation to solve

a particular TPBVP while also satisfying the constraints imposed on the difference between the known and new solution.

This procedure is applied repeatedly until a desired number of solutions along the family are calculated, the family is

completely traversed, or some other termination criteria are satisfied. However, the two continuation schemes differ in

their approaches to predicting the description of a new solution that lies near the known solution as well as constraining

some properties of that solution to effectively step along the family.

In natural parameter continuation, a new solution along a family is computed from a single, known solution by

incrementally calculating solutions that possess a desired change in a single parameter [66]. In trajectory design, such

parameters for continuation may be related to state information, time, energy or other characteristics. To summarize this

process consider a value of a selected parameter, 𝑝 𝑗−1, evaluated along at the 𝑗 − 1-th known solution within this family.

At the 𝑗-th step of the continuation process, the goal is to calculate a nearby solution along the family that possesses a

value of that same parameter equal to:

𝑝 𝑗 = 𝑝 𝑗−1 + Δ𝑝 (106)

where 𝑝 𝑗 is the desired value of the parameter evaluated along the new solution and Δ𝑝 is a sufficiently small step along

parameter to ensure convergence of the TPBVP solver to recover a new solution [66]. The desired parameter value is

typically included in the formulation of the TPBVP via the addition of the equality constraint 𝑝 𝑗 − (𝑝 𝑗−1 + Δ𝑝) = 0.

Although this approach is relatively straightforward to implement, natural parameter continuation is known to fail at

turning points in the natural parameter space, i.e., when a solution along the family possessing a parameter of 𝑝 𝑗−1 +Δ𝑝

no longer exists nearby; in this case, a smaller Δ𝑝 or a different natural parameter may be manually selected to continue

along the family. For this reason, a priori knowledge of the solution space of the orbit family is helpful for selection of a

useful natural parameter and step direction.

In pseudo-arclength continuation, the local gradient of the solution curve is used to predict and identify a nearby

member of the family [66]. As a result, this particular continuation method tends to succeed in computing members

along a family that possess turning points along the solution curve in a natural parameter space [67]. At each step of

pseudo-arclength continuation, a small step is taken along the tangent to the solution curve, evaluated at the location

of a known solution, to predict a nearby solution along the family. A corrections scheme, such as a shooting method

or collocation, is then applied to solve the TPBVP using this prediction as an initial guess. However, often during

corrections, a solution is sought that simultaneously satisfies the constraints of the TPBVP as well as an additional
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constraint: the projection of the difference between the known and new solution onto the approximated tangent to the

family is equal to a desired step size. When computing the 𝑗-th member of the family, this scalar constraint is expressed

mathematically as

(𝑽 𝑗 − 𝑽 𝑗−1)𝑇 𝒏 𝑗 − Δ𝑠 = 0 (107)

where 𝑽 𝑗 reflects the variables describing the 𝑗-th solution, 𝑽 𝑗−1 reflects the variables describing the known 𝑗 − 1-th

solution, 𝒏 𝑗 is a unit vector that is tangent to the family at the location of the 𝑗 − 1-th solution and pointed in the

desired direction for continuation, and Δ𝑠 is the stepsize. Of course, an important step in implementing this procedure is

calculating the tangent to the solution curve. In a free variable and constraint formulation of a shooting method or

collocation, this tangent direction may be evaluated using the nullspace of a matrix that reflects the sensitivity of the

constraints to the free variables, e.g., 𝐷𝑭(𝑽 𝑗−1). This process is repeated to compute each new solution along the family.

When using pseudo-arclength continuation, the step size is typically selected to balance taking small enough steps to

ensure new solutions may be corrected to lie within the same family as the known solution with taking large enough

steps to limit the number of continuation steps needed to generate solutions along a family. Advanced implementations

of pseudo-arclength continuation often include an adaptive stepsize, reducing the step size near regions of the family that

are sensitive and increasing the step size in regions where the gradient of the solution curve is sufficiently close to linear.

5.2.4 Optimal Trajectories

In scenarios where multiple solutions to a TPBVP exist, one or more of those solutions may be locally optimal

solutions that minimize or maximize a desired objective. In trajectory design applications, such solutions may minimize

propellant mass usage, minimize the transfer time or, as a result of their trajectory, maximize observation of a specific

region in the configuration space. Although optimal trajectories may be natural or controlled, this overview will focus on

controlled trajectories for the sake of generality. Under this assumption, an optimal control problem may be formulated

using the following definitions [68]: let 𝒙(𝑡) ∈ R𝑛 be a trajectory, 𝒖(𝑡) ∈ R𝑚 a control vector, and 𝒑 ∈ R𝑝 a constant

vector of parameters. The goal in an optimal control problem is to determine a trajectory 𝒙(𝑡) over the time interval

[𝑡0, 𝑡 𝑓 ] as well as the associated control vector 𝒖(𝑡) that minimizes the following objective function

𝐽 = Ψ(𝒙(𝑡0), 𝑡0, 𝒙(𝑡 𝑓 ), 𝑡 𝑓 ; 𝒑) +
∫ 𝑡 𝑓

𝑡0

L(𝒙(𝑡), 𝒖(𝑡), 𝑡; 𝒑)𝑑𝑡 (108)

where Ψ is the cost at the beginning and the end of the time interval, and the integral expression is the cost over the

trajectory characterized by the function L. The solution 𝒙(𝑡) also satisfies the equations of motion:

¤𝒙(𝑡) = 𝑓 (𝒙(𝑡), 𝒖(𝑡), 𝒑) (109)

66



Astrodynamics Convention & Modeling Reference Version 1.1, 12/1/22

while subject to a set of equality and inequality constraints at the boundaries and/or along the path:

𝑮 (𝒙(𝑡), 𝒖(𝑡), 𝒑) = 0 𝑯(𝒙(𝑡), 𝒖(𝑡), 𝒑) ≤ 0 (110)

This problem is often labeled a constrained optimization problem and multiple solutions may potentially exist.

The current state of the art in solving optimal control problems includes approaches that may be divided into

three categories: indirect methods, direct methods, and global optimization methods. Indirect methods are based on

variational techniques to find the necessary conditions (Euler-Lagrange equations and Pontryagin’s maximum principle)

that produce values of 𝒙(𝑡), 𝑡0, 𝒖(𝑡), and 𝑡 𝑓 corresponding to a local minimum. This approach formulates the problem

analytically, and it is typically solved numerically. This approach often requires initial guesses for co-states, which are

non-intuitive parameters to select. On the other hand, direct methods discretize the original problem so it is transcribed

to an NLP problem. Once the problem is formulated as a NLP, it is then solved using optimization techniques. Finally,

global optimization methods are algorithms designed to find global minimum. The survey papers [68–71] discuss each

of these families of methods in detail along with their advantages and disadvantages.
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6 Preliminary Modeling of Cislunar Space and Definitions
Spacecraft operating in cislunar space are significantly influenced by a wide variety of forces, including, but not

limited to: the irregular gravitational fields of the Earth and Moon, the gravitational influence of the Sun and other

celestial bodies throughout the solar system, solar radiation pressure, and relativistic effects. Analyzing the structure of

the cislunar dynamical environment when incorporating all of these force contributions is challenging, numerically

intensive, and limits the discovery of fundamental insights into the solution space. Rather, NASA and the astrodynamics

community often uses an approximate dynamical model labeled the circular restricted three-body problem (CR3BP)

for a preliminary exploration of cislunar space and construction of an initial guess prior to higher-fidelity analyses.

This dynamical model seeds much of the terminology used to describe regions of cislunar space and fundamental

motions. This section presents a brief summary with the goal of supplying a high level understanding of the foundational

theoretical insights derived from this low-fidelity model of cislunar space; references to more detailed discussions are

provided throughout the text for the interested reader.

6.1 Fundamental Assumptions

The circular restricted three-body problem relies on the use of the following fundamental assumptions [72]:

• Only two primary bodies (the Earth and Moon) are modeled as point masses gravitationally interacting with an

object such as a spacecraft or small celestial body. Modeling the motion of the spacecraft under the influence of

only the Earth and Moon contributes to the ‘three-body problem’ component of the CR3BP name. Of course,

this assumption neglects the gravitational influence of the Sun, which may significantly impact the path of the

spacecraft and required maneuvers.

• The spacecraft is assumed to possess a negligible mass relative to the Earth and Moon, contributing the term

‘restricted’ to the CR3BP name. The mass of the Earth is 𝑀̃1 ≈ 5.97 × 1024 kg and the mass of the Moon is

𝑀̃2 ≈ 7.35 × 1022 kg [6]; thus, this assumption is reasonable subject to current spacecraft technology standards.

Due to this assumption, the Earth and Moon are modeled as an isolated two-body problem.

• The Earth and Moon travel on circular orbits around their mutual barycenter, contributing the term ‘circular’ to

the CR3BP name. This assumption is crucial for simplifying visualization and analysis while also removing

an explicit time dependency from the dynamics. Given that the eccentricity of the Moon’s orbit relative to the

Earth is approximately 0.055 [6], this assumption is a reasonable, but not perfect, starting point. In fact, for a

semi-major axis of 384,400 km, the distance of the Moon from the Earth when modeled using an elliptical orbit

in the two-body problem, varies by approximately 42,284 km. Such variance between the actual path of the

Moon and its assumed circular orbit relative to the Earth may impact the identification of some trajectories in a

high-fidelity model with a similar geometry to those that exist in the CR3BP, particularly trajectories with a close

passage of the Moon.
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A medium fidelity dynamical model that incorporates the eccentricity of the Moon’s orbit is the elliptic restricted

three-body problem (ER3BP) [72]. Another medium fidelity dynamical model that incorporates the Sun’s gravity

is the bicircular restricted four-body problem (BC4BP). However, both of these models are time-dependent, which

significantly increases the complexity of analysis. Fortunately, many of the fundamental solutions and insights into the

solution space gained via analysis of the CR3BP offer a sufficient starting point for analysis in higher-fidelity models

of cislunar space either with or without maneuvers. Thus, it is from this approximate model that many fundamental

definitions and concepts emerge, and that astrodynamicists and trajectory designers often begin their design process.

6.2 Nondimensionalization Scheme

In the astrodynamics community, it is common to use nondimensionalized state vectors and system parameters. This

nondimensionalization reduces the potential for poor conditioning between quantities of distinct orders of magnitude as

well as the comparison between systems where the primary bodies have a similar relative mass. The constants used to

normalize length, mass and time quantities are labeled characteristic quantities and are typically designated as follows:

• 𝑙∗: set equal to an assumed constant distance between the Earth and Moon, used to normalize length quantities.

• 𝑚∗: set equal to the sum of the masses of the Earth and Moon, used to normalize mass quantities.

• 𝑡∗: produces a mean motion for the Earth and Moon that is equal to unity and is calculated as:

𝑡∗ =
( (𝑙∗)3

𝐺̃𝑚∗

)1/2

where 𝐺̃ is the universal gravitational constant.

When this normalization is performed, a mass ratio is defined as 𝜇 = 𝑀̃2/(𝑀̃1 + 𝑀̃2) and influences the solution space.

Implementation Note

When studying the solution space derived from the CR3BP or recovering nearby geometrically-similar trajectories

in an ephemeris model, the values of the characteristic quantities may influence the analysis. Accordingly, these

parameters should be reported whenever nondimensionalization influences the analysis, as well as their source.

An example set of values for each of these quantities appears in Table 2. The mass values are calculated using

gravitational parameters in the DE421 SPICE ephemerides and used in GMAT [13, 73]. The length value is

calculated as the average semi-major axis of the Moon’s orbit. Note that in a chaotic dynamical model, reporting

these quantities and state vector components to 15 significant figures is common.
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Parameter Value
𝐺̃𝑀̃1 3.986004415000000 × 105𝑘𝑔

𝐺̃𝑀̃2 4.902800582147800 × 103𝑘𝑔

𝑙∗ 3.84400 × 105𝑘𝑚

𝜇 1.215058535056245 × 10−2

𝑡∗ 3.751902588926273 × 105𝑠

Table 2 Example values of system parameters for the Earth-Moon CR3BP

6.3 Circular Restricted Three-Body Problem Equations of Motion

The equations of motion for a spacecraft the Earth-Moon CR3BP are typically written in nondimensional form in

the rotating frame. Recall that the Earth-Moon rotating frame is commonly defined using the Earth-Moon barycenter as

the origin and with axes constructed such that the Earth and Moon appear fixed when their orbits are modeled as circular

[72]. In nondimensional coordinates and in this rotating frame, the Earth is located at (−𝜇, 0, 0) while the Moon is

located at (1 − 𝜇, 0, 0). A depiction of the rotating frame is displayed in Figure 15 relative to a set of axes ( 𝑿̂𝒀̂ 𝒁̂)
from an inertial frame such as the GCRF. In the Earth-Moon CR3BP, the state vector of a spacecraft is expressed in

nondimensional components defined in the rotating frame as 𝒙 = [𝑥, 𝑦, 𝑧, .𝑥, .𝑦, .𝑧]𝑇 . The nondimensional equations of

Fig. 15 Conceptual representation of the rotating frame commonly used to define a state vector in the CR3BP;
note that the Earth and Moon locations and radii are not drawn to scale for clarity.
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motion for the spacecraft in the rotating frame are:

..
𝑥 = 2 .

𝑦 + 𝑥 − (1 − 𝜇) (𝑥 + 𝜇)
𝑟3

1
− 𝜇(𝑥 − 1 + 𝜇)

𝑟3
2

..
𝑦 = −2 .

𝑥 + 𝑦 − (1 − 𝜇)𝑦
𝑟3

1
− 𝜇𝑦

𝑟3
2

..
𝑧 = − (1 − 𝜇)𝑧

𝑟3
1

− 𝜇𝑧

𝑟3
2

(111)

where 𝑟1 =
√︁
(𝑥 + 𝜇)2 + 𝑦2 + 𝑧2 and 𝑟2 =

√︁
(𝑥 − 1 + 𝜇)2 + 𝑦2 + 𝑧2 are the distances between the spacecraft and the Earth

and Moon, respectively [72]. Detailed derivations of these equations of motion appear throughout the literature: from

Szebehely’s foundational text on the CR3BP [72], to modern textbooks such as those by Vallado [6] and Koon, Lo,

Marsden and Ross [74], to PhD dissertations [75].

6.4 Jacobi Constant

In the CR3BP, there exists a constant of motion commonly labeled the Jacobi constant 𝐶𝐽 , written as a function of

the nondimensional state vector and mass ratio as:

𝐶𝐽 = (𝑥2 + 𝑦2) + 2(1 − 𝜇)
𝑟1

+ 2𝜇
𝑟2

− .
𝑥2 − .

𝑦2 − .
𝑧2 (112)

Detailed derivations of this quantity appear throughout the literature [72, 74]. The Jacobi constant is constant along a

natural trajectory generated in the CR3BP. As a result, this quantity is also valuable in validating numerical integration

in the CR3BP and selecting suitable tolerances. Although this quantity is not constant along a general trajectory in a

higher-fidelity model, it supports preliminary insight into the accessibility of the cislunar environment for a spacecraft at

a given state. For instance, when the Jacobi constant decreases, the spacecraft energy increases and the spacecraft may

potentially travel through a wider region of the phase space.

6.5 Fundamental Solutions

At a single value of the Jacobi constant, a wide variety of fundamental solutions exist in the Earth-Moon CR3BP:

equilibrium points; periodic orbits that exactly repeat after a minimal time labeled the period, 𝑇 , in the rotating frame;

quasi-periodic orbits that correspond to bounded but not periodic motion in the rotating frame; and hyperbolic (i.e.,

stable or unstable) invariant manifolds that capture motion asymptotically approaching or departing an equilibrium

point, periodic or quasi-periodic orbit. Fundamental solutions that exist in the CR3BP are valuable for preliminary

analysis of cislunar space: unlike a general solution to a nonlinear system that can only be analyzed over the time

interval that it is numerically propagated, a fundamental solution supplies insight into the behavior of the trajectory for

all time or, in the case stable or unstable manifolds, as time approaches either positive or negative infinity.
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6.6 Equilibrium Points

In the Earth-Moon CR3BP, there are five equilibrium points that correspond to locations in the rotating frame where

a spacecraft may remain indefinitely with zero velocity [72]. These equilibrium points are displayed and labeled in

Figure 16 and are commonly also known as Lagrange points or libration points. 𝐿1, 𝐿2 and 𝐿3 are denoted collinear

equilibrium points because they lie along the 𝒙̂-axis of the rotating frame. In the Earth-Moon CR3BP, a stability analysis

reveals that the collinear equilibrium points admit stable and unstable modes within the Earth-Moon plane as well as

two sets of oscillatory modes: one within the plane of the primaries and one out of the plane of the primaries [74]. As

a result, the collinear equilibrium points admit both stable and unstable manifolds (corresponding to natural motion

that asymptotically approaches the equilibrium point in forwards and backwards time, respectively) as well as nearby

bounded motions (e.g., periodic and quasi-periodic orbits). 𝐿4 and 𝐿5 are commonly labeled triangular or equilateral

points because they lie at the vertices of equilateral triangles formed with the Earth and Moon. In the Earth-Moon

CR3BP, a stability analysis reveals that the triangular equilibrium points admit only oscillatory modes that indicate the

existence of a wide variety of bounded motions in its vicinity. The five equilibrium points of the CR3BP do not exactly

exist in models of cislunar space that are of a higher fidelity; however, many of the orbits that exist in their vicinity are

approximately retained, either with or without regular maneuvers, and they still influence the characteristics of cislunar

trajectories as well as common terminology.

Fig. 16 Conceptual representation of location and terminology for the five equilibrium points in the CR3BP;
Earth and Moon displayed using 10x scale.

6.7 Regions of Allowable Motion

One useful insight that emerges from the CR3BP is the definition of regions of allowable motion. For a given

Jacobi constant–or, analogously, the spacecraft energy–a spacecraft may only be located in certain regions of the system,

described by the configuration space variables 𝑥, 𝑦, 𝑧 in the rotating frame. The configuration space variables that
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Fig. 17 Sample zero velocity surfaces at a single value of the Jacobi constant.

correspond to the spacecraft possessing a real-valued speed in the CR3BP at a specified value of the Jacobi constant

define ‘regions of allowable motion’. If a given combination of position variables at a specific Jacobi constant only

corresponds to an imaginary-valued speed in the CR3BP, then a spacecraft cannot be located at that position without a

change in energy (e.g., via a propulsion system, solar sail, solar radiation pressure acting on an object with evolving

attitude, etc); the collection of these position vectors defines a ‘forbidden region’. The forbidden and allowable regions

are separated by zero velocity surfaces, i.e., a point along the zero velocity surface possesses a velocity vector equal to

the zero vector, but the acceleration vector may be nonzero [74]. Figure 17 displays in gray an example set of zero

velocity surfaces at a selected value of the Jacobi constant, with the Earth and Moon indicated as blue circles and the

equilibrium points labeled with red diamonds.

The zero velocity surfaces evolve as the Jacobi constant changes [74]. For example, Figure 18 displays the intersection

of the zero velocity surfaces with the 𝑥𝑦-plane (i.e., the orbital plane of the Earth and Moon) to produce zero velocity

curves at selected values of the Jacobi constant. As the spacecraft energy increases–and Jacobi constant decreases–the

forbidden regions (gray) shrink in the plane and the allowable regions (white) become connected. When the Jacobi

constant decreases further, these surfaces exist further away from the plane and allow higher inclination motion. The

spacecraft may not cross the zero velocity surface along a natural trajectory. As a result, the spacecraft can move within

and between connected regions of allowable motion. When two regions are not connected at a specific energy level, the

spacecraft is constrained to remain within the vicinity of one or more primaries or outside the zero velocity surfaces.

6.8 Region Nomenclature

Common terminology for regions of cislunar space is defined graphically in Figure 19 using the zero velocity

surfaces to form the boundaries. For instance, the regions that lie inside the zero velocity curves at low energy levels

are generally labeled the interior regions near the Earth or Moon; similarly, a spacecraft within these regions may
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Fig. 18 Zero velocity curves at decreasing values of the Jacobi constant or increasing spacecraft energy, creating
larger and connected regions of allowable motion within the Earth-Moon plane. Primaries not drawn to scale.

Fig. 19 Terminology for regions within cislunar space, derived from the CR3BP [94].

be referred to as being located in the Earth or Moon vicinity. The exterior region lies outside of the zero velocity

curves. The connections between the interior and exterior regions of allowable motion occur near the equilibrium

points, defining the well-known 𝐿1, 𝐿2 or 𝐿3 ‘gateways’. These gateways enable a spacecraft to transfer between

the vicinity of each of the Earth and Moon and/or the exterior region. At the Jacobi constant of one of the collinear

equilibrium points, the zero velocity surfaces meet at the equilibrium point; below the Jacobi constant evaluated at one

of these three collinear equilibrium points, the spacecraft may pass through the gateway. In addition, the result that

𝐶𝐽 (𝐿1) > 𝐶𝐽 (𝐿2) > 𝐶𝐽 (𝐿3) reveals that as the Jacobi constant is decreased or the spacecraft energy increases, the 𝐿1

gateway opens first, to allow passage between the Earth and Moon vicinities, followed by the 𝐿2 and then 𝐿3 gateway.

Implementation Note

The region terminology is clear to visualize in the Earth-Moon plane at relatively low spacecraft energies.

However, as the spacecraft energy increases and the zero velocity surfaces no longer intersect the Earth-Moon

orbital plane, these distinctions become unclear. As a result, there is not currently a single, established set of

definitions for region nomenclature in cislunar space; rather, such standards are a work in progress within the

astrodynamics and space communities.
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6.9 Periodic Orbit Stability

The stability of a periodic orbit reflects the behavior of nearby trajectories and supplies insight into the existence

of nearby fundamental solutions such as hyperbolic invariant manifolds or invariant tori. Assessing orbital stability

typically relies on the use of a state transition matrix that is evaluated along the periodic orbit and then decomposed into

its eigenvalues and eigenvectors.

When evaluated along a single reference trajectory, the state transition matrix (STM) produces a linear mapping

from a variation in an initial state 𝛿𝒙(𝑡0) to a variation in the state 𝛿𝒙(𝑡) at a later instant of time 𝑡. The state transition

matrix along a trajectory, generated from an initial time, 𝑡0, to a final time, 𝑡, is labeled in this document as [𝚽(𝑡, 𝑡0)].
Thus, 𝛿𝒙(𝑡) = [𝚽(𝑡, 𝑡0)] 𝛿𝒙(𝑡0). The evolution of the state transition matrix along a reference trajectory is governed by

the following matrix differential equation [76]:

[ .
𝚽(𝑡, 𝑡0)

]
= [𝑨(𝑡)] |𝑟𝑒 𝑓 [𝚽(𝑡, 𝑡0)] (113)

where [𝑨(𝑡)] |𝑟𝑒 𝑓 = 𝜕
.
𝒙/𝜕𝒙 |𝑟𝑒 𝑓 is evaluated along the reference trajectory. From this differential equation, the state

transition matrix is generated by simultaneously integrating Eq. (113) along with the 6 first-order differential equations

derived from the second-order equations of motion in Eq. 111 using an augmented state comprised of the state vector

and the state transition matrix unpacked into a vector form. The initial condition of a trajectory is equal to its initial state

while the initial condition for the state transition matrix, [𝚽(𝑡0, 𝑡0)], is the 6 × 6 identity matrix.

The state transition matrix evaluated for one period of a periodic orbit and from a selected initial state, i.e.,

[𝚽(𝑡0 + 𝑇, 𝑡0)], is labeled the monodromy matrix, 𝑀, and is used to assess orbital stability [74]. Following the

application of Floquet theory, the eigenvalues of the monodromy matrix predict the stability of the periodic orbit and the

behavior of motion in its vicinity [74]. Because of the Hamiltonian structure of the CR3BP, several properties of the the

eigenvalues, 𝜆𝑖 for 𝑖 = [1, 6], of the monodromy matrix are known. First, each monodromy matrix produces two trivial

eigenvalues equal to unity [77]. The remaining four nontrivial eigenvalues exist in either a complex-conjugate pair as

𝜆𝑖, 𝑗 = 𝑎 ± 𝑏𝑖 or a real-valued inverse pair as 𝜆𝑖 = 𝑎, 𝜆 𝑗 = 1/𝑎. The form of the eigenvalues in each nontrivial pair

indicates the orbital stability:

• A real eigenvalue with a magnitude of |𝜆𝑖 | < 1 corresponds to the stable mode of a periodic orbit. In the local

vicinity of the periodic orbit, motion exciting only a stable mode asymptotically approaches the periodic orbit.

• A real eigenvalue with magnitude |𝜆 𝑗 | > 1 corresponds to an unstable mode. Motion exciting only this mode

asymptotically departs the periodic orbit.

• Complex conjugate eigenvalue pairs that lie on the unit circle correspond to the oscillatory mode of the periodic

orbit. One type of trajectory that exists in the associated center eigenspace is a quasi-periodic orbit that produces

bounded but non-repeating motion.
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• A spiral mode is indicated by a complex conjugate eigenvalue pair that does not lie on the unit circle. Although

this type of mode is generally less common, it does occur for some periodic orbits in the Earth-Moon system.

6.10 Computing Families of Periodic Orbits

An infinite variety of periodic orbits exist throughout the Earth-Moon system in continuous families; and family

of solutions is essentially a set of solutions with a continuously varying set of properties. A single periodic orbit

may be calculated by solving a boundary value problem using numerical methods such as a shooting scheme. Then,

additional members of the family may be calculated from this first member using continuation methods. This subsection

presents an example procedure for generating periodic orbits along a family in the CR3BP via a shooting method and

pseudo-arclength continuation; both single- and multiple-shooting schemes are summarized here. In each approach, an

initial guess for the periodic orbit is required. This initial guess may be generated via linearization near an equilibrium

point, from a bifurcation that occurs along another periodic orbit family, using a Poincaré map, or via continuation from

another system or dynamical model. This initial guess is corrected until a solution to the boundary value problem is

recovered. Note that there are a variety of alternative formulations for a useful shooting scheme that recovers a periodic

orbit; this subsection simply presents one of the most straightforward formulations. This shooting scheme is then

augmented to implement pseudo-arclength continuation.

Consider one example formulation of a single shooting scheme to compute a periodic orbit in the CR3BP. A

conceptual illustration of the application of single shooting to this problem is included in Figure 20. In this figure, an

initial guess for a periodic orbit is represented as the nonperiodic black arc. This initial guess is defined by an initial

guess for an initial state, 𝒙0, and the orbit period, 𝑇 . In this example, consider the following 7 × 1 free variable vector

that is formulated to contain these quantities as follows:

𝑽 =


𝒙0

𝑇



Fig. 20 Conceptual illustration of single shooting formulation to computing a periodic orbit.
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Because the goal in solving the corrections problem is to recover a trajectory that corresponds to a periodic orbit, the

initial state and the state, 𝒙 𝑓 , generated by propagating forward for 𝑇 along the trajectory must be equal, i.e. 𝒙 𝑓 = 𝒙0;

this constraint is often referred to as a state continuity constraint. The associated constraint vector is written as the

following 6 × 1 vector:

𝑭(𝑽) = [
𝒙 𝑓 − 𝒙0

]

Depending on the formulation of the shooting method, one or more periodic orbit solutions may exist that satisfy the

constraint formulation, to within a specified tolerance. For this example, a Jacobian matrix that captures the partial

derivatives of the constraints with respect to the free variables is equal to

[𝐷𝑭(𝑽)] =
[
𝜕𝒙 𝑓 −𝒙0
𝜕𝒙0

𝜕𝒙 𝑓 −𝒙0
𝜕𝑇

]
=

[
[𝚽(𝑡0 + 𝑇, 𝑡0)] − [𝑰6] .

𝒙 𝑓

]

where [𝚽(𝑡0 + 𝑇, 𝑡0)] is the state transition matrix generated along the trajectory associated with the current guess for

𝒙0 at 𝑡0 and the orbit period. The free variables are iteratively updated using Eq. 103 until the norm of the constraint

vector equals zero to within a selected tolerance. This solution produces a close approximation (to within numerical

integration error and the selected numerical tolerance) of a periodic orbit, represented in Figure 20 as the dashed blue

line. Of course, there are alternative formulations of a single shooting scheme, such as those that use the mirror theorem

or incorporate implicit state constraints such as those due to conservation of the Jacobi constant along a trajectory. Such

schemes may reduce sensitivity during corrections, reduce the required computational load, or limit overconstraining

the problem when additional constraints are desired.

Recall that multiple shooting focuses on calculating the solution to a boundary value problem by dividing a trajectory

into several arcs. Figure 21 illustrates the concept of using multiple shooting to recover a periodic orbit, represented as

the closed blue dashed curve, given a discontinuous initial guess, represented as several black arcs. In multiple shooting,

the discontinuous arcs are simultaneously updated via a multi-variate Newton’s method to recover the continuous

trajectory that is also periodic. In practice, a multiple-shooting scheme often produces a less sensitive corrections

problem, at the expense of a slightly more complex implementation [75]. This characteristic may motivate using a

shooting method to recover complex or long-duration trajectories, or trajectories with varying levels of sensitivity over

time (e.g., a trajectory possessing a close flyby of a gravitational body).

Consider a simple formulation of a multiple shooting scheme to compute a periodic orbit in the CR3BP. In particular,

consider a trajectory discretized into 𝑁 arcs, each with a common integration time of 𝑡int. The 𝑖-th arc is then completely

defined by its initial state, 𝒙0,𝑖 , and 𝑡int. The free variable vector that captures the initial state of all 𝑁 arcs and the
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Fig. 21 Conceptual illustration of multiple shooting to target a periodic orbit.

common integration time is then expressed as:

𝑽 =

[
𝒙𝑇0,1, 𝒙𝑇0,2, . . . , 𝒙𝑇0,𝑁−1, 𝒙𝑇0,𝑁 , 𝑡int

]𝑇

and possesses a dimension of (6𝑁 + 1) × 1. The constraint vector is formulated to enforce full state continuity between

neighboring arcs. Accordingly, for the 𝑖th arc, its final state, 𝒙 𝑓 ,𝑖 , must equal the initial state of the 𝑖 + 1-th arc, 𝒙0,𝑖+1

(or the first arc if 𝑖 = 𝑁). By applying this full state continuity constraint to all neighboring arcs, periodicity is also

enforced. The full constraint vector is then written as

𝑭(𝑽) =
[
𝒙𝑇𝑓 ,1 − 𝒙𝑇0,2, 𝒙𝑇𝑓 ,2 − 𝒙𝑇0,3, . . . , 𝒙𝑇𝑓 ,𝑁−1 − 𝒙𝑇0,𝑁 , 𝒙𝑇𝑓 ,𝑁 − 𝒙𝑇0,1

]𝑇

with a dimension of (6𝑁) × 1. For this definition of the free variable and constraint vectors, the corresponding Jacobian

matrix, [𝐷𝑭(𝑽)], is equal to

[𝐷𝑭(𝑽)] =



[
𝚽(𝑡 𝑓 ,1, 𝑡0,1)

] − [𝑰6] 06 . . . 06 06
.
𝒙 𝑓 ,1

06
[
𝚽(𝑡 𝑓 ,2, 𝑡0,2)

] − [𝑰6] . . . 06 06
.
𝒙 𝑓 ,2

...
...

...
. . .

...
...

...

06 06 06 . . .
[
𝚽(𝑡 𝑓 ,𝑁−1

]
, 𝑡0,𝑁−1) − [𝑰6] .

𝒙 𝑓 ,𝑁−1

− [𝑰6] 06 06 . . . 06
[
𝚽(𝑡 𝑓 ,𝑁 , 𝑡0,𝑁 )

] .
𝒙 𝑓 ,𝑁


where 𝑰6 is the 6 × 6 identity matrix, 𝑡0,𝑖 is the time at the beginning of an arc, and 𝑡 𝑓 ,𝑖 is the time at the end of the arc,

equal to 𝑡 𝑓 ,𝑖 = 𝑡0,𝑖 + 𝑡int. For this example, the [𝐷𝑭(𝑽)] matrix possesses a dimension of (6𝑁) × (6𝑁 + 1). Notably,

this matrix is calculated using the state transition matrix evaluated along each arc, consistent with the STM reflecting the
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sensitivity of a perturbation from a trajectory at the end of the time interval of interest to perturbations in the initial state.

Because the number of free variables is one less than the number of independent constraints, a one-parameter family of

solutions exist. The update equation in Eq. (103) is used to iteratively update the free variables from an initial guess

using Newton’s method until a solution is found that satisfies the constraint vector to within a specified tolerance. Of

course, as with single shooting, multiple shooting may be implemented using a variety of formulations, tailored to the

specific application as well as to limit sensitivity during corrections or overconstrained problem formulation as desired.

Once a single periodic orbit has been calculated, continuation enables other members of the family to be computed

more efficiently. Consider, for example, the use of pseudo-arclength continuation in combination with the previously-

described multiple-shooting scheme. In this case, the free variable vector is unchanged in definition. An initial guess for

this free variable vector is calculated by stepping along the tangent, 𝒏 𝑗 , to the solution curve at a known solution, 𝑽 𝑗 , by

a stepsize Δ𝑠. One approach to calculating this tangent direction is to use a unit vector that lies in the nullspace of the

Jacobian matrix evaluated using the known solution, i.e., [𝐷𝑭(𝑽 𝑗 )]. Given that the Jacobian matrix formulated in the

last paragraph possesses a dimension of (6𝑁) × (6𝑁 + 1), the nullspace is one-dimensional. The direction of the unit

vector that lies in the nullspace is selected according to the desired direction for stepping along the family. Then, the

initial guess for a new periodic orbit along the family is calculated as 𝑽 𝑗+1 = 𝑽 𝑗 + Δ𝑠𝒏 𝑗 . An augmented constraint

vector, denoted 𝑯(𝑽), is constructed by combining the constraints that the desired solution must satisfy, 𝑭(𝑽), with the

pseudo-arclength continuation constraint; this augmented constraint vector is written as [78]

𝑯(𝑽) =


𝑭(𝑽)

(𝑽 𝑗+1 − 𝑽 𝑗 )𝑇 𝒏 𝑗 − Δ𝑠


(114)

The Jacobian matrix composed of the partial derivatives of the augmented constraint vector with respect to the free

variables is then equal to

[𝐷𝑯(𝑽)] =

[𝐷𝑭(𝑽)]

(𝒏 𝑗 )𝑇


(115)

This Jacobian is square and full-rank, indicating that a single solution exists. Accordingly, the update equation of each

iteration of the corrections scheme is described by Eq. (104). The update equation is then applied iteratively with the

goal of recovering a free variable vector, 𝑽, that describes a new orbit in the family that satisfies 𝑯(𝑽) = 0 to within a

desired tolerance. Using this solution, the nullspace of the Jacobian matrix, [𝐷𝑭(𝑽)], is recalculated to generate the

tangent direction to the family at the new solution. This process is repeated to compute additional orbits along the family.
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6.11 Periodic Orbit Families

Families of periodic orbits contribute to an underlying dynamical structure that governs natural transport throughout

the Earth-Moon CR3BP. Although there are an infinite variety of orbit families, consistent with the occurrence of

bifurcations in a chaotic dynamical system, astrodynamicists commonly leverage well-known families during trajectory

design and analysis; these families have been computed, characterized and used extensively in astrodynamics and

celestial mechanics [72, 79–81]. This subsection supplies a brief overview of several well-known families of periodic

orbits, with the caveat that this is not an exhaustive or complete overview. This overview is organized according to a

general classification defined by the associated equilibrium point, region of existence, or generating resonance [79].

Within each subsection, selected members of each family are displayed in the nondimensional configuration space of

the Earth-Moon rotating frame. In these figures, the color of each orbit reflects the orbital stability of the selected

periodic orbit in the rotating frame, thereby indicating the behavior of nearby trajectories: purple periodic orbits admit

only oscillatory modes that indicate the existence of nearby bounded motions such as quasi-periodic orbits; light blue

periodic orbits possess both oscillatory modes as well as stable and unstable modes, indicating the existence of both

nearby bounded motions as well as stable and unstable manifolds; and royal blue periodic orbits admit only stable and

unstable manifolds. Selected states and orbit periods for one member of each family in the Earth-Moon CR3BP appear

in Tables 3-6 to assist the interested reader in calculating these periodic orbit families. Note that this data is truncated for

brevity and is calculated using the system parameters presented in Table 2 with a specific numerical integration scheme.

Thus, corrections will be required to recover a periodic orbit from this information in the reader’s custom codes.
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6.11.1 Common 𝐿1, 𝐿2 and 𝐿3 Periodic Orbit Families

In the vicinity of the two collinear equilibrium points near the Moon, 𝐿1 and 𝐿2, there are several well-known

periodic orbit families; selected families in the Earth-Moon CR3BP are displayed in Figs. 22 and 23, respectively.

The Lyapunov orbit families are composed of orbits that remain within the Earth-Moon plane and emanate from

the equilibrium points, exhibiting clockwise motion about the equilibrium points. Along these families, these orbits

evolve away from the equilibrium points and eventually exhibit close passes to the primaries, i.e., the Earth and Moon.

The vertical orbit families emanate away from the equilibrium point, but out of the Earth-Moon plane. Close to the

equilibrium point, and at low 𝑧-amplitudes in the Earth-Moon rotating frame, these orbits resemble a figure-eight

Fig. 22 Selected well-known periodic orbit families near 𝐿1 in the Earth-Moon CR3BP.
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Fig. 23 Selected well-known periodic orbit families near 𝐿2 in the Earth-Moon CR3BP.

and are symmetric about the Earth-Moon plane. As members along each of the vertical families evolve away from

the equilibrium point, each half of the orbit grows in size to envelope the Earth and eventually meet to produce two

revolutions around a large and near-circular orbit in the Earth-Moon plane. Bifurcations that occur along the Lyapunov

orbit families correspond to an intersection with the three-dimensional halo and axial orbit families. The halo orbit

families each consist of two branches with members that are symmetric about the 𝑥𝑦-plane: a southern branch and a

northern branch. The northern (southern) branch corresponds to orbits for which the maximum extension out of the

Earth-Moon plane occurs for positive (negative) values of 𝑧. As orbits along each branch of the 𝐿1 and 𝐿2 families

evolve away from their bifurcation with the Lyapunov orbit family, they evolve towards the Moon to possess a low

perilune, high eccentricity and high inclination relative to the Earth-Moon plane. Members along the 𝐿1 and 𝐿2 halo
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orbit families that are stable or nearly stable have recently been labeled ‘near-rectilinear halo orbits’ (NRHOs). The axial

orbit families are a closed family that intersect both the Lyapunov orbit families and the vertical orbit families. More

complex periodic orbits also exist in the vicinity of 𝐿1 and 𝐿2 due to the occurrence of bifurcations along the family. A

well-known example includes the 𝐿2 butterfly orbit family, which intersects the 𝐿2 halo orbit family at period-doubling

bifurcations. Members of the 𝐿2 butterfly orbit family possess two branches, a northern and southern branch. Along

each orbit, there are two halves with a high 𝑧-extension on each of the 𝐿1 and 𝐿2 sides of the Moon and a low perilune.

Similar families exist near 𝐿3 as displayed in Fig. 24. Notably, however, motion along the 𝐿3 Lyapunov orbit is

still clockwise around the equilibrium point but the family evolves to possess a close pass to the Earth. Similarly, halo

orbits exist due to a bifurcation along the 𝐿3 Lyapunov orbit family and capture motion throughout a wider region of the

Fig. 24 Selected well-known periodic orbit families near 𝐿3 in the Earth-Moon CR3BP.
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Earth-Moon system than the 𝐿1 and 𝐿2 halo orbits. Stepping along the 𝐿3 southern or northern halo orbit branches and

away from the bifurcation with the 𝐿3 Lyapunov family, members eventually possess a low perigee and high inclination.

6.11.2 Common 𝐿4 and 𝐿5 Periodic Orbit Families

In the Earth-Moon CR3BP, the 𝐿4 and 𝐿5 equilibrium points possess only oscillatory modes, indicating the existence

of two planar periodic orbit families and one three-dimensional periodic orbit family; these families in the Earth-Moon

CR3BP are displayed in Fig. 25. The periodic orbits associated with 𝐿4 may be reflected about the 𝑦-axis to produce

the periodic orbits associated with 𝐿5 . The planar periodic orbits associated with each of 𝐿4 and 𝐿5 are labeled the

Fig. 25 Examples of well-known periodic orbit families near the 𝐿4 and 𝐿5 equilibrium points in the Earth-Moon
CR3BP.
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short period and long period orbits, consistent with the relative periods of the orbits and, therefore, distinctly different

frequencies of each oscillatory mode. Spatial vertical orbits exist near each of 𝐿4 and 𝐿5, with a shape that resembles a

figure-eight. An additional well-known family of spatial periodic orbits are the axial orbits; these orbits exist in a closed

family that possesses a bifurcation with the 𝐿4 and 𝐿5 vertical orbit families and also with the 𝐿1 northern and southern

halo orbits. Unfortunately, some of these periodic orbits do not admit nearby natural trajectories in an ephemeris model

of cislunar space.

6.11.3 Common Moon-Centered Periodic Orbit Families

In the vicinity of the Moon, there are well-known periodic orbit families that are labeled according to the direction

of motion along a range of members; these families in the Earth-Moon CR3BP are displayed in Fig. 26. For instance,

the distant retrograde orbits (DROs) possess planar members that encircle the Moon in a retrograde direction relative to

the Moon, i.e., clockwise when looking down on the Earth-Moon plane from the +𝑧 direction. The DROs evolve away

from near-circular retrograde orbits that exist close to the Moon to grow and eventually exhibit a close pass to the Earth.

A spatial DRO family exists due to a bifurcation along the standard planar DRO family and its members evolve out of

the Earth-Moon plane. Distant prograde orbits (DPOs) are planar members that are named for the direction of motion

along the majority of members as prograde relative to the Moon, i.e., counterclockwise when looking down on the

Fig. 26 Examples of well-known periodic orbit families near the Moon in the Earth-Moon CR3BP.
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Earth-Moon plane from the +𝑧 direction. Some members of these family appear nearly elliptical in the Earth-Moon

rotating frame. As members evolve away from this type of orbit in one direction of the family, the perilune lowers and

apolune increasingly shifts towards 𝐿2, with additional apses occurring along some members. Along the other direction

of the family, the members extend further away from the 𝑥-axis and develop loops that correspond to a temporary change

in the direction of motion relative to the Moon and in the Earth-Moon rotating frame. Finally, the low prograde orbits

correspond to motion that is predominantly prograde relative to the Moon. The orbits evolve away from near-circular

prograde orbits that exist close to the Moon to eventually admit a low perilune and apolune near 𝐿1. Some members of

these families do not admit nearby natural trajectories in an ephemeris model of cislunar space.

6.11.4 Common Resonant Periodic Orbit Families

Resonant orbit families include a periodic orbit that possesses an orbital resonance with the primary system [82].

Along a 𝑝 : 𝑞 resonant orbit, a spacecraft completes 𝑝 revolutions around the Earth in the inertial frame in the same

interval of time that the Moon completes 𝑞 revolutions. Along a resonant orbit family, members evolve away from this

condition to possess periods that are not in an orbital resonance with the Moon and potentially significant changes in

the geometry and/or direction of motion along some segments of the orbit. Interior resonant orbits possess 𝑝 > 𝑞 and

typically revolve predominantly around the Earth. Exterior resonant orbits possess 𝑝 < 𝑞 and typically revolve around

both primaries [82]. Selected members of some planar resonant orbit families appear in Fig. 27. Many resonant orbit

families also admit a bifurcation with spatial periodic orbit families and/or nearby quasi-periodic orbits that may be

useful in trajectory design or mission orbit selection; for instance, the Transiting Exoplanet Survey Satellite (TESS)

and Interstellar Boundary Explorer (IBEX) missions followed bounded motions near 2:1 and 3:1 interior resonances,

respectively [83–85].

6.12 Quasi-Periodic Orbits

A quasi-periodic trajectory exhibits nonperiodic, bounded motion that traces out the surface of an invariant torus

[86, 87]. A torus exists near a periodic orbit with a set of oscillatory modes and the associated trajectory is governed

by a finite number of incommensurate fundamental frequencies. These quasi-periodic orbits exist within continuous

families, inheriting the geometric characteristics of nearby periodic orbits but potentially evolving significantly along the

family. Examples of tori associated with well-known families of quasi-periodic orbits are displayed in Figure 28. On the

left is a torus traced out by a quasi-halo orbit that exists near an 𝐿2 southern halo orbit. On the right is a set of tori that

exist at the same energy level as nearby 𝐿2 Lyapunov and vertical orbits. At this energy level, tori exist in a continuous

set that collapse to each of the nearby periodic orbits at their boundaries. The quasi-periodic orbits tracing these tori are

often labeled Lissajous orbits. Although they are not periodic, their boundedness often renders them suitable candidates

for mission orbit selection. However, the existence of quasi-periodic orbits in multi-dimensional families as well as their
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Fig. 27 Examples of well-known planar periodic orbit families near orbital resonances in the Earth-Moon
CR3BP.

complex description often results in a more complex computation and analysis than periodic orbit families.

Well-known approaches used throughout the astrodynamics community to compute approximations to quasi-periodic

orbits include, but are not limited to:

• Using a Poincaré map: quasi-periodic orbits can be identified from an appropriately-constructed Poincaré map as a

closed curve (or chain of closed curves). In this case, a state that lies on the closed curve may be directly integrated

to generate the associated quasi-periodic orbit [86]. Identifying these closed curves to locate spatial quasi-periodic

orbits can sometimes be challenging, particularly when the map captures higher-dimensional information.

• Using multiple-shooting to compute a trajectory that resembles a quasi-periodic orbit: given an initial guess for a

quasi-periodic orbit, a trajectory that is simply bounded over a suitable time horizon and resembles a quasi-periodic
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Fig. 28 Examples of tori associated with well-known families of quasi-periodic orbits.

orbit is computed using multiple-shooting [88]. This trajectory is continuous over a time interval equal to several

revolutions, but is not necessarily confirmed or constrained to lie along a torus. In some mission design examples

or analyses, such a trajectory may sufficiently approximate a nearby quasi-periodic orbit.

• Directly computing a close approximation to a torus as opposed to a single trajectory along the torus. Such

approaches have been developed by Olikara and Scheeres, Schilder et al., Gómez and Mondelo, Jorba, and

Kolemen et al. [89–92].

• Using reduction to the center manifold of an equilibrium point or periodic orbit, a process that involves a

transformation to a set of canonical coordinates in the vicinity of the reference orbit [93].

• Using a series expansion to approximate a quasi-periodic orbit: analytical expressions developed by Richardson

and Cary are useful for generating approximations to motion in the vicinity of 𝐿1 and 𝐿2 in terms of two frequencies

and may useful for forming an initial guess for a quasi-periodic orbit prior to additional corrections [74].

6.13 Hyperbolic Invariant Manifolds

Hyperbolic invariant manifolds are a set of states within the phase space that remain within that set for all time

when subject to the flow of the dynamical system and either approach or depart a specific fundamental solution [87],

e.g., an equilibrium point, periodic orbit, or quasi-periodic orbit. A stable manifold corresponds to trajectories that

approach the associated fundamental solution as time tends forwards towards infinity. However, an unstable manifold

corresponds to trajectories that approach the associated fundamental solution as time tends backwards towards negative

infinity. Hyperbolic invariant manifolds are associated with fundamental solutions that admit stable and unstable

modes, governing natural transport throughout a system in the CR3BP. For instance, the hyperbolic invariant manifolds

of periodic and quasi-periodic orbits near 𝐿1 and 𝐿2 govern natural transport through the 𝐿1 and 𝐿2 gateways [74].

Figure 29 displays an example of this concept: a trajectory that lies within the stable manifold associated with an 𝐿1

Lyapunov orbit in the six-dimensional phase space passes through the 𝐿1 gateway in forward time, enabling a spacecraft
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Fig. 29 Example of a trajectory inside the stable manifold of an 𝐿1 Lyapunov orbit, passing through the 𝐿1
gateway in forward time [94].

to naturally depart from the vicinity of the Moon and approach the Earth vicinity at that specific Jacobi constant. Thus,

hyperbolic invariant manifolds play an important role in examining natural transport in a multi-body system, as well as

in the design of initial guesses for trajectories that use a low-thrust propulsion system or small impulsive maneuvers.

When a periodic orbit admits stable or unstable modes, an approximation of the stable or unstable manifold is

typically generated using the following procedure [74]:

• Sample a selected number of states along the periodic orbit.

• Calculate the monodromy matrix associated with each state, 𝒙𝑃𝑂, as the STM generated over one orbital period.

• Decompose the monodromy matrix into six eigenvalues and eigenvectors. A stable (or unstable) mode corresponds

to a real-valued eigenvalue with a magnitude less than (or greater than) unity.

• A state 𝒙𝑆/𝑈 that lies in the stable (or unstable) eigenspace of the periodic orbit is calculated by perturbing a state

along the periodic orbit in the direction of the stable (or unstable) eigenvector 𝒗𝑆/𝑈 by a small value 𝑑:

𝒙𝑆/𝑈 = 𝒙𝑃𝑂 + ±𝑑𝒗𝑆/𝑈 (116)

The plus or minus sign indicates that the perturbation may be applied in the +𝒗𝑆/𝑈 or −𝒗𝑆/𝑈 direction to generate

each half-manifold that comprises a global stable or unstable manifold. Often, the eigenvector 𝒗𝑆/𝑈 is normalized

to ensure that the magnitude of the first three elements equals unity, giving the value of 𝑑 physical meaning as the

magnitude of the position components of the perturbation from the state along the periodic orbit.

• Propagate each state 𝒙𝑆/𝑈 that lies in the stable (or unstable) eigenspace of the periodic orbit backward (or forward)

in time using the equations of motion to generate a single trajectory along the global stable (or unstable) manifold.
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Implementation Note

This step 𝑑 must be selected to be sufficiently small to ensure that the linear approximation used to identify the

stable (or unstable) eigenspace is reasonable, but not too small to ensure that a trajectory requires a large time

interval to depart the periodic orbit in backward (or forward time). To justify that a selected value of 𝑑 produces

a state that lies sufficiently close to the stable (or unstable) manifold, common checks include propagating the

state forward (or backward) in time to verify that the associated trajectory approaches the periodic orbit over a

finite time and examining the change in the Jacobi constant across the step into the eigenspace.

6.14 Heteroclinic and Homoclinic Connections

Trajectories that lie along stable and unstable manifolds of either the same or different periodic orbits may intersect;

the result is two types of fundamental natural transfers [74, 87]. A homoclinic connection is a natural trajectory that

lies on both the stable and unstable manifolds associated with the same dynamical structure, e.g., a periodic orbit.

A heteroclinic connection is a natural trajectory that lies on both the stable manifold associated with one dynamical

structure and the unstable manifold associated with a different dynamical structure. These trajectories insert into and

depart the associated periodic orbits after an infinite time when propagating forwards or backwards in time. Although

theoretical, these two types of fundamental transfers are useful for predicting the geometry of natural transfers in

higher-fidelity models and as an initial guess for designing controlled trajectories that require little propellant to depart

from and arrive into specific orbits in a finite duration.

6.15 Correcting a Transfer in the CR3BP

One approach to computing a transfer between two states in the CR3BP with or without maneuvers uses a

multiple-shooting scheme. In a foundational formulation of a multiple-shooting scheme, consider a trajectory that is

discretized into 𝑁 arcs with one impulsive maneuver allowed between the end of the second arc and beginning of the

third arc. The 𝑖-th arc is defined by the initial state, 𝒙0,𝑖 , and integration time 𝑡𝑖 for 𝑖 = [1, 𝑁 − 1]; the 𝑁-th state is the

final state along the trajectory and does not require an integration time. One formulation for a free variable vector that

captures these states and integration times is:

𝑽 =

[
𝒙𝑇0,1, 𝑡1 𝒙𝑇0,2, 𝑡2 . . . , 𝒙𝑇0,𝑁−1, 𝑡𝑁−1 𝒙𝑇0,𝑁

]𝑇

and possesses a dimension of (7𝑁 − 1) × 1. The constraint vector is formulated to enforce full state continuity between

neighboring arcs that are not separated by a maneuver and continuity in position vectors, labeled 𝒓, only between arcs
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that are separated by impulsive maneuver. The full constraint vector is then written as

𝑭(𝑽) =
[
𝒙𝑇𝑓 ,1 − 𝒙𝑇0,2, 𝒓𝑇𝑓 ,2 − 𝒓𝑇0,3, 𝒙𝑇𝑓 ,3 − 𝒙𝑇0,4, . . . , 𝒙𝑇𝑓 ,𝑁−1 − 𝒙𝑇0,𝑁

]𝑇

Additional boundary conditions may be added as needed. Furthermore, the constraint vector may possess slightly

different forms when maneuvers are allowed between distinct combinations of neighboring arcs. Because the number of

free variables is less than the number of independent constraints, infinite solutions may exist. The update equation in

Eq. (103) is used to iteratively update the free variables from an initial guess using Newton’s method until a solution is

found that satisfies the constraint vector to within a specified tolerance.

Implementation Note

One challenge to implementing this approach is selecting the discretization of the trajectory via the number of

arcs and their integration times in a manner that balances: selecting enough arcs to reduce sensitivity during

corrections, not selecting too many arcs to increase the computational load, and the location of initial states along

arcs in the sensitive and complex environment of cislunar space. Another significant challenge is constructing

an initial guess that lies sufficiently close to the desired solution to ensure that corrections are successful.
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7 Higher-Fidelity Modeling of Cislunar Space
Modeling the motion of a spacecraft at a high fidelity involves constructing a dynamical model that approximates

the true environment as closely as possible. This environment is used to form a second-order vector differential equation

that is used to generate the path of a spacecraft via numerical integration. This differential equation typically reflects the

acceleration acting on the spacecraft relative to a selected central body, e.g., the Earth or Moon, in the constructed

dynamical model. This section summarizes the most significant forces that may be modeled and impart an acceleration

on a spacecraft, including: gravity, solar radiation pressure, atmospheric drag, and thrust applied by a propulsion system.

Beyond simply including these forces in a dynamical model, deviations from the true environment still exist due to

uncertainty in the parameters governing each force. Additional accelerations impacting the path of the spacecraft include

random perturbations such as those that might occur due to regular momentum unloads.

7.1 Point Mass Gravitational Interactions

A higher-fidelity model of the dynamical environment governing a spacecraft often incorporates the point mass

gravitational influence of 𝑁 celestial bodies, following paths modeled using their ephemerides. Consider a spacecraft

with a state vector 𝑿 = [𝑋,𝑌, 𝑍, .
𝑋,

.
𝑌,

.
𝑍] expressed in the GCRF, with the time derivatives calculated using an inertial

observer. The acceleration 𝒂𝑝𝑚 acting on the spacecraft and relative to the Earth due to the point mass gravitational

influence of the Earth and 𝑁 − 1 additional celestial bodies is written as:

𝒂𝑝𝑚 =
..
𝑹𝐸,𝑠𝑐 = −𝐺 (𝑀𝐸 + 𝑀𝑠𝑐)

(
𝑹𝐸,𝑠𝑐

𝑅3
𝐸,𝑠𝑐

)
+ 𝐺

𝑁−1∑︁
𝑖=1

𝑀𝑖

(
𝑹𝑠𝑐,𝑖

𝑅3
𝑠𝑐,𝑖

− 𝑹𝐸,𝑖

𝑅3
𝐸,𝑖

)
(117)

where 𝐺 is the universal gravitational constant, 𝑀𝑖 is the mass of the 𝑖-th celestial body, 𝑹𝑖, 𝑗 is the position vector from

the center of body 𝑖 to the center of body 𝑗 and the subscripts ‘sc’ and ‘E’ denote the spacecraft and Earth, respectively.

In reality, there are many celestial objects in the solar system that might influence the path of the spacecraft. However,

some of these objects will impart a negligibly small acceleration on the spacecraft. As a result, the number of celestial

bodies, 𝑁 included in a high-fidelity model is often set as a finite value that is reasonably small, selected to capture

only the celestial bodies that impart a significant acceleration on the spacecraft. In addition, this expression requires

knowledge of the position vectors for each of the 𝑁 celestial bodies. These position vectors are typically accessed using

a specified DE file generated by NASA’s NAIF. Note that in these DE files, the axes of the ICRF or GCRF and the ECI

system are assumed to be aligned.

7.2 Higher-Order Gravitational Models

Celestial bodies typically possess a gravitational model that is distinct from that of a point mass. One approach to

modeling an irregular gravity field is to write the acceleration acting on the spacecraft using a spherical harmonics
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expansion. Then, the acceleration acting on the spacecraft in an inertial frame is written as the vector derivative of a

potential function,𝑈𝑔𝑟𝑎𝑣,𝑖 , such that:

𝒂𝑔𝑟𝑎𝑣,𝑖 = ∇𝑈𝑔𝑟𝑎𝑣,𝑖

where ∇ is a vector derivative with respect to position coordinates, e.g., ∇(.) = (𝜕 (.)/𝜕𝑋) 𝑋̂ + (𝜕 (.)/𝜕𝑌 )𝑌 + (𝜕 (.)/𝜕𝑍) 𝑍̂ .

One form of the potential function for a spacecraft due to the irregular gravity field of celestial body 𝑖 is written as:

𝑈𝑔𝑟𝑎𝑣,𝑖 =
𝐺𝑀𝑖
𝑟

[
1 +

∞∑︁
𝑙=1

𝑙∑︁
𝑚=0

(
𝑅𝑖
𝑅

) 𝑙
𝑃𝑙,𝑚 (sin(𝜙)) (

𝐶𝑙,𝑚 cos(𝑚𝜆) + 𝑆𝑙,𝑚 sin(𝑚𝜆))
]

(118)

where 𝑙 and 𝑚 are integers for the ‘degree’ and ‘order’ of the model, 𝑅𝑖 is the mean radius of body 𝑖, 𝑃𝑙,𝑚 is an associated

Legendre function, 𝜙 and 𝜆 are the planetocentric latitude and longitude of the spacecraft, and 𝐶𝑙,𝑚 and 𝑆𝑙,𝑚 are the

coefficients of the expansion [6]. Analysis of this expression reveals that modeling the higher-order gravitational field

of a central body requires knowledge of its mean radius as well as the expansion coefficients. These coefficients are

typically calculated in the scientific community using data generated from on-orbit gravity field measurements and, as a

result, are only made available to a finite degree and order. This finite degree and order of the gravitational model are

typically specified during modeling, along with the specific data set used to access the coefficients.

7.3 Solar Radiation Pressure

Solar radiation pressure (SRP) is caused by the pressure exerted on the surface of a spacecraft due to the impact of

photons from the Sun. Preliminary analyses often approximate the spacecraft as a sphere, corresponding to a constant

cross-sectional area facing the Sun. In this simplified model of solar radiation pressure and the spacecraft, the expression

for the acceleration acting on a spacecraft due to solar radiation pressure is written as:

𝒂𝑆𝑅𝑃,𝑐 = 𝜈𝑃𝑆𝑅𝑃
𝐶𝑅𝐴𝑹𝑆,𝑠𝑐
𝑀𝑠𝑐𝑅𝑆,𝑠𝑐

(119)

where 𝜈 is an eclipse factor equal to 1 when the spacecraft is located in direct sunlight, 0 if the spacecraft is in shadow

and in the range [0, 1] if the spacecraft is located in penumbra [6, 52]. In addition, 𝑃𝑆𝑅𝑃 is the force per unit area due

to solar radiation pressure at 1 AU, 𝐶𝑅 is the coefficient of reflectivity with values in the range [0, 2] depending on the

surface material, 𝐴 is the cross-sectional area facing the Sun, 𝑹𝑆,𝑠𝑐 is the position vector from the Sun to the spacecraft,

and 𝑀𝑠𝑐 is the mass of the spacecraft.

The acceleration due to solar radiation pressure may be calculated to a higher fidelity by modeling the spacecraft as

a collection of 𝑃 flat plates and with a more complex reflection model. Specifically, the accelerations due to absorption,

specular reflection and diffuse reflection are modeled; for the 𝑖-th flat plate, their relative contributions are defined by

the coefficients 𝜌𝑖𝑎, 𝜌𝑖𝑠 , 𝜌𝑖𝑑 , respectively, which sum to 1. Using these definitions, the cumulative acceleration due to
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solar radiation pressure acting on a spacecraft, modeled as the collection of 𝑝 flat plates, is:

𝒂𝑆𝑅𝑃, 𝑓 𝑝 =
𝑃𝑆𝑅𝑃
𝑀𝑠𝑐

𝑝∑︁
𝑖=1

𝐴𝑖 cos(𝜃𝑖)
[ (

1 − 𝜌𝑖𝑠
) 𝑹𝑆,𝑠𝑐
𝑅𝑆,𝑠𝑐

+ 2

(
𝜌𝑖𝑠 cos(𝜃𝑖) +

𝜌𝑖𝑑
3

)
𝒏̂𝑖

]
𝐻 (𝜃𝑖) (120)

where 𝐴𝑖 is the surface area of the 𝑖-th flat plate, 𝒏̂𝑖 is the unit vector perpendicular to the outward-facing surface or

reflective side of the flat plate, and 𝜃𝑖 is the angle between 𝒏̂𝑖 and 𝑹𝑆,𝑠𝑐 [95, 96]. The binary function 𝐻 (𝜃𝑖) captures

whether the reflective side of the flat plate is facing the Sun, i.e., 𝐻 (𝜃𝑖) = 1 when cos(𝜃𝑖) < 0 and 𝐻 (𝜃𝑖) = 0 otherwise.

Solar sails leverage this force contribution to adjust the path of a spacecraft by using a sail of significant surface area

to increase the value of the cross-sectional area facing the Sun and with a high coefficient of reflectivity. By changing the

attitude of the solar sail, the direction of the acceleration imparted by solar radiation pressure may be used for control.

Implementation Note

Calculating solar radiation pressure to a high level of accuracy is complex for several reasons. First, the eclipse

factor requires the accurate computation of shadow regions, using epoch-dependent calculations from the

location of nearby celestial bodies. In addition, the solar flux, used to calculate the value of 𝑃𝑆𝑅𝑃 , varies in a

manner that is epoch-dependent and difficult to accurately predict. Furthermore, sufficient knowledge of the

attitude and model of the spacecraft are required to accurately calculate the cross-sectional area of the spacecraft

facing the Sun or, similarly, the angle between each component of the spacecraft model and the vector from the

Sun to spacecraft. Finally, the coefficients that govern the reflectivity and/or absorption must be estimated using

information about the surface of the spacecraft, which may change post-launch.

7.4 Atmospheric Drag

Atmospheric drag is the force acting on a spacecraft due to the friction of the gas in the atmosphere with the satellite.

Drag is a non-conservative force that acts opposite to the motion of the spacecraft relative to the atmosphere, and is only

significant when a spacecraft is located within the atmosphere of a central body. The acceleration due to atmospheric

drag acting on the spacecraft may be written as:

𝒂𝑑𝑟𝑎𝑔 = −𝜌𝑉𝑟𝑒𝑙𝐶𝐷𝐴𝑑𝑽𝑟𝑒𝑙2𝑀𝑠𝑐
(121)

where 𝐶𝐷 is the drag coefficient for the spacecraft, 𝑽𝑟𝑒𝑙 is the velocity vector of the spacecraft relative to the atmosphere,

𝐴𝑑 is the cross-sectional area of the spacecraft that is perpendicular to 𝑽𝑟𝑒𝑙 , and 𝜌 is the density of the atmosphere at

the location of the spacecraft [6].
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Implementation Note

Calculating the atmospheric drag acting on a spacecraft to a high accuracy is complex for several reasons. First,

the coefficient of drag for a spacecraft must be estimated. Second, the cross-sectional area of the spacecraft must

be calculated using information about the attitude and shape model of the spacecraft. In addition, calculating

the velocity of the spacecraft relative to the atmosphere depends on atmospheric and wind models. Finally, the

time-dependent density of the atmosphere depends on the altitude of the spacecraft, temperature, temporal and

spatial variations in the atmosphere, solar variations, winds, tides, and magnetic fields [6].

7.5 Propulsion Systems

Thrusters are used to adjust a spacecraft trajectory with two types often modeled: impulsive and finite-duration

thrust. Impulsive maneuvers supply a high thrust over a negligibly small time interval. Impulsive maneuvers are often

approximated to first order as instantaneous changes of velocity whereas short, finite burns model the maneuver in

higher-fidelity analyses. Finite-duration thrust maneuvers, however, supply thrust over a finite and non-negligible

duration. Through each of these maneuvers, the mass of the spacecraft decrements with propellant use. One approach

to modeling both the acceleration and the mass flow rate involves modeling each of the thrust and specific impulse, i.e.,

𝐼𝑠𝑝 , as polynomials that depend on the thruster pressure and temperature [13]. The thrust magnitude equals:

𝐹𝑇 = 𝐶1 + 𝐶2𝑃 +
(
𝐶3 + 𝐶4𝑃 + 𝐶5𝑃

2 + 𝐶6𝑃
𝐶7 + 𝐶8𝑃

𝐶9 + 𝐶10𝑃
𝐶11 + 𝐶12𝐶

𝐶14𝑃
13

) (
𝑇

𝑇𝑟𝑒 𝑓

)1+𝐶15+𝐶16𝑃

(122)

where 𝑇 is the temperature in Celsius, 𝑇𝑟𝑒 𝑓 is a reference temperature in Celsius, 𝑃 is the pressure in kPa, and 𝐶𝑖 are

coefficients associated with specific engine models. The specific impulse, calculated in seconds, is equal to:

𝐼𝑠𝑝 = 𝐾1 + 𝐾2𝑃 +
(
𝐾3 + 𝐾4𝑃 + 𝐾5𝑃

2 + 𝐾6𝑃
𝐾7 + 𝐾8𝑃

𝐾9 + 𝐾10𝑃
𝐾11 + 𝐾12𝐾

𝐾14𝑃
13

) (
𝑇

𝑇𝑟𝑒 𝑓

)1+𝐾15+𝐾16𝑃

(123)

where 𝐾𝑖 are coefficients associated with specific engine models. Using these quantities, the mass flow rate in kg/s is:

.
𝑚 = 𝑓𝑑

𝐹𝑇
𝐼𝑠𝑝𝑔

(124)

where 𝑓𝑑 is the duty cycle factor, the fraction of the maneuver time that thrusters are activated, and 𝑔 is the gravitational

acceleration on the Earth’s surface, 9.81𝑚/𝑠2. The acceleration imparted by the propulsion system equals:

𝒂𝑡ℎ𝑟𝑢𝑠𝑡 =
𝑓𝑠 𝑓𝑑𝐹𝑇
𝑀𝑠𝑐

𝒖̂ (125)

where 𝑓𝑠 is the thrust scale factor and 𝒖̂ is the thrust direction in the coordinate frame of interest.
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7.6 Relative Contributions of Each Force

When modeling the motion of a spacecraft in cislunar space, the analyst must construct a dynamical model of

desired fidelity, dependent on the application or task. For instance, during trajectory design, the analyst might first select

candidate mission orbits or construct an initial guess for a trajectory in a low-fidelity model to facilitate rapid analysis

and then use a high-fidelity model to accurately compute a trajectory and maneuvers. To construct a suitable dynamical

model, it is helpful to first assess the relative contributions of the most significant forces acting on a spacecraft located

within cislunar space. To reduce the complexity of this analysis, this section presents a preliminary and limited visual

assessment of the magnitudes of the acceleration due to each of: the combined point mass gravity of the Earth and

Moon, higher-order gravitational models of the Earth and Moon, the point mass gravity of the Sun, and SRP. Throughout

this section, the magnitude of the acceleration due to the each of the selected forces is calculated using GMAT for a

variety of position vectors, defined relative to the Earth-Moon barycenter in the Earth-Moon rotating frame, at a single

epoch of January 1st, 2025 00:00:00.000 UTC [13]. The components of these position vectors are defined within the

following ranges:

𝑥 ∈ [−4.5 × 105, 5.5 × 105] km = [−1.179, 1.441] nondim.

𝑦 ∈ [−5 × 105, 5 × 105] km = [−1.310, 1.310] nondim.

𝑧 ∈ [−5 × 105, 5 × 105] km = [−1.310, 1.310] nondim.

Absolute or relative magnitudes of the acceleration vectors at these position vectors are then visualized using a blue to

yellow color scale on a two-dimensional contour plot. For each plot, position vector components within the Earth-Moon

plane are represented on the vertical and horizontal axes and nondimensionalized by the instantaneous separation

between the Earth and Moon at the specified epoch, i.e., in a pulsating Earth-Moon rotating frame where the locations

of the Earth and Moon are fixed.

7.6.1 Earth-Moon Point Mass Gravitational Interactions

First, consider the acceleration of a spacecraft due to the combined point mass gravity of the Earth and the Moon for

an Earth-centered model and a Moon-centered model, i.e., when the acceleration is expressed relative to either celestial

body. Recall that the inertial acceleration of a spacecraft due to the point mass gravitational influence of the Earth and

Moon relative to the Earth is:

𝒂𝑝𝑚,𝐸 =
..
𝑹𝐸,𝑠𝑐 = −𝐺 (𝑀𝐸 + 𝑀𝑠𝑐)

(
𝑹𝐸,𝑠𝑐

𝑅3
𝐸,𝑠𝑐

)
+ 𝐺𝑀𝑀

(
𝑹𝑠𝑐,𝑀

𝑅3
𝑠𝑐,𝑀

− 𝑹𝐸,𝑀

𝑅3
𝐸,𝑀

)
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For a Moon-centered model, the inertial acceleration of a spacecraft due to the point mass gravitational influence of the

Earth and Moon is:

𝒂𝑝𝑚,𝑀 =
..
𝑹𝑀,𝑠𝑐 = −𝐺 (𝑀𝑀 + 𝑀𝑠𝑐)

(
𝑹𝑀,𝑠𝑐

𝑅3
𝑀,𝑠𝑐

)
+ 𝐺𝑀𝐸

(
𝑹𝑠𝑐,𝐸

𝑅3
𝑠𝑐,𝐸

− 𝑹𝑀,𝐸

𝑅3
𝑀,𝐸

)

Each of these equations is evaluated for various position vectors that are defined in the Earth-Moon rotating frame

with 𝑧 = 0, using DE421 ephemerides to calculate the distance between the Earth and Moon on January 1st, 2025

00:00:00.000 UTC. The magnitudes of 𝒂𝑝𝑚,𝐸 and 𝒂𝑝𝑚,𝑀 are then plotted in Figure 30a) and b), respectively. In each

plot, contours of the magnitude of the acceleration are represented using a logarithmic scale. The Earth and Moon are

indicated using black markers and the equilibrium points are plotted as red markers. The relative acceleration due to

the point mass gravitational interactions of both the Earth and Moon is symmetric about 𝒙̂, regardless of whether it is

measured from the Earth or Moon. However, differences in the acceleration magnitudes are most apparent near the 𝐿1

and 𝐿2 gateways.

Fig. 30 Magnitude of the point mass gravitational acceleration of the Earth and Moon, measured relative to
either the Earth or the Moon.

7.6.2 Higher-Order Gravitational Models

Some astrodynamics packages support modeling a higher-order gravitational model of only the central body, e.g.,

integrating the state of a spacecraft with respect to the Earth using a higher-order gravitational model of the Earth and

a point mass model of the Moon. In this case, for the analysis of a trajectory that travels between the vicinity of the

Earth and Moon, it may be desirable to switch the central body for numerical integration, and thus, the higher-order

gravitational model, for different regions of the trajectory. Thus, the analyst may need to determine when to perform this

switch. Alternatively, the analyst may simply wish to define a model of sufficient fidelity when generating an entire

trajectory. To support such an analysis, this subsection examines the contribution of higher-order gravitational models
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of the Earth and Moon to the acceleration of a spacecraft in the Earth-Moon system.

The acceleration of a spacecraft due to higher-order gravitational models of the Earth and Moon are evaluated as

percentages of the combined point mass gravitational influence of the Earth and Moon. These percentages, labeled 𝛿𝐸

and 𝛿𝑀 for a higher-order gravitational model of the Earth and Moon, respectively, are defined as:

𝛿𝐸 =
| |𝒂𝑔𝑟𝑎𝑣,𝐸 − 𝒂𝑝𝑚,𝐸 | |

| |𝒂𝑝𝑚,𝐸 | | × 100%

𝛿𝑀 =
| |𝒂𝑔𝑟𝑎𝑣,𝑀 − 𝒂𝑝𝑚,𝑀 | |

| |𝒂𝑝𝑚,𝑀 | | × 100%

where 𝒂𝑔𝑟𝑎𝑣,𝑖 is the acceleration of a spacecraft due to a higher-order gravitational model of the central body and point

mass model of the second body. Acceleration data is generated in GMAT for an Earth-centered model with a 36 × 36

gravity field model of the Earth and for a Moon-centered model with a 100× 100 gravity field model of the Moon. These

acceleration vectors are calculated for a variety of position vectors in each of the 𝑥𝑦 and 𝑥𝑧 planes of the Earth-Moon

rotating frame using DE421 ephemerides [13]. Using this approach, the relative contribution of the higher-order

gravitational model of the Earth, 𝛿𝐸 , is plotted in Figure 31 using a logarithmic scale, including views of along each of

the 𝑥𝑦 and 𝑥𝑧 planes of a pulsating Earth-Moon rotating frame. Next, the contribution of the higher-order gravitational

model of the Moon, 𝛿𝑀 , is plotted in Figure 32 using a coloring scheme consistent with Figure 31. Examination of

these plots reveals that the acceleration due to higher-order gravitational models of the central body is generally much

smaller than the acceleration due to the combined point mass gravity of the Earth and Moon. In general, the percentage

of the magnitude of the higher-order gravitational models of the central body is greatest at small separations from the

central body, and is smallest at small separations from the secondary body.

Fig. 31 Magnitude of the change in the acceleration, measured relative to the Earth, due to the higher-order
gravity field of the Earth as a percentage of the combined point mass gravitational acceleration of the Earth and
Moon.
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Fig. 32 Magnitude of the change in the acceleration, measured relative to the Moon, due to the higher-order
gravity field of the Moon as a percentage of the combined point mass gravitational acceleration of the Earth and
Moon.

To assess regions where the relative contribution of the higher-order gravitational model of the Earth is greater than

the higher-order gravitational model of the Moon, and vice versa, the ratio of the two percentages are evaluated. This

ratio is defined as 𝛿𝐸/𝛿𝑀 and is plotted using a logarithmic scale in Fig. 33, including views of the 𝑥𝑦 and 𝑥𝑧 planes of

the pulsating Earth-Moon rotating frame. Note, however, that these two relative acceleration contributions are measured

from distinct bodies. In Fig. 33, a contour line of 2 indicates where 𝛿𝐸 is 100 times greater than 𝛿𝑀 . Conversely, a

contour line of -2 indicates where 𝛿𝑀 is 100 times greater than 𝛿𝐸 whereas the contour at zero indicates where 𝛿𝐸 = 𝛿𝑀 .

These contour lines may support decision making related to determining when to model the Earth or Moon as the central

body with a higher-order gravitational model in different regions of the Earth-Moon system. For the explored epoch

and subset of the solution space, the region where the relative contribution of the higher-order gravitational model of

Fig. 33 Ratio of the magnitudes of the acceleration changes due to the higher-order gravity field of the Earth
and Moon.
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the Moon is greater than the higher-order gravitational model of the Earth, i.e., 𝛿𝑀 > 𝛿𝐸 , encompasses the Moon

asymmetrically and extends further from the Moon on the opposite side to the Earth, slightly beyond 𝐿2.

7.6.3 Point Mass Gravitational Influence of the Sun

The magnitude of the acceleration of a spacecraft relative to the Earth or Moon due to the point mass gravity of the

Sun depends on the specific central body due to the indirect gravitational interactions of the Sun, Earth, and Moon [6].

For an Earth-centered model, the contribution to the acceleration of a spacecraft due to the point mass gravity of the

Sun is equal to

𝒂𝑎𝑑𝑑,𝑆,𝐸 = 𝐺𝑀𝑆

(
𝑹𝑠𝑐,𝑆

𝑅3
𝑠𝑐,𝑆

− 𝑹𝐸,𝑆

𝑅3
𝐸,𝑆

)

The magnitude of this acceleration across the Earth-Moon system is plotted in Fig. 34, including views of both the 𝑥𝑦

and 𝑥𝑧 planes of the Earth-Moon rotating frame. For a Moon-centered model, the contribution to the acceleration of a

spacecraft due to the point mass gravity of the Sun is equal to

𝒂𝑎𝑑𝑑,𝑆,𝑀 = 𝐺𝑀𝑆

(
𝑹𝑠𝑐,𝑆

𝑅3
𝑠𝑐,𝑆

− 𝑹𝑀,𝑆

𝑅3
𝑀,𝑆

)

The magnitude of this acceleration is plotted in Figure 35 using a color scale consistent with Fig. 34. On the selected

epoch of January 1st, 2025 00:00:00.000 UTC, the Sun is located approximately -13.904 degrees from the 𝑥-axis,

measured counterclockwise, and 4.9442 degrees above the 𝑥𝑦-plane. As depicted in Figs. 34 and 35, the magnitude of

the acceleration due to the point mass gravity of the Sun is similar for similar deviations from each central body in the

two models. As expected, the contribution of the point mass gravity of the Sun is smallest close to the central body and

greater at larger distances from the central body. Accordingly, increased sensitivity may be observed during numerical

corrections of continuous trajectories in an ephemeris model at greater distances from the central body when using an

initial guess generated without considering the gravitational influence of the Sun.

Fig. 34 Magnitude of the point mass gravity of the Sun in the Earth-Moon system for an Earth-centered model.
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Fig. 35 Magnitude of the point mass gravity of the Sun in the Earth-Moon system for a Moon-centered model.

7.6.4 Solar Radiation Pressure

The acceleration of a spacecraft due to an approximate cannonball model of SRP is independent of the central

body of numerical integration [13]. The presented analysis considers a 500 kg spacecraft with an effective surface

area of 10 m2 and coefficient of reflectivity of 1.8. Eclipse modeling of the Earth and Moon is performed in GMAT

using a dual cone approximation [97]. The magnitude of the acceleration of the spacecraft with the defined properties

due to SRP is plotted in Fig. 36. Compared to the other higher-fidelity model accelerations, the acceleration due to

SRP varies less within the vicinity of the Earth-Moon system, of course, with the exception of within the shadows of

the Earth and Moon. However, this acceleration is generally on the order of 10−4: orders of magnitude less than the

gravitational influence of the Sun beyond the close vicinity of each central body, but on a similar order of magnitude at

small distances from either the Earth or Moon. This value is also orders of magnitude lower than the acceleration due to

the point mass gravitational interactions of the Earth and Moon beyond the vicinity of each central body.

Fig. 36 Magnitude of the acceleration due to SRP in the Earth-Moon system.
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7.6.5 Summary

To compare the relative contribution of each investigation higher-fidelity model force in more detail, the magnitude

of the acceleration of a spacecraft due to each force is sampled at various locations within the Earth-Moon system.

Table 7 lists the magnitude of the acceleration of a spacecraft due to each of the explored higher-fidelity model forces,

indicating the central body of the dynamical model. Solar radiation pressure is modeled using the same spacecraft

parameters listed in Section 7.6.4. Each sample is taken along the 𝒙̂ axis, with the exception of 𝐿4 and 𝐿5, which possess

nonzero values of 𝑦 in the Earth-Moon rotating frame. Also illustrated in Table 7 are the approximate locations, to scale,

of the sample points within the Earth-Moon system; however, the sizes of the Earth and Moon and the relative distances

are not drawn to scale. This figure uses the following abbreviations: low Earth orbit (LEO), geostationary Earth orbit

(GEO), low lunar orbit (LLO), elliptical lunar orbit (ELO).
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7.7 Useful Heuristics for Defining High-Fidelity Dynamical Models

Building upon the analysis performed within this chapter, Table 8 lists heuristics for defining high-fidelity dynamical

models for a spacecraft at various locations within cislunar space.

Table 8 Recommended gravity fields for various orbit regimes.

Orbit Regime Center Radius 𝑟 (km) Earth gravity
field

Moon gravity
field

Other bodies’
gravity fields

Earth LEO Earth 𝑟 / 8, 371 ≥ 36×36 point mass point mass
Earth GEO Earth 8, 371 / 𝑟 / 42, 162 ≥ 21×21 point mass point mass
Cislunar Earth 42, 162 / 𝑟 / 323, 000 8×8 to 21×21 point mass point mass
Lunar (EML1) Moon 2, 231 / 𝑟 / 61, 350 8×8 point mass point mass
Lunar (low orbit) Moon 𝑟 / 2, 231 8×8 ≥100×100 point mass
Translunar (EML2) Moon 2, 231 / 𝑟 / 61, 350 8×8 point mass point mass
Lunar (elliptical) Moon 𝑟 / 10, 000 8×8 ≥100×100 point mass
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8 Use Case and Practical Considerations
This section demonstrates the practical implementation of some of the outlined coordinate systems, transformations,

time descriptions, numerical methods and modeling approaches in the context of a cislunar mission concept to reach a

libration point orbit. This use case is modeled after a mission concept that involves a spacecraft operating as a lunar

communications relay; such a concept has previously been explored from a mission design perspective by NASA GSFC.

This section specifically focuses on the following aspects of this use case:

• Establishing the scenario and presenting sample mission requirements that govern trajectory and maneuver design.

• Designing a mission orbit near a libration point in cislunar space subject to hardware and mission requirements:

from preliminary analysis in a low-fidelity model to higher-fidelity analysis in NASA GSFC’s GMAT software.

• Designing straightforward transfer options from a low Earth orbit to the selected mission orbit using NASA

GSFC’s GMAT.

• Designing maneuvers to maintain the path in the vicinity of the selected mission orbit.

In the current version of this document, these aspects of the use case are discussed and solved using approaches that

are designed to be implemented by a non-expert; more complex strategies or advanced analyses will be added as

supplements in future versions.

8.1 Scenario Overview

Consider a concept involving a lunar relay communications spacecraft, used to support surface operations near the

lunar south pole. In this scenario, the spacecraft is assumed to possess an initial wet mass of 500 kg to accommodate a

substantial propellant mass and communications instrumentation. The presumed requirements for a mission orbit for

this communications relay include:

• Maintaining constant communications with Earth ground stations.

• Ensuring coverage and visibility to a lunar south pole station for at least 50% of the orbit period. Coverage is

defined to occur at an elevation angle above 10 deg as measured from the local horizon on the lunar surface to

account for crater and other line of sight obstructions.

• Remaining within a range of less than 100,000 km from the lunar south pole station. Such a limitation may be

imposed based on both relay spacecraft and lunar base communication systems performance.

• Station-keeping and insertion maneuvers must not exceed a total of 100 m/s and 1 km/s, respectively. These values

are derived from previous analyses by NASA GSFC for missions to Earth-Moon 𝐿1 and the THEMIS/ARTEMIS

missions. This constraint is also connected with the propulsion system selection, stationkeeping method, and

mission lifetime.
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8.2 Constructing a Reference Mission Orbit

The first analysis in this use case involves selecting a reference mission orbit that satisfies relevant mission

requirements. Due to the complexity and sensitivity of the cislunar dynamical environment, the astrodynamics and

trajectory design communities often use a rapid and informed procedure that is based on dynamical systems techniques.

This approach relies on: an initial analysis of fundamental solutions in the Earth-Moon Circular Restricted Three-Body

Problem (CR3BP) or other low to medium-fidelity models, identification of candidate fundamental solutions for further

analysis, identification of nearby continuous paths that resemble the candidate orbit/s in an ephemeris model of sufficient

fidelity, evaluation of more complex and epoch-dependent constraints, and identification of a reference mission orbit.

8.2.1 Rapid Preliminary Analysis in a Low-Fidelity Model

The first step in reference mission orbit design involves examining fundamental solutions in a region of interest in

cislunar space for their potential to satisfy high-level geometric requirements. First, a region of interest must be selected.

To ensure constant communication with the Earth and to reduce the distance between the Earth and spacecraft for

communications, the Earth-Moon 𝐿1 region is examined; note that some motions near 𝐿2 may satisfy the requirements

listed in Sec. 8.1, but these orbits exist farther from the Earth than those near 𝐿1 and may influence communications.

In the vicinity of Earth-Moon 𝐿1, there are a wide variety of bounded motions. To simplify the analysis, it is

common to begin by focusing on well-known periodic orbits. Four well-known periodic orbit families from the CR3BP

and near Earth-Moon 𝐿1 are analyzed in this example: the Lyapunov, vertical, southern halo, and axial orbits. Selected

periodic orbits along each of these families are depicted in Fig. 22 in Sec. 6.11. Note that the northern branch of the

𝐿1 halo orbit family is not examined due to the location of apolune above the lunar equatorial plane, meaning that a

spacecraft following a path that resembles an 𝐿1 northern halo orbit in a higher-fidelity model of the Earth-Moon system

would spend the majority of each orbit period located above the equatorial plane.
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Implementation Notes: Computing Periodic Orbit Families in the CR3BP

These four periodic orbit families have been computed by first using a corrections algorithm to correct an

initial guess in the Earth-Moon CR3BP and in the Earth-Moon rotating frame. These initial guesses, in

the form of a state and orbit period, have been identified via linearization of the local neighborhood of an

equilibrium point and examining bifurcations along known periodic orbit families. They are then corrected

using multiple-shooting in custom codes. Each trajectory is numerically generated using an explicit embedded

Runge-Kutta Prince-Dormand (8, 9) method, accessed via C++ using the GNU Scientific Library, for numerical

integration with absolute and relative state tolerances of 10−13 and 10−14, respectively. Future versions of this

document will explain and demonstrate options for selecting numerical integration schemes and tolerances.

Following corrections, states and periods that produce a periodic orbit, to within a tolerance of 10−12 are

recovered. For the reader recreating this example, states and orbit periods for one member along each family

appear in Table 3 in Sec. 6.11. Given one corrected periodic orbit, pseudo-arclength continuation is used to

generate additional members of a family, as outlined in Section 6.10. Of course, if this process is employed

regularly, specialized design tools and databases are useful to reduce the time required to access members

of common families. For example, NASA GSFC’s Navigation and Mission Design branch uses a catalog of

periodic orbits within the Adaptive Trajectory Design (ATD) tool created with Purdue University [79, 98];

researchers in the academic community often create their own databases for internal or external use as well [99].

Let’s examine periodic orbits within the four selected families for their potential to satisfy significant high-level

geometric requirements; performing this initial analysis in the CR3BP rather than an ephemeris model reduces the

complexity and dimensionality of the problem. In this use case, lunar south pole coverage is assessed using a

straightforward estimate of the elevation angle from the lunar south pole to states along the periodic orbit, expressed

in the Earth-Moon rotating frame. In addition, the range from the lunar south pole is assessed and compared to the

associated constraint. To rapidly estimate the elevation angle and range for states along these orbits, the lunar south

pole station is initially assumed to lie at a relative position vector of [0, 0,−1737] km with respect to the Moon. Of

course, the lunar equatorial plane is inclined relative to the Earth-Moon plane and this inclination does evolve over time.

However, this preliminary estimate of the lunar south pole location simplifies the initial identification of candidate orbits

for further analysis within a higher-fidelity model that uses the epoch-dependent and exact location of the lunar south

pole. Then, the elevation angle, 𝜙𝑒𝑙 , and range, | |𝒓𝑆𝑃,𝑠𝑐 | |, are defined as displayed graphically in Fig. 37.

Following this simplified approach, the lunar coverage and range is computed for periodic orbits within the four

selected families in the Earth-Moon CR3BP. Fig. 38 displays for the 𝐿1 southern halo orbits: a) selected members

displayed in the rotating frame and colored by the orbital period, b) curves displaying the elevation angle from the

approximate lunar south pole along each orbit and using the same color scheme, and c) a summary of the maximum
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Figure 14: Definition of the elevation angle, q, from the lunar south pole.
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Fig. 37 Approximating the elevation angle and range of the spacecraft from the south pole.

range, minimum altitude and visibility of the lunar south pole across the family. Analysis of this figure reveals that

members that exist closer to the Moon with a lower perilune admit elevation angles above 10 degrees for a higher

fraction of the orbit period. This characteristic is consistent with changes in the geometry along the family. Specifically,

members with a higher orbit period that exist close to the bifurcation with the 𝐿1 Lyapunov orbit family lie close to the

Earth-Moon plane. As a result, these members possess a negative elevation angle. At the other end of the family, where

the 𝐿1 NRHOs exist, members possess a low perilune, high lunar eccentricity and inclination relative to the Earth-Moon

plane. As a result, their perilune is located above the northern hemisphere of the Moon and a spacecraft would spend

less time at elevation angles below 10 degrees. Fig. 39 displays the periodic orbits and associated elevation angle curves

for the Lyapunov, vertical and axial orbit families. The Lyapunov orbits do not provide any south pole coverage, while

the vertical and axial orbits do not provide coverage for more than 50% of the orbit period; such a result is expected

given their geometry relative to the 𝑥𝑦-plane of the Earth-Moon rotating frame. Based on this analysis, a periodic orbit

in the 𝐿1 southern halo family is examined further. Of course, these orbits do not span the full array of candidate orbits

for further analysis. For instance, quasi-halo orbits that correspond to bounded motions in the vicinity of the halo orbits,

may offer additional candidates. For the purposes of this example and based on the presented analysis, let’s select an

11.1 day period southern halo periodic orbit that is estimated to offer 66.6% visibility, i.e., an estimated elevation angle

from the south pole of at least 10 deg for 66.6% of the orbit period.

The selected candidate orbit is then used to recover a nearby continuous trajectory in an ephemeris model and its

properties are examined in a higher-fidelity model for comparison to the mission constraints. An important part of this

step is specifying a suitable dynamical model of sufficient fidelity for further analysis, without dependency on specific

spacecraft parameters that may not be selected. For instance, a point mass ephemeris model incorporating the gravity

of the Earth, Moon, and Sun captures the most significant components of a high-fidelity model; with an approximate

form factor and mass are known, a spherical SRP model is also incorporated. A continuous solution that lies close to
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(a) Selected halo orbits in configuration space.

(b) Elevation angle from local horizon at south
pole along selected orbits with time normalized
by the orbit period. Dotted line is 10 degree
minimum for coverage.

(c) Selected characteristics across orbit family.

Figure 12: Earth-Moon southern !1 halo orbit family.

8

Fig. 38 Coverage and geometric properties of the 𝐿1 southern halo orbits: a) plotted in the Earth-Moon rotating
frame, b) elevation angle along selected members of the family, and c) relevant characteristics across the family.

the original periodic orbit in the Earth-Moon rotating frame is then recovered in this model. Common approaches to

targeting such trajectories in ephemeris models include 1) using a single-shooting scheme in a high-fidelity modeling

software such as GMAT, and 2) using a multiple-shooting scheme in custom codes. Alternative approaches exist, such

as using collocation in custom codes or in the CSALT tool within GMAT, but are not presented within this version of

the document.
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(a) Selected !1 Lyapunov orbits. (b) !1 Lyapunov orbit elevation angle from local
horizon at south pole.

(c) Selected !1 vertical orbits. (d) !1 vertical orbit elevation angle from local
horizon at south pole.

(e) Selected !1 axial orbits. (f) !1 axial orbit elevation angle from local hori-
zon at south pole.

Figure 14: Additional Earth-Moon periodic orbit families.

12

Fig. 39 Orbits and coverage curves for the 𝐿1: a,b) Lyapunov, c,d) vertical and e,f) axial periodic orbit families.
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8.2.2 Relevant State Transformations

Before implementing either of the corrections approaches, nondimensional states along the periodic orbit in the

CR3BP are converted into dimensional states in either the Earth-Moon rotating frame or the GCRF to support initial

guess construction and targeting in an ephemeris model. To demonstrate these transformation steps, consider a state

located at the leftmost 𝑥𝑧-plane crossing of the selected 11.1 day period southern halo orbit in the Earth-Moon rotating

frame. The truncated value of this nondimensional state vector is equal to

𝒙𝐸𝑀𝑅𝐸𝑀𝐵,𝑃𝑂 = [0.849895, 0,−0.175343, 0, 0.262953, 0]𝑇

in the Earth-Moon rotating frame and relative to the Earth-Moon barycenter. In this example, an initial epoch of

2460676.5 MJD UTC, or January 1, 2025 00:00:00.000 UTC, is assumed.

To convert position and velocity vectors in the Earth-Moon rotating frame to the GCRF, the expressions in Eq.

74 and 75 are used to implement the transformations. Note that the final terms in these equations are the position

and velocity vectors of the Earth-Moon barycenter in the GCRF. A simple approach that is often employed is to first

rewrite the nondimensional position vector relative to the center of the Earth (as opposed to relative to the Earth-Moon

barycenter). This step involves simply adding 𝜇 to the 𝑥-coordinate of the nondimensional state vector. In addition, the

Moon is assumed to follow a perfect circular orbit relative to the Earth, consistent with the assumptions used in the

CR3BP. Such an assumption is not employed in software such as GMAT; rather, the final term in Eq. 75 is directly

calculated using ephemerides, which reflects the noncircular orbit of the Moon relative to the Earth. As a result, the

velocity vectors computed using GMAT or custom codes may slightly differ. If we assume the Moon is instantaneously

traveling along a circular orbit, the expressions governing the transformation to the GCRF simplify to:

𝒓𝐺𝐶𝑅𝐹𝐸,𝑠𝑐 =
[
𝐸𝑀𝑅𝑹𝐺𝐶𝑅𝐹 (𝑡)]𝑇 𝒓𝐸𝑀𝑅𝐸,𝑠𝑐

𝒗𝐺𝐶𝑅𝐹𝐸,𝑠𝑐 = − [
𝐸𝑀𝑅𝑹𝐺𝐶𝑅𝐹 (𝑡)]𝑇 [

𝐸𝑀𝑅
.
𝑹𝐺𝐶𝑅𝐹 (𝑡)

] [
𝐸𝑀𝑅𝑹𝐺𝐶𝑅𝐹 (𝑡)]𝑇 𝒓𝐸𝑀𝑅𝐸,𝑠𝑐 + [

𝐸𝑀𝑅𝑹𝐺𝐶𝑅𝐹 (𝑡)]𝑇 𝒗𝐸𝑀𝑅𝐸,𝑠𝑐

One component of evaluating these expressions is calculating the rotation matrix
[
𝐸𝑀𝑅𝑹𝐺𝐶𝑅𝐹 (𝑡)] . This matrix

computation requires the position and velocity vectors of the Moon relative to the Earth in the GCRF, calculated in this

example by evaluating the DE421 SPICE ephemerides on the selected epoch of January 1, 2025 00:00:00.000 UTC as:

𝒓𝐺𝐶𝑅𝐹𝐸,𝑀 = [1.521169 × 105,−3.077963 × 105,−1.668651 × 105]𝑇 𝑘𝑚

𝒗𝐺𝐶𝑅𝐹𝐸,𝑀 = [0.932547, 0.394552, 0.212860]𝑇 𝑘𝑚/𝑠

Although these values are truncated here, more significant figures are typically reported and used for further calculations.
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The rotation matrix
[
𝐸𝑀𝑅𝑹𝐺𝐶𝑅𝐹 (𝑡)] is calculated using the position and velocity vectors of the Moon relative to

the Earth by evaluating Eq. 66. On the selected epoch, this rotation matrix equals (in truncated form):

[
𝐸𝑀𝑅𝑹𝐺𝐶𝑅𝐹 (𝑡)] =



0.398488 −0.806308 −0.437122

0.917173 0.350739 0.189142

8.09057 × 10−4 −0.476288 0.879289


In addition, the time derivative of the rotation matrix

[
𝐸𝑀𝑅

.
𝑹𝐺𝐶𝑅𝐹 (𝑡)

]
on the selected epoch is calculated by evaluating

Eq. 69 and is equal to:

[
𝐸𝑀𝑅

.
𝑹𝐺𝐶𝑅𝐹 (𝑡)

]
=



2.484218 × 10−6 9.499983 × 10−7 5.123032 × 10−7

−1.079327 × 10−6 2.183931 × 10−6 1.183971 × 10−6

0 0 0


Next, to convert a selected state vector to a dimensional state in the Earth-Moon rotating frame, the position

components are multiplied by the instantaneous value of 𝑙∗ while the velocity components are multiplied by the

instantaneous value 𝑙∗/𝑡∗. The magnitude of the position vector 𝒓𝐺𝐶𝑅𝐹𝐸,𝑀 is used to define the instantaneous value of

𝑙∗ = 3.817357 × 105 km, and the associated instantaneous value of 𝑡∗ = 3.712963 × 105 s is calculated as outlined in

Sec. 6.2. Using these characteristic quantities, dimensional position and velocity vectors of the selected initial state in

the Earth-Moon rotating axes and relative to the Earth equal:

𝒓𝐸𝑀𝑅𝐸,𝑠𝑐 = [3.290736 × 105, 0,−6.693448 × 104]𝑇 𝑘𝑚

𝒗𝐸𝑀𝑅𝐸,𝑠𝑐 = [0, 2.703462 × 10−1, 0]𝑇 𝑘𝑚/𝑠

Then, evaluating Eqs. 74 and 75 produces the following position and velocity vectors for the initial state in the GCRF:

𝒓𝐺𝐶𝑅𝐹𝐸,𝑠𝑐 = [1.310776 × 105,−2.334545 × 105,−2.027001 × 105]𝑇 𝑘𝑚

𝒗𝐺𝐶𝑅𝐹𝐸,𝑠𝑐 = [1.065445, 0.407440, 0.219719]𝑇 𝑘𝑚/𝑠

This same procedure is used to transform multiple states along the periodic orbit in the Earth-Moon CR3BP from the

Earth-Moon rotating frame to the GCRF using epoch-dependent information. A similar procedure can also be used to

transform states into the Moon inertial frame.
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8.2.3 Recovering a Nearby Trajectory in an Ephemeris Model via Single Shooting in GMAT

Single shooting offers a straightforward approach to recovering a trajectory in a high-fidelity model of cislunar space

to resemble the candidate for a mission orbit selected in Sec. 8.2.1 from the CR3BP.

Problem Formulation Example: Recovering a Mission Orbit via Single Shooting in GMAT

Problem: Calculate an initial state and regular impulsive maneuvers to produce a bounded trajectory in an

ephemeris model that resembles a periodic orbit in the CR3BP by targeting components of the state at the

𝑥𝑧-plane crossings in the Earth-Moon rotating frame

Known information and constraints:

• Periodic orbit in the CR3BP with state 𝒙𝐸𝑀𝑅𝐿1,𝑃𝑂 at the leftmost 𝑥𝑧-plane crossing

• Initial epoch 𝑡𝑑𝑒𝑠 and desired number of revolutions around the orbit 𝑁𝑟

• Dynamical model for recovering a trajectory in GMAT

• Impulsive maneuvers applied at 𝑥𝑧-plane crossings near apolune to target state components after one revolution

Variables to calculate:

• Initial state 𝒙𝐸𝑀𝑅𝐿1,0 at fixed epoch 𝑡𝑑𝑒𝑠 in an EM 𝐿1-centered RLP frame

• Impulsive maneuvers Δ𝒗𝑖 for 𝑖 = [1, 𝑁𝑟 ] in Earth-Moon rotating frame for orbit maintenance

Corrections approach:

1) Correct 𝒙𝐸𝑀𝑅𝐿1,0 at 𝑡𝑑𝑒𝑠 that lies on the 𝑥𝑧-plane and produces a state after one revolution close to 𝒙𝐸𝑀𝑅𝐿1,𝑃𝑂

2) Update 𝒙𝐸𝑀𝑅𝐿1,0 at 𝑡𝑑𝑒𝑠 that lies on the 𝑥𝑧-plane to produce a state after two revolutions close to 𝒙𝐸𝑀𝑅𝐿1,𝑃𝑂

3) Propagate the corrected initial state 𝒙𝐸𝑀𝑅𝐿1,0 at 𝑡𝑑𝑒𝑠 to the second subsequent 𝑥𝑧-plane crossing

4) Calculate the 𝑖-th impulsive maneuver Δ𝒗𝑖 to produce a state after two revolutions that lies on the 𝑥𝑧-plane

and sufficiently close to 𝒙𝐸𝑀𝑅𝐿1,𝑃𝑂

5) Repeat Steps 3-4 for 𝑁𝑟 revolutions around the orbit

Why use this approach? Once a periodic orbit is known, this single-shooting strategy can be straightforwardly

implemented in GMAT with limited expertise or specialized custom codes. Targeting the initial state and

maneuvers to achieve a desired state after two revolutions encourages the recovery of bounded motion near the

reference periodic orbit. Updating the initial state in a two-step approach also limits sensitivity in corrections.

When to not use this approach? This corrections approach involves solving smaller corrections problem every

revolution, each targeting short-term boundedness only. The individual maneuver magnitudes are not optimized

at each step, and may be larger than those calculated using a multiple-shooting scheme. Finally, depending on

the orbit or desired number of revolutions considered during targeting at each step, this problem may become

very sensitive and difficult to solve with single-shooting.
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In the procedure demonstrated here using GMAT, single-shooting is used for both correction of the initial state and

calculation of regular impulsive maneuvers at subsequent epochs to produce a trajectory that possesses similar states at

each crossing of the 𝑥𝑧-plane to the periodic orbit from the CR3BP. This approach is merely one example of the use of

single shooting to produce a trajectory with a desired geometry in a high-fidelity model; other formulations may be

implemented to achieve either similar or more complex design goals.

To evaluate the quality of the initial guess, a state that lies along the selected periodic orbit is integrated in the

desired ephemeris model. First, this state is selected as the southern crossing of the 𝑥𝑧-plane of the Earth-Moon rotating

frame near apolune along the selected periodic orbit in the CR3BP; this nondimensional state, 𝒙𝐸𝑀𝑅𝐿1,𝑃𝑂, was listed in the

Earth-Moon rotating frame in Sec. 8.2.2. This initial state is dimensionalized and then translated to use the axes of the

Earth-Moon rotating frame but an origin located at 𝐿1. The resulting state vector is input to GMAT as the state of a

spacecraft in a custom-built coordinate system. Then, a point-mass ephemeris model of the Earth, Moon, and Sun with

perturbation from SRP is created in GMAT and trajectories are numerically integrated using an 8th-order Runge-Kutta

scheme with a tolerance of 10−11 on the state error. In this dynamical model, the trajectory associated with 𝒙𝐸𝑀𝑅𝐿1,𝑃𝑂,

before any corrections, is generated for one revolution and plotted in Fig. 40 in black. This figure also includes EM 𝐿1

as a red diamond and the approximate location of the Moon via a grey-filled circle in the 𝐿1-centered coordinate system

for dimensional perspective. In Fig. 40a), the trajectory is plotted using dimensional quantities relative to 𝐿1 in the

non-pulsating Earth-Moon RLP frame. In Fig. 40b), states along this trajectory (black) that is generated in the ephemeris

model are nondimensionalized using the instantaneous values of the characteristic quantities, calculated at each epoch,

and expressed relative to 𝐿1 in a pulsating Earth-Moon RLP frame. Although the black trajectory is not periodic in the

Earth-Moon rotating frame in an ephemeris model, the trajectory shares similar geometric characteristics to the selected

Fig. 40 Trajectory propagated from the uncorrected initial state in the ephemeris model (blue) and the nearby
periodic orbit in the CR3BP (black) in the a) non-pulsating and b) pulsating Earth-Moon RLP frame.
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southern halo orbit (blue) from the CR3BP but does possess a noticeable deviation in the configuration space. Thus, the

CR3BP has, in this case, supplied a suitable initial guess for corrections to recover additional revolutions of bounded

motion in the ephemeris model.

Implementation Notes: Visualizing Trajectories in a Pulsating or Non-Pulsating Rotating Frame

When plotting a trajectory in dimensional quantities in the Earth-Moon rotating frame (or an RLP frame,) this

trajectory is being viewed in a non-pulsating Earth-Moon rotating frame (or RLP frame) because the Earth and

Moon move along the 𝑥-axis in this frame. Thus, the scale in this view in terms of dimensional quantities is

unchanged over time. This view reflects how a trajectory generated in an ephemeris model typically appears

in an astrodynamics software package such as GMAT. When viewing a trajectory in the Earth-Moon rotating

frame (or RLP frame) using nondimensional quantities (nondimensionalized using the instantaneous values of

the characteristic quantities calculated at each epoch), the trajectory is being viewed in a pulsating Earth-Moon

rotating frame (or RLP frame) because the locations of the Earth and Moon are fixed along the 𝑥-axis in this

frame. In this view, the scale changes over time. This pulsating rotating frame enables a better comparison

between trajectories in an ephemeris model and periodic orbits in the CR3BP.

Single shooting is used to correct the initial state to produce a trajectory in the ephemeris model that remains close

to the reference periodic orbit from the CR3BP for two revolutions. In this step, the corrections process is implemented

in two successive applications of single shooting. First, single shooting is implemented to vary the initial conditions

on the 𝑥𝑧-plane to target components of the state at a subsequent 𝑥𝑧-plane crossing after one revolution. The results

of this corrections process are then used as the initial guess for a second single shooting process that targets state

components at an 𝑥𝑧-plane crossing two revolutions later. Separating this corrections process into two successive single

shooting processes reduces the sensitivity of the numerical corrections process when compared with targeting the state

after multiple subsequent 𝑥𝑧-plane crossings downstream directly from one initial state generated in the CR3BP. This

approach also produces an arc that lies close to the reference periodic orbit for more than one revolution.
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Implementation Notes: Formulating Target Conditions for a Trajectory Resembling a Periodic Orbit

The goal of recovering a trajectory that resembles a periodic orbit via single shooting is challenging to translate

into a set of analytical criteria that apply to a continuous trajectory. It is common to target components of the

states that occur at selected locations along the trajectory that resembles a specific periodic orbit, e.g., targeting

components of the state at a crossing of 𝑥𝑧-plane in the Earth-Moon rotating frame, to achieve boundedness.

This approach is motivated by a well-known property of symmetric periodic orbits in the CR3BP: they admit two

perpendicular crossings of the 𝑥𝑧-plane in the Earth-Moon rotating frame in the CR3BP with .
𝑥 = 0. Although

these conditions no longer apply to trajectories in an ephemeris model, they are useful in some cases along with

reasonable tolerances to produce a trajectory resembling a periodic orbit from the CR3BP.

The initial state 𝒙𝐸𝑀𝑅𝐿1,𝑃𝑂 is first numerically corrected via single shooting to achieve a crossing of the 𝑥𝑧-plane after

one revolution in the ephemeris model that lies within the vicinity of the nearby crossing of the periodic orbit from the

CR3BP. For this single shooting scheme, the following components of the initial state that is expressed in dimensional

quantities and lies along the 𝑥𝑧-plane are varied: 𝑥0, 𝑧0,
.
𝑥0,

.
𝑦0,

.
𝑧0; 𝑦0 = 0 by definition. This state is integrated for one

revolution to produce a state 𝒙𝐸𝑀𝑅𝐿1, 𝑓 piercing the 𝑥𝑧-plane. The five listed components of the initial state are varied to

achieve the following constraints: |𝑧 𝑓 − 𝑧𝑃𝑂 | ≤ tol𝑟 and | .𝑥 𝑓 | ≤ tol𝑣 where 𝑧𝑃𝑂 is the 𝑧-component of 𝒙𝐸𝑀𝑅𝐿1,𝑃𝑂. For this

example, the single shooting process is terminated when the first constraint is satisfied to within tol𝑟 = 1, 000 km and

the second constraint is satisfied within tol𝑣 = 1 m/s. These tolerances are challenging to define, and may be updated

iteratively by the trajectory designer based on the orbit, target location, and dynamical model. Furthermore, this subset

of target conditions does not guarantee that the trajectory will remain close to the initial guess. Rather, this example

demonstrates one straightforward approach that has been used in practice to produce sufficient results in some scenarios.

The differential corrector in each step is configured to use a Newton-Raphson method and up to 50 iterations; this

maximum number of iterations can be adjusted as needed to limit computational time or accommodate a poor initial

guess. In addition, the maximum change in the value of each position component is constrained to 200 km at each

iteration. For each velocity component, the value can change by up to 10 m/s with a maximum magnitude of 1 km/s.

Using this outlined single shooting formulation and the initial guess from the CR3BP, the free variables are updated over

4 iterations until both constraints are satisfied to within the specified tolerances to produce a new, corrected initial state.

A second single shooting step is implemented to target the selected state components at an 𝑥𝑧-plane crossing two

revolutions after the initial state along the trajectory. For this process, the same free variables as the previous single

shooting process are used, with the solution of the previous single shooting process used as the initial guess. The

constraints, however, are modified to use the state components of the 𝑥𝑧-plane crossing that occurs after two revolutions.

The resulting free variables after 5 iterations produce an initial state along a trajectory in the ephemeris model that

produces two revolutions of bounded motion in the vicinity of the periodic orbit. Table 9 summarizes the changes in the
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free variables and values of the constraints after each corrections step. Figure 41 also displays the results of correcting

the initial guess in this manner. First, the trajectory propagated from the initial guess for two revolutions of the reference

orbit is plotted in Fig. 41a) in blue, along with the periodic orbit from the CR3BP, in black, in the pulsating 𝐿1-centered

Earth-Moon RLP frame. Clearly, this trajectory does not remain bounded within the vicinity of the periodic orbit from

the CR3BP after a second revolution. However, the trajectory generated from the corrected state is plotted in blue in Fig.

41b) in the pulsating 𝐿1-centered Earth-Moon RLP frame and the reference periodic orbit is displayed in black. This

trajectory possesses an 𝑥𝑧-plane crossing after two revolutions that is close to the initial 𝑥𝑧-plane crossing and the entire

trajectory generally remains close to the reference periodic orbit across the entire time interval.

Variable Initial Guess Value After 1st Corrections Step Value After 2nd Corrections Step
𝑥0 (km) 4746.469936 4746.469936 4746.469936
𝑧0 (km) -67585.561767 -67585.561767 -67585.561767
.
𝑥0 (km/s) 0 0.003706 0.007515
.
𝑦0 (km/s) 0.269179 0.267132 0.268892
.
𝑧0 (km/s) 0 0.000868 0.023593

Target Parameter Target Value Difference After 1st Corrections Step Difference After 2nd Corrections Step
𝑧 𝑓 -0.175343 nondim 5.360420 km 0.014500 km
.
𝑥 𝑓 0 5.360421 × 10−6 -7.604918×10−7 km/s

Table 9 Values of variables and target parameters in the 𝐿1-centered Earth-Moon rotating frame after each
corrections step.

Next, the corrected initial conditions of the trajectory are integrated for one revolution to an 𝑥𝑧-plane crossing

and the first impulsive maneuver is determined to maintain bounded motion in the vicinity of the periodic orbit. A

single shooting process is formulated to vary the components of the maneuver in the rotating frame to target selected

state components of a southern 𝑥𝑧-plane crossing after two revolutions. The variables that are modified in GMAT

a) b)

Fig. 41 Trajectory propagated from initial state that is a) uncorrected and b) corrected to achieve two revolutions
of bounded motion in the vicinity of the reference periodic orbit.
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include the three components Δ𝑣𝑥 ,Δ𝑣𝑦 ,Δ𝑣𝑧 of the impulsive maneuver in the 𝑥, 𝑦̂, 𝑧 axes of the Earth-Moon rotating

frame. The initial guess for the maneuver is selected as 0 km/s for all maneuver components. However, note that

some implementations and combinations of variables and constraints may result in numerical issues when a value

of zero is used as an initial guess; in those implementations, it may be useful to select a small but nonzero initial

guess for a quantity. This state is integrated for two revolutions to produce a state 𝒙𝐸𝑀𝑅𝐿1, 𝑓 piercing the 𝑥𝑧-plane near

apolune along the periodic orbit. The three components of the maneuver are varied to achieve the following constraints:

|𝑧 𝑓 − 𝑧𝑃𝑂 | ≤ tol𝑟 and | .𝑥 𝑓 | ≤ tol𝑣 . For this example, the single shooting process is terminated when the first constraint

is satisfied to within tol𝑟 = 1, 000 km and the second constraint is satisfied within tol𝑣 = 1 m/s. The differential corrector

in each step is configured to use a Newton-Raphson method for up to 50 iterations; this maximum number of iterations

can be adjusted as needed to limit computational time or accommodate a poor initial guess. Maximum changes in the

value of each variable are also specified as 1 m/s for each maneuver component whereas the maximum magnitude of each

component is 100 m/s. Finally, a forward finite differencing method is used to numerically approximate the derivatives

of the constraints with respect to each variable. The perturbation size used to calculate the finite difference is equal to

the default value in GMAT of 10−5. This value influences the error in the approximation of the derivative and may be

updated as needed. This single shooting process produces a solution in a few iterations. Then, the calculated impulsive

maneuver is applied, and the trajectory is generated until the next southern 𝑥𝑧-plane crossing. This corrections step is

repeated at each subsequent southern 𝑥𝑧-plane crossing to determine the remaining impulsive maneuvers, producing a

trajectory that spans a user-specified number of revolutions.

In the presented example, this process is conducted to determine 14 impulsive maneuvers applied at the southern

crossings of the 𝑥𝑧-plane of the Earth-Moon rotating frame, for a total of 15 revolutions after the initial state. The total

duration of the generated trajectory is approximately 166.5 days. This trajectory is plotted in the rotating frame in Fig.

42a) in blue in the non-pulsating and 𝐿1-centered Earth-Moon RLP frame with the reference periodic orbit in black. The

magnitude of each maneuver is plotted as a function of time, measured along the trajectory, in Fig. 42b). The average

maneuver magnitude is approximately 8.3 m/s; the largest maneuver magnitude is approximately 13.7 m/s. Of course,

variations in the reference trajectory and single shooting implementation will influence these results. Furthermore,

this solution has not been optimized to minimize any cost function, such as minimizing the total maneuver magnitude.

Rather, this example simply demonstrates calculation of a point solution. To avoid redundancy in these examples, this

trajectory is not compared to the mission constraints; that analysis will be performed in the next subsection following

application of multiple shooting.
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Fig. 42 a) Mission orbit generated for 15 revolutions in the ephemeris model with b) magnitudes of the impulsive
maneuvers applied at each southern 𝑥𝑧-plane crossing to resemble a periodic orbit from the CR3BP.
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8.2.4 Recovering a Nearby Trajectory in an Ephemeris Model via Multiple Shooting in Custom Codes

An alternative approach to constructing a trajectory in an ephemeris model that resembles a periodic orbit from the

CR3BP is to use multiple shooting. Multiple shooting, as summarized in Sec. 5.2.1, focuses on discretizing a trajectory

into multiple arcs and simultaneously updating those arcs to produce a continuous trajectory.

Problem Formulation Example: Recovering a Mission Orbit via Multiple Shooting

Problem: Calculate multiple states and integration times between them along a natural trajectory in an ephemeris

model that resembles a periodic orbit in the CR3BP

Known information and constraints:

• Periodic orbit in the CR3BP described by state 𝒙𝐸𝑀𝑅𝐸𝑀𝐵,𝑃𝑂 and period 𝑇𝑃𝑂 in the Earth-Moon rotating frame

• Initial epoch 𝑡𝑑𝑒𝑠 and dynamical model for recovering a trajectory

• Number of arcs 𝑁𝑛 to discretize each revolution around the orbit and discretization approach, e.g., equal

integration time intervals along each arc

• Desired number of revolutions around the orbit 𝑁𝑟

Variables to calculate:

• Initial states 𝒙𝑀𝐼𝑀,𝑖,0 and epochs 𝑡𝑖 for 𝑖 = [1, 𝑁𝑡 +1] and integration times Δ𝑡𝑖 for 𝑖 = [1, 𝑁𝑡 ] where 𝑁𝑡 = 𝑁𝑟𝑁𝑛

Corrections Approach:

1) Discretize the periodic orbit from the CR3BP into 𝑁𝑛 arcs of equal integration times; repeat for 𝑁𝑟 revolutions.

Extract the states at the beginning of each arc (and end of the last arc) to supply nondimensional state vectors

𝒙𝐸𝑀𝑅𝐸𝑀𝐵,𝑖,0 in the rotating frame and epochs 𝑡𝑖 for 𝑖 = [1, 𝑁𝑡 + 1]. Set Δ𝑡𝑖 equal to 𝑇𝑃𝑂/𝑁𝑛 for 𝑖 = [1, 𝑁𝑡 ]
2) Dimensionalize each initial state in the rotating frame using instantaneous characteristic quantities of the

Earth-Moon system at 𝑡𝑖 and transform to the Moon inertial frame, producing 𝒙𝑀𝐼𝑀,𝑖,0 for 𝑖 = [1, 𝑁𝑡 + 1]
3) Propagate initial state 𝒙𝑀𝐼𝑀,𝑖,0 at epoch 𝑡𝑖 for integration time Δ𝑡𝑖 in selected model, where 𝑖 = [1, 𝑁𝑡 ]
4) Simultaneously update all the initial states 𝒙𝑀𝐼𝑀,𝑖,0 and epochs 𝑡𝑖 for 𝑖 = [1, 𝑁𝑡 + 1] and integration times Δ𝑡𝑖

for 𝑖 = [1, 𝑁𝑡 ] until the trajectory is continuous to within a desired tolerance

Why use this approach? Multiple shooting produces a less sensitive corrections problem than single shooting

because small errors are distributed along the entire trajectory, as opposed to being concentrated at the end of a

time interval. This approach can produce a natural trajectory that lies close to the reference periodic orbit in the

CR3BP, if such a trajectory exists. It also does not require definition of specific target conditions.

Why not to use this approach? This approach requires sufficient expertise to implement in custom codes.
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Let’s demonstrate the process for constructing a natural trajectory in the ephemeris model that resembles the selected

11.1 day period Earth-Moon 𝐿1 southern halo orbit from the CR3BP. In this example, the ephemeris model includes the

point mass gravitational interaction with the Earth, Moon, and Sun as well as a spherical SRP model. First, consider

an initial state that lies at apolune along the periodic orbit at an epoch of January 1st, 2025, 00:00:00.00 UTC; in the

CR3BP and Earth-Moon rotating frame, this state 𝒙𝑃𝑂 was presented in Sec. 8.2.2. A similar transformation procedure

to Sec. 8.2.2 is used to transform 𝒙𝐸𝑀𝑅𝐸𝑀𝐵,𝑃𝑂 to a dimensional state 𝒙𝑀𝐼𝑀,1,0 in the Moon inertial frame on the selected

epoch. Then, the periodic orbit is discretized into 𝑁𝑛 = 16 arcs, and the state at the beginning of each arc is transformed

into the Moon inertial frame at the associated epoch using a similar process. This process is repeated for a total of

𝑁𝑟 = 16 revolutions. This set of states, epochs, and their associated equal integration times of 0.694 days form the initial

guess for the trajectory. Integrating state 𝒙𝑀𝐼𝑀,𝑖,0 at the beginning of the 𝑖-th arc forward in time from the associated

epoch for 0.694 days in the ephemeris model would not produce a state that coincides with the state at the beginning of

the 𝑖 + 1-th arc, 𝒙𝑀𝐼𝑀,𝑖+1,0. Thus, corrections are required to recover a continuous trajectory.

Challenge: Selecting a Suitable Discretization and Number of Revolutions along the Orbit

Multiple shooting requires specification of the number of arcs and approach to discretize a trajectory; in this

example, dependent on the discretization per revolution and number of revolutions along the orbit. Selecting

the discretization per revolution may be an iterative process performed by the analyst: avoiding too many arcs

to increase the computational effort required to find a solution but avoiding too few to produce a sensitive

corrections problem. In addition, it may be desirable to add or remove arcs near particularly sensitive regions

along the trajectory, or modify the discretization approach. Finally, the number of revolutions along the orbit is

typically selected to bias the trajectory to remain near the reference periodic orbit and/or satisfy any requirements

for the desired integration time along the trajectory.

The multiple shooting scheme is then implemented using a free variable and constraint vector formulation. The free

variable vector consists of 𝑁𝑡 + 1 nondimensional states in the Moon inertial frame, each labeled 𝒙𝑀𝐼𝑀,𝑖,0; 𝑁𝑡 durations

for integration along an arc, each labeled Δ𝑡𝑖; and 𝑁𝑡 + 1 epochs, each labeled 𝑡𝑖 , measured from the initial epoch and

nondimensionalized using the average characteristic time quantity for the Earth-Moon system. This free variable vector

is written mathematically as:

𝑽 =
[
𝒙𝑀𝐼𝑀,1,0, 𝑡1,Δ𝑡1, ..., 𝒙

𝑀𝐼
𝑀,𝑁𝑡 ,0, 𝑡𝑁𝑡

,Δ𝑡𝑁𝑡
, 𝒙𝑀𝐼𝑀,𝑁𝑡+1,0, 𝑡𝑁𝑡+1

]𝑇

Then, the constraint vector is written using the difference between the state 𝒙𝑀𝐼𝑀,𝑖, 𝑓 and epoch 𝑡1,0 + Δ𝑡1 at the end of the
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𝑖-th arc and the state 𝒙𝑀𝐼𝑀,𝑖+1,0 and epoch 𝑡𝑖+1 at the beginning of the 𝑖 + 1-th arc. Mathematically, this vector equals:

𝑭(𝑽) =
[
𝒙𝑀𝐼𝑀,1, 𝑓 − 𝒙𝑀𝐼𝑀,2,0, 𝑡1 + Δ𝑡1 − 𝑡2, ..., 𝒙𝑀𝐼𝑀,𝑁𝑡 , 𝑓

− 𝒙𝑀𝐼𝑀,𝑁𝑡+1,0, 𝑡𝑁𝑡
+ Δ𝑡𝑁𝑡

− 𝑡𝑁𝑡+1, 𝑡1

]𝑇

This problem is composed of 8𝑁𝑡 + 7 free variables that can be adjusted to achieve 7𝑁𝑡 + 1 constraints; the final

constraint fixes the epoch at the beginning of the trajectory. Because there are fewer constraints than variables, the

minimum-norm solution in Eq. 103 is used to update the free variable vector. This problem is solved from the defined

initial guess using custom codes in MATLAB. An explicit embedded Runge-Kutta Prince-Dormand (8, 9) method,

accessed via C++ using the GNU Scientific Library, is used for numerical integration. A total of 10 updates to the

free variable occur until the trajectory is continuous to within a tolerance of 10−9 nondimensional units. This process,

along with the initial guess and corrected trajectories, are displayed graphically in Fig. 43. The trajectory in Step 4 of

this figure is natural and closely resembles the periodic orbit displayed in Step 1 of the figure. However, the corrected

trajectory does possess state and epoch discontinuities that are less than 10−9 nondimensional units approximately every

0.694 days due to the nature of a multiple shooting problem.

Fig. 43 Overview of the procedure used to calculate a reference mission orbit in an ephemeris model using
multiple shooting along with the results generated in this example.
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Challenge: Does the Solution to a Multiple Shooting Problem Lie Close to a Continuous Trajectory?

Multiple shooting produces a trajectory with small state and epoch discontinuities between arcs along the

trajectory. To confirm that this trajectory lies sufficiently close to a solution, one approach is to construct a

sequential set of single shooting problems in GMAT: using small maneuvers at the beginning of every arc to

target the position vector at the beginning of the next arc and propagating sequentially in the ephemeris model

along the entire trajectory. Implementing this approach produces the following trajectory, displayed in Fig. 44,

with maneuver magnitudes up to the order of 10−3 m/s between each arc for a total of 0.33 m/s over 177.6 days.

Because this total maneuver requirement is small, the recovered solution to the multiple shooting problem can

be considered to lie sufficiently close to a continuous path in the specified ephemeris model.

Fig. 44 Single, continuous trajectory generated in GMAT for 16 revolutions in the ephemeris model using
small maneuvers between arcs. This path lies close to the trajectory in Step 4 of Fig. 43 calculated using
multiple-shooting.

Finally, this mission orbit satisfies the following original mission requirements:

• Maintaining constant communications with Earth ground stations: the spacecraft is never obscured by the Moon.

• Ensuring coverage (elevation angle above 10 deg) and visibility to a lunar south pole station for at least 50% of the

orbit period: the contact locator function in GMAT reveals coverage for 117.74 days over the span of a total of

177.6 days, i.e., approximately 66% of the integration time, consistent with the original estimate from the CR3BP.

• Remaining within a range of less than 100,000 km from the lunar south pole station: the spacecraft distance from

the center of the Earth varies between 24,965.28 km and 88,461.45 km; after deducting the Moon radius from

these values, the range satisfies this constraint.

Note that the constraint on the station-keeping and insertion maneuvers is not evaluated in this subsection: the analyst

may need to iterate on the mission orbit after designing transfers and station-keeping maneuvers.

126



Astrodynamics Convention & Modeling Reference Version 1.1, 12/1/22

8.3 Designing a Transfer to the Mission Orbit

The next component of this example involves designing a transfer trajectory for a spacecraft from the vicinity

of the Earth to the selected Earth-Moon 𝐿1 southern halo orbit. Trajectory design between and to mission orbits

that resemble periodic orbits in cislunar space have been widely studied throughout the astrodynamics community,

including strategies incorporating impulsive maneuvers [79, 100–102], low-thrust maneuvers [103, 104], and ballistic

lunar capture [105, 106]. These resources demonstrate some of the possible transfer design approaches and geometries

to destinations in cislunar space; similar approaches are also helpful in designing transfers to mission orbits near the

Sun-Earth equilibrium points [107]. These strategies often initially employ an approximate dynamical model, such as

the CR3BP, to rapidly generate an initial guess for a transfer prior to corrections in a higher-fidelity dynamical model.

In the astrodynamics community, corrections schemes are often implemented using custom codes. However, simple

approaches to correcting a transfer can also be implemented in GMAT using single-shooting; examples are demonstrated

in this subsection.

Let’s design transfers from a near-circular, parking orbit in LEO to the 11.1-day Earth-Moon 𝐿1 southern halo orbit

selected in Sec. 8.2.1. Two types of transfers from LEO to the selected mission orbit are explored in this section:

• A ‘direct transfer’: After a single impulsive maneuver is applied to depart the initial orbit in LEO, the spacecraft

coasts until a second and final impulsive maneuver is applied to insert into the mission orbit. A conceptual

illustration of a direct transfer geometry appears in Figure 45.

Fig. 45 Conceptual representation of a direct transfer from the Earth to an EM 𝐿1 southern halo orbit.

• An ‘indirect transfer’: After an initial impulsive maneuver is applied to depart an orbit in LEO, the spacecraft

coasts until a second impulsive maneuver is applied near apogee to insert onto an arc that resembles a trajectory

on the stable manifold of the periodic orbit in the CR3BP that resembles the mission orbit. A third maneuver

inserts the spacecraft into the mission orbit. An illustration of this transfer geometry appears in Figure 46.

As an example, for a spacecraft to transit from LEO to a mission orbit in cislunar space, some transfers can be constructed

using the process summarized in the flowchart in Fig. 47. The defined steps provide a basis for transfer design in

a higher-fidelity model. However, they do not represent the only approach. Note that the transfers produced by this
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Fig. 46 Conceptual representation of a direct transfer from the Earth to an EM 𝐿1 southern halo orbit.

process are not optimized in this document to minimize a cost function such as propellant usage or time of flight. Rather,

these trajectories represent only point solutions that may be further updated as needed.

1

1. Determine initial and 
final orbit states and epochs

4. Assemble selected arcs to 
construct an initial guess 
for a transfer in the CR3BP

2.Determine the high-level 
geometry of the transfer

5. Transform states along 
initial guess and propagate 
in higher-fidelity model

3. Generate sets of 
candidate departure arcs 
and stable manifold arcs of 
final orbit in the CR3BP

6. Recover continuous 
transfer in higher fidelity 
model via numerical 
corrections scheme

Direct

Indirect

2. Determine high-level 
geometry of transfer

3. Generate sets of arcs (e.g., 
orbit departure arcs, stable 
manifold arcs) in CR3BP for 
initial guess construction

Fig. 47 Overview of one procedure to design a transfer to the selected mission orbit in an ephemeris model.
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8.3.1 Designing a Direct Transfer: Single-Shooting Backward in Time

Consider the problem of designing a direct transfer from a circular, low Earth orbit with specified semi-major axis

and inclination to a fixed state that lies along the selected mission orbit at a specific epoch. One straightforward approach

to designing this transfer in a software package such as GMAT is to solve this problem in backward time.

Problem Formulation Example: Designing a Direct Transfer Backward in Time in GMAT

Problem: Calculate the Earth departure and orbit insertion maneuvers producing a transfer trajectory with two

impulsive maneuvers that, in backward time, reaches the desired low Earth orbit from a fixed state that lies

along the desired mission orbit at a specific epoch.

Known information and constraints:

• Target state 𝒙𝑀𝐼𝑀,𝑑𝑒𝑠 in a Moon inertial system and epoch 𝑡𝑑𝑒𝑠 along mission orbit in ephemeris model

• Orbit insertion maneuver Δ𝒗2 places the spacecraft near perilune along the mission orbit

• Semi-major axis, eccentricity and inclination (in the GCRF) of low Earth orbit

• LEO departure maneuver Δ𝒗1 does not significantly change the inclination of the spacecraft

Trajectory itinerary in backward time:

1) Integrate spacecraft state backward in time in selected dynamical model from 𝒙𝑀𝐼𝑀,𝑑𝑒𝑠 at 𝑡𝑑𝑒𝑠 along the

mission orbit for a time Δ𝑡𝑖𝑛𝑡

2) Apply Δ𝒗2 that causes the spacecraft to depart the mission orbit in backward time (or insert the spacecraft

into the mission orbit in forward time)

3) Integrate spacecraft state backward in time in selected dynamical model until the spacecraft reaches perigee

4) Apply Δ𝒗1 that inserts the spacecraft into the LEO in backward time (or depart the LEO in forward time).

Variables to calculate:

• Impulsive maneuver Δ𝒗1 to depart the low Earth orbit at epoch 𝑡1

• Impulsive maneuver Δ𝒗2 to insert into the mission orbit at epoch 𝑡2

• Time Δ𝑡𝑖𝑛𝑡 between impulsive maneuver Δ𝒗2 and selected state along the mission orbit

Why use this approach? In this problem the final state and epoch are known a priori and the problem is to

find the initial state and epoch as well as the maneuvers required along the transfer. By solving the problem

backward in time, the final conditions are guaranteed to be satisfied by the computed transfer (if one exists).

In addition, it is straightforward to describe the desired LEO and construct targeting conditions. It is more

difficult to robustly achieve and describe the target conditions and tolerances for a state along a mission orbit

that resembles a periodic orbit from the CR3BP while also computing the transfer itself.

Let’s demonstrate the process for solving this two-point boundary value problem in backward time. First, let’s
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select the target state along the mission orbit that exists in the ephemeris model as the initial state calculated using

multiple-shooting in Sec. 8.2.4:

𝒙𝑀𝐼𝑀,𝑑𝑒𝑠 = [−29190.364607km, 70749.103743km,−36686.168676km, 0.119813km/s, 0.054833km,−0.008184km]𝑇

expressed using truncated values in the Moon inertial frame with 𝑡𝑑𝑒𝑠 as January 1st, 2025, 00:00:00.00 UTC. This

state is specified here in a Moon inertial frame because 1) the multiple-shooting corrections scheme in Sec. 8.2.4 was

implemented to adjust states along a trajectory in the inertial frame, 2) GMAT converts states to an inertial frame

during computation, and 3) to avoid any ambiguities that occur due to some differences between distinct astrodynamics

software when transforming a state expressed in the inertial frame to a rotating frame. This state occurs near apolune

along the mission orbit. For Δ𝒗2 to occur approximately near perilune, a good initial guess for the integration time

Δ𝑡𝑖𝑛𝑡 is half the orbit period, i.e., Δ𝑡𝑖𝑛𝑡 = −5.55 days; the negative indicates integration backward in time while half the

period is a consequence of the symmetry of the reference periodic orbit in the CR3BP about the 𝑥-axis.

Next, GMAT requires maneuvers be specified in a desired set of axes along with initial guesses and boundary

constraints on their values. For this example, Δ𝒗2 is defined using VNC axes calculated relative to the Moon. These

axes offer a heuristic, preliminary interpretation of how the maneuver changes the spacecraft energy and orbit plane.

A good initial guess for this maneuver is difficult to determine without a priori expertise. However, the corrections

problem presented here and implemented in GMAT can be solved with an initial guess of Δ𝒗2 = [50, 0, 0]𝑇 m/s in

VNC axes relative to the Moon; large enough for the trajectory to depart the mission orbit in backward time, but this

initial guess can be updated manually as needed. To limit the maneuver magnitude, Δ𝒗2 is constrained to possess

components each with a magnitude less than 1 km/s and all maneuver components may take nonzero values. Then,

Δ𝒗1, the maneuver that is typically supplied by a stage of the launch vehicle, is defined using VNC axes calculated

relative to the Earth. The initial guess provided to GMAT is Δ𝒗1 = [−3.13, 0, 0]𝑇 km/s. This initial guess is calculated

using a back-of-the-envelope analysis from the two-body problem: 3.13 km/s applied in the velocity direction enables

the spacecraft to leave a LEO with the selected altitude and insert onto a conic with a periapsis radius that coincides

with the LEO and an apoapsis radius close to the semi-major axis of the Moon’s orbit in the two-body problem. Each

element of Δ𝒗1 is allowed to possess a magnitude that is less than 4 km/s. Finally, the negative value of the first element

corresponds to the problem being solved in backward time: for instance, if a maneuver that increases the spacecraft

energy in forward time is equal to +Δ𝑣 in the velocity direction in forward time, then −Δ𝑣 must be applied in the velocity

direction in backward time.
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Challenge: Specifying Initial Guesses for Problem Variables

The initial guess provided for problem variables can impact the success of a differential corrections scheme but

are sometimes difficult to determine. Common approaches for defining initial guesses for parameters include:

• Using heuristics or back-of-the-envelope calculations to guess the order of magnitude of a maneuver. For

instance, approximations from the two-body problem or derived from the difference in the Jacobi constant

along arcs in the CR3BP can be useful.

• The goal of the maneuver can also be useful for specifying an initial guess for the direction of the maneuver in

a VNC frame. For instance, if the goal is to increase (or decrease) the spacecraft energy then a useful starting

point might be to place most of the maneuver in the velocity (or anti-velocity direction). If the goal includes

changing the orbit plane, it may be useful to guess a nonzero value of the normal component.

• Guess and check: before implementing the corrections scheme, experiment and visualize the influence of

some maneuvers in a VNC frame on the resulting path to determine rough orders of magnitude for an initial

guess that produces a transfer reaching the desired region or goal.

• To estimate the time along a mission orbit between two locations, consider symmetries that might exist for a

similar periodic orbit in the CR3BP to estimate the integration time in terms of the orbit period.

• If a good initial guess for the time along a segment of a trajectory is difficult to determine, consider an

alternative specification of the interval for integrating the spacecraft state. For instance, if a good initial guess

for the time to reach a periapsis is difficult to determine, integration can be performed until one (or more)

periapses occur; in astrodynamics software packages or custom codes, these ‘events’ can be used to specify

stopping conditions for integration that are not expressed in terms of time.

• Construct a sequence of progressively difficult corrections problems (with more constraints and/or variables

than the previous problem) and use the solutions to one corrections problem to define initial guesses for the

next corrections problem.

The constraints and their thresholds for satisfaction must also be specified. Because the problem is solved using

single-shooting, only constraints on the initial LEO, or the target orbit at the end of the time interval in backward time,

must be specified. Consider a requirement that the initial LEO possess an inclination of 28.5 degrees in the GCRF. The

target perigee and apogee radii are both equal to 6578.14 km, corresponding to a circular orbit with a 200 km altitude.

The right ascension of the ascending node and location of perigee are allowed to vary in this example (although that may

not always be the case if there is a requirement to fly over a specific site on the Earth). The threshold for meeting these

three constraints is equal to 0.1 km for the perigee and apogee radii and 0.01 degrees for the inclination. These values

are selected to be small; however, in practice, these thresholds may be derived from mission or launch vehicle provider

requirements.
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Challenge: Formulating a Corrections Problem that Possesses a Solution

When designing transfers, it is important to formulate a corrections problem that is solveable. Sometimes we do

not know a priori if a solution to a problem that satisfies the dynamics exists. If the corrector does not converge

to a solution, one reason could be that a solution does not exist. However, other reasons for failure could be a

poor initial guess, a poor problem formulation, large parameter bounds, poor approximations to the derivatives

of constraints with respect to variables using finite differencing. It is also a good practice to avoid specifying

more constraints than variables to ensure that the problem is not overconstrained.

This two-point boundary value problem is solved in GMAT using a two-step corrections approach. In the first

corrections step, the integration time along the mission orbit (that defines the location of Δ𝒗2) and the Δ𝒗2 vector are all

varied to achieve the desired periapsis radius and inclination at perigee before the LEO departure maneuver is applied.

Thus, four variables are updated to achieve two independent constraints. In the second corrections step, the integration

time along the mission orbit Δ𝑡𝑖𝑛𝑡 , the Δ𝒗2 vector and the Δ𝒗1 vector are all varied to achieve the desired periapsis and

apoapsis radii and inclination at perigee after the LEO departure maneuver is applied. The initial guesses for Δ𝑡𝑖𝑛𝑡 and

the Δ𝒗2 in the second step are set equal to the values calculated by the first corrections step. One reason to separate out

this corrections process into two steps is to reduce the sensitivity of solving a problem where the variables take on values

on different orders of magnitude and correspond to motion near two different bodies. The differential corrector in each

step is configured to use a Newton-Raphson method for up to 50 iterations; this maximum number of iterations can be

adjusted as needed to limit computational time or accommodate a poor initial guess. Maximum changes in the value of

each variable are also specified as 0.1 km/s for each maneuver component and 1 hr for Δ𝑡𝑖𝑛𝑡 ; these values can be updated

if a problem is too sensitive or the initial guess is being updated too many times before reaching a solution. Finally, a

forward finite differencing method is used to numerically approximate the derivatives of the constraints with respect

to each variable. The perturbations used to calculate the finite difference are equal to the default value in GMAT of

1 × 10−5. This value influences the error in the approximation of the derivative and may be updated as needed. During

both corrections steps, this transfer is modeled using a point mass ephemeris model of the Earth, Moon, and Sun, with

SRP and a 36 × 36 higher-order gravity field of the Earth; this additional contribution is included due to the spacecraft

passing close to the Earth for a portion of the trajectory.
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Implementation Note: Multi-Step Corrections Process in GMAT

When implementing a multi-step corrections process in GMAT, it is important to remember to re-initialize

the spacecraft to ensure that the spacecraft possesses the same initial state and epoch during each corrections

step. One straightforward approach to reinitializing the spacecraft in GMAT involves creating a second clone

spacecraft before the first corrections step. Then, the state and epoch of the primary spacecraft are updated

during the first corrections steps. The calculated values of the maneuvers and integration time along the mission

orbit are saved as variables. Then, the primary spacecraft is reinitialized by setting its properties equal to that of

the clone spacecraft. The second corrections step is then applied to the primary spacecraft again. An alternative

approach is to run the first corrections scheme, record the initial values and parameters and update them again

before adding more variables and/or constraints and re-running the GMAT script.

After implementing this procedure in GMAT, the initial guess and final values at each corrections step are listed

in Table 10. The first corrections step requires 11 iterations to meet the required constraints whereas the second step

requires 2 iterations. Note that formulating this problem in backward time means that the sign of the maneuvers listed in

this Table is opposite the sign of a maneuver that is performed in forward time. The resulting direct transfer, computed

in GMAT appears in Fig. 48 in royal blue. 16 revolutions around the mission orbit, as calculated in Sec. 8.2.4 using

multiple-shooting, are also added to this figure in dark blue; recall that this mission orbit requires a total maneuver

magnitude of approximately 0.33 m/s over 176 days. The magnitude of Δ𝒗1 is 3.137 km/s, whereas the magnitude of

the second maneuver is 497.18 m/s (which is below the maximum 1 km/s insertion maneuver constraint). The transfer

time is 5.59 days between the two maneuvers.

Variable Initial Guess Value After 1st Corrections Step Value After 2nd Corrections Step

Δ𝒗1 (VNC, km/s)


−3.13

0
0


N/A


−3.136597

7.560 × 10−7

−7.165 × 10−6


Δ𝑡𝑖𝑛𝑡 (days) -5.55 -5.55 -5.55

Δ𝒗2 (VNC, km/s)


0.05

0
0




0.485526
−0.061206
−0.087814




0.485524
−0.061139
−0.08782


Target Parameter Target Value Value After 1st Corrections Step Value After 2nd Corrections Step

Periapsis radius (km) 6578.14 6578.139994 6578.139511
Apoapsis radius (km) 6578.14 N/A 6578.188845

Inclination (deg) 28.5 28.5 28.5
Table 10 Values of variables and target parameters after each corrections step when calculating a direct transfer
by solving a backward time targeting problem.
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Fig. 48 Direct transfer generated by solving a backward time targeting problem.

Analysis: Why Visualize the Transfer in the Earth-Moon Rotating Frame Using Nondimensional Units?

When visualizing a transfer in the Earth-Moon rotating frame in a software package such as GMAT, the

spacecraft trajectory is plotted using dimensional quantities. However, it is common in the astrodynamics

community to view trajectories in an Earth-Moon rotating frame with nondimensional units. The position

vectors at each epoch along the trajectory are nondimensionalized using the instantaneous distance between the

Earth and Moon, i.e., an instantaneous value of 𝑙∗. By visualizing the path of the spacecraft in the resulting

pulsating Earth-Moon rotating frame, the locations of the Earth, Moon and 𝐿1 are all fixed over time; this

property reduces the complexity of visualizing a path in cislunar space over time in a static 2D plot.
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8.3.2 Designing a Direct Transfer: Single-Shooting Forward in Time

Consider a different approach to designing a direct transfer from a circular, low Earth orbit at a specific epoch to a

state near the reference mission orbit: solving the problem in forward time in GMAT.

Problem Formulation Example: Designing a Direct Transfer Forward in Time in GMAT

Problem: Calculate the Earth departure and orbit insertion maneuvers producing a transfer that, in forward

time, takes the spacecraft from a state that occurs along the transfer immediately after the first maneuver at a

specified epoch to a state that produces motion resembling a periodic orbit from the CR3BP.

Known information and constraints:

• Semi-major axis, eccentricity and inclination (in the GCRF) of a LEO

• LEO departure maneuver Δ𝒗1 does not significantly change the inclination of the spacecraft

• LEO departure maneuver Δ𝒗1 is impulsive and occurs at a specified epoch

• Orbit insertion maneuver Δ𝒗2 occurs at the 𝑥𝑧-plane of the rotating frame and places the spacecraft along a

trajectory that, with regular maneuvers, resembles a selected periodic orbit from the CR3BP

Trajectory itinerary in forward time:

1) Integrate spacecraft state forward in time in selected model from a state that occurs immediately after the

first maneuver for Δ𝑡𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 , the time until the spacecraft reaches the 𝑥𝑧-plane of the rotating frame

2) Apply Δ𝒗2 to produce a spacecraft state that, when integrated to the next 𝑥𝑧-plane crossing, lies sufficiently

close to the leftmost 𝑥𝑧-plane crossing of the selected periodic orbit from the CR3BP

3) Calculate successive maneuvers at each leftmost 𝑥𝑧-plane crossing to target bounded motion near the selected

periodic orbit from the CR3BP

Variables to calculate:

• Initial apoapsis radius, right ascension of the ascending node and argument of periapsis after first maneuver

• Δ𝒗1 to depart the low Earth orbit (calculate after corrections using velocity difference)

• Δ𝒗2 to insert into a mission orbit on the 𝑥𝑧-plane of the rotating frame

• Time of flight along the transfer Δ𝑡𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟

• Several impulsive maneuvers, each at leftmost 𝑥𝑧-plane crossing of rotating frame to target mission orbit

Why use this approach? Solving the problem forward in time can be conceptually easier to understand. The

state immediately after Δ𝒗1 is also straightforward to describe and vary using Keplerian orbital elements due to

the spacecraft beginning close to the Earth. This approach might also be useful if the epoch of Δ𝒗1 is constrained.

When to not use this approach? This is a sensitive corrections problem due to the challenges of specifying the

target conditions when the epoch at arrival into the mission orbit may vary.
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Let’s demonstrate the process for solving this two-point boundary value problem in forward time. First, consider the

requirement that the spacecraft departs from a circular orbit around the Earth with an inclination of 28.5 deg in the

GCRF and an altitude of 200 km. The first impulsive maneuver is assumed to place the spacecraft onto the transfer

at perigee with this same inclination. After completing the transfer, a second maneuver places the spacecraft onto a

trajectory that resembles the selected Earth-Moon southern 𝐿1 halo orbit with an 11.1 day period. This maneuver

is applied at a state that occurs on the 𝑥𝑧-plane of the Earth-Moon rotating frame. Following a similar procedure to

calculating the reference mission orbit in the ephemeris model using single-shooting in GMAT, the state at the insertion

point is integrated forward in time to the next 𝑥𝑧-plane crossing (near apolune). This state must lie sufficiently close to

the leftmost 𝑥𝑧-plane crossing of the periodic orbit in the Earth-Moon rotating frame, equal in nondimensional units to a

truncated value of:

𝒙𝐸𝑀𝑅𝐸𝑀𝐵,𝑃𝑂 = [0.849895, 0,−0.175343, 0, 0.262953, 0]𝑇

for an orbit period of approximately 11.1 days. Because this state exists in the CR3BP, there is no specific epoch at

which this state must be targeted. The transfer that achieves this goal is modeled using a point mass ephemeris model of

the Earth, Moon, and Sun, with SRP and a 36 × 36 higher-order gravity field of the Earth.

In this problem formulation, seven variables are modified during corrections including: the apogee radius, right

ascension of the ascending node (RAAN) and argument of perigee immediately after the first maneuver, as well as the

integration time along the transfer and the insertion maneuver. This corrections problem is designed to begin after

the first maneuver to ensure that the maneuver occurs at perigee and does not modify the inclination. This approach

also removes three variables from the corrections problem because the resulting tangential first maneuver can be

straightforwardly calculated with one nonzero element in the velocity direction: equal to the difference between the

speed at the beginning of the transfer and the speed along a circular orbit with the same inclination. For this example,

the epoch at the beginning of the transfer is constrained to occur at January 1st, 2025, 00:00:00.00 UTC. Based on this

setup, Keplerian orbital elements are modified at the beginning of the transfer, as opposed to the elements of a Cartesian

state in an inertial or rotating frame, because some orbital elements are unchanged through the first maneuver that occurs

close to the Earth. Through this approach, additional computations or constraints are not required to ensure that the

perigee radius and inclination are fixed. In cases like this, alternative state descriptions may simplify the formulation of

a corrections problem.

Several constraints are used in the corrections problem. First, the insertion point is constrained to lie on the 𝑥𝑧-plane

of the rotating frame by requiring that the 𝑦 component of the state equals 0 in the Earth-Moon rotating frame to within

a small tolerance of 0.001 km. Then, the state that lies at the subsequent 𝑥𝑧-plane crossing (near apolune) is constrained:

the state calculated via GMAT must possess 𝑥 and 𝑧 components in the rotating frame that match the dimensional values

of the associated components of 𝒙𝐸𝑀𝑅𝐸𝑀𝐵,𝑃𝑂 at the same epoch to within a desired tolerance. As a result, the 𝑥 and 𝑧
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components are multiplied by the instantaneous distance between the Earth and Moon at the epoch at the end of the

transfer to produce dimensional quantities. The tolerance on meeting this set of position constraints is equal to 500 km.

The same procedure is followed to constrain the .
𝑥 value in the rotating frame at this 𝑥𝑧-plane crossing near apolune to

equal 0 to within a tolerance of 0.001 km/s. Note that adding constraints on the remaining state components may make it

more difficult to recover a solution to this sensitive corrections problem. Furthermore, the tolerance applied to meeting

these target conditions may be relaxed to larger values as needed to produce nearby and natural bounded motions in the

ephemeris model; selecting these values in an informed manner may require having completed the analysis presented in

Sec. 8.2.3 or 8.2.4 to produce bounded motions that resemble nearby orbits from the CR3BP.

Challenge: Targeting a Mission Orbit with Unconstrained Epoch at the End of the Transfer

Similar to the process for targeting a mission orbit in Sec. 8.2.3, meaningful tolerances on the state components

are challenging to determine because a state that lies along a periodic orbit in the CR3BP does not produce

similar motion in an ephemeris model. The selected tolerance may influence the success of and number of

iterations performed by the corrector as well as the maneuver magnitudes. The location along a periodic orbit

that is used as a reference during targeting may also influence the corrections problem in some cases. In this

example, motion near perilune, where the spacecraft passes close to the Moon, is sensitive to perturbations. That

means the corrections problem can become numerically sensitive when targeting a state to produce a desired

mission orbit and the thresholds on reaching those targets can be challenging to select. At apolune, motion is

less sensitive to perturbations; this state may offer a less sensitive location for targeting a mission orbit. Due

to these challenges, targeting a mission orbit that resembles a periodic orbit from the CR3BP at the end of a

transfer might require some iteration from the trajectory designer if using this problem formulation.

One challenge to solving the two-point boundary value problem with this formulation is calculating initial guesses

for the problem variables. To define these initial guesses, let’s use a preliminary analysis in the CR3BP that resembles a

coarse grid search. In this approach, a set of arcs are generated in the CR3BP to depart the LEO. The goal is to find an

arc amongst this set that also closely approaches the mission orbit. To reduce the complexity of this analysis, these arcs

are first described by Keplerian orbital elements in the GCRF with the periapsis radius and inclination fixed; the transfer

is constrained to begin at perigee. The values of the apogee radius, RAAN and argument of perigee at the beginning of

the transfer are varied. The resulting orbital element combinations are then used to write a set of initial state vectors in

the Earth-Moon rotating frame that are integrated in the CR3BP to produce low-fidelity approximations of potential

transfer arcs. To perform these transformations, the orbital element description of the spacecraft is first converted to a

Cartesian state description in the GCRF. Then, the Cartesian state is transformed into the Earth-Moon rotating frame.

Finally, the position and velocity components of the state vector are nondimensionalized by the characteristic quantities
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of the CR3BP computed using the instantaneous distance between the Earth and Moon at the selected initial epoch of

January 1st, 2025, 00:00:00.00 UTC.

For the direct transfer, this coarse grid search produces a useful set of initial guesses. First, the characteristic

length quantity of the Earth-Moon system supplies a sufficient initial guess for the initial apoapsis radius, i.e., 𝑟𝑎 = 𝑙∗.

The initial RAAN in the GCRF of the transfer trajectories is then varied manually to identify trajectories that closely

approach the 𝐿1 southern halo orbit. For the selected initial epoch, a value of RAAN = 350 deg appears to supply a good

initial guess. Using the selected values of the initial apoapsis radius and RAAN, the initial argument of perigee for the

transfer arc is varied between 0 and 360 deg to generate a set of candidate arcs. Each trajectory in the set is propagated

in the CR3BP until its first apogee. The generated trajectories are plotted in light red in Fig. 49 and visualized in the

Earth-Moon rotating frame. The target Earth-Moon 𝐿1 southern halo orbit from the CR3BP is also plotted in black

for reference. From this set, the trajectory that terminates closest to perilune of the halo orbit is selected to form an

initial guess for the direct transfer. This trajectory is plotted in dark red in Fig. 49 and possesses an initial argument of

perigee of 190.8 deg. Finally, the transfer time Δ𝑡𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 is set equal to half the period of a conic with a semi-major

axis calculated using the required initial perigee radius and guess for the apogee radius. An alternative method to select

suitable initial guesses for these variables may involve a more time-consuming guess and check approach.

Fig. 49 Arcs generated with various arguments of perigee in a coarse grid search to construct an initial guess
for a direct transfer, to be computed by targeting the mission orbit in forward time.

This two-point boundary value problem is solved in GMAT to determine the transfer time and initial orbital elements

that produce a transfer reaching a mission orbit that resembles a periodic orbit from the CR3BP. The differential

corrector in each step is configured to use a Newton-Raphson method for up to 50 iterations; this maximum number

of iterations can be adjusted as needed to limit computational time or accommodate a poor initial guess. Maximum

changes in the value of each variable are also specified as 2000 km for the apogee radius, 1 degree for the RAAN and
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argument of perigee, and 0.1 days for the transfer time. These values can be updated if a problem is too sensitive or the

initial guess is being updated too many times before reaching a solution. Finally, forward finite differencing is used to

approximate the derivatives of the constraints with respect to each variable. The perturbations used to calculate the finite

difference in GMAT are set equal to the default values of 1 × 10−5. This value influences the error in the approximation

of the derivative and may be updated as needed. The corrector converges on a solution from the specified initial guess

in 18 iterations to produce the values listed in the final column of Table 11. For this transfer, the magnitudes of the

impulsive maneuvers are equal to Δ𝑣1 = 3.131 km/s and Δ𝑣2 = 488.2 m/s. Note that Δ𝒗1 is typically supplied by a stage

of the launch vehicle. The second maneuver possesses a similar magnitude to the maneuver calculated by solving the

problem backward in time and is also less than the 1 km/s insertion maneuver requirement. After the transfer, impulsive

maneuvers are calculated at every 𝑥𝑧-plane crossing near perilune of the mission orbit to target states near the rightmost

Initial State Parameters in GCRF Initial Guess Corrected Value
Epoch* January 1st, 2025, 00:00:00.00 UTC January 1st, 2025, 00:00:00.00 UTC

Time of flight 4.805 days 4.748215 days
Perigee radius* 6578.1363 km 6578.1363 km
Apogee radius 384400 km 384400.027864 km
Inclination* 28.5 deg 28.5 deg

RAAN 350 deg 351.236037 deg
AOP 190.8 deg 188.669103 deg
TA* 0deg 0 deg

Initial State (GCRF) Value Before Maneuver Value After Maneuver
𝑋0 (km) -6559.820246 -6559.820141
𝑌0 (km) 129.6418534 129.641518
𝑍0 (km) -473.105181 -473.106730.
𝑋0 (km/s) 0.129202 0.181171.
𝑌0 (km/s) -6.862858 -9.623188.
𝑍0 (km/s) -3.672034 -5.148972

Final State (EMR) Value Before Maneuver Value After Maneuver
𝑥 𝑓 (km) 365846.357902 365846.357902
𝑦 𝑓 (km) -4.279034 × 10−6 −4.279034 × 10−6

𝑧 𝑓 (km) 22477.031871 22477.031871
.
𝑥 𝑓 (km/s) 0.007159 -0.008611
.
𝑦 𝑓 (km/s) -0.615361 -1.046299
.
𝑧 𝑓 (km/s) 0.022091 -0.206798

Maneuvers Value
Δ𝒗1 (VNC, km/s) [3.131049, 0, 0]𝑇
Δ𝒗2 (EMR, km/s) [0.015769, 0.430938, 0.228889]𝑇

Table 11 Problem variables and maneuvers along direct transfer following corrections when solving the targeting
problem forward in time (* = variable fixed during corrections).
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𝑥𝑧-plane crossing along the periodic orbit after two revolutions; this process is performed to calculate 10 impulsive

maneuvers that produce a trajectory that remains near the periodic orbit from the CR3BP for 10 revolutions. These

maneuvers possess magnitudes between 7 m/s and 23 m/s. The corrected transfer and multiple revolutions along the

mission orbit are plotted in blue in Fig. 50 in the Earth-Moon rotating frame.

Earth
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Fig. 50 Corrected direct transfer from LEO to selected EM 𝐿1 southern halo orbit, calculated by solving the
targeting problem in forward time.
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8.3.3 Designing an Indirect Transfer: Single-Shooting Backward in Time

Consider the problem of designing an indirect transfer from a circular, low Earth orbit with specified semi-major

axis and inclination to a fixed state that lies along the selected mission orbit at a specific epoch. One straightforward

approach to designing this transfer in a software package such as GMAT is to solve this problem in backward time.

Problem Formulation Example: Designing an Indirect Transfer Backward in Time in GMAT

Problem: Calculate the Earth departure, adjustment and orbit insertion maneuvers producing a transfer trajectory

with three impulsive maneuvers that, in backward time, reaches the desired low Earth orbit from a fixed state

that lies along the desired mission orbit at a specific epoch.

Known information and constraints:

• Target state (𝒙𝑀𝐼𝑀,𝑑𝑒𝑠 in a Moon inertial system) and epoch (𝑡𝑑𝑒𝑠) along mission orbit in ephemeris model

• Orbit insertion maneuver Δ𝒗3 inserts the spacecraft into the mission orbit

• Path adjustment maneuver Δ𝒗2 applied at apogee along the transfer

• Semi-major axis, eccentricity and inclination (in the GCRF) of low Earth orbit

• LEO departure maneuver Δ𝒗1 is applied at perigee and does not significantly change the inclination of the

spacecraft

Trajectory itinerary in backward time:

1) Integrate spacecraft state backward in time from 𝒙𝑀𝐼𝑀,𝑑𝑒𝑠 at 𝑡𝑑𝑒𝑠 along the mission orbit for a time Δ𝑡𝑖𝑛𝑡

2) Apply Δ𝒗3 to insert into the mission in forward time or depart the mission orbit in backward time

3) Integrate spacecraft state backward in time until the spacecraft reaches apogee

4) Apply Δ𝒗2 to adjust the path of the spacecraft at apogee

5) Integrate spacecraft state backward in time until perigee

6) Apply Δ𝒗1 to depart LEO in forward time or insert into the LEO in backward time

Variables to calculate:

• Impulsive maneuvers Δ𝒗1, Δ𝒗2, and Δ𝒗3

• Time to reach selected state along the mission orbit after Δ𝒗3

Why use this approach? In this problem the final state and epoch are known a priori and the problem is to

calculate the initial state and epoch as well as the maneuvers required along the transfer. By solving the problem

backward in time, the final conditions are guaranteed to be satisfied by the computed transfer (if one exists).

In addition, it is straightforward to describe the desired LEO and construct targeting conditions. It is more

difficult to robustly achieve and describe the target conditions and tolerances for a state along a mission orbit

that resembles a periodic orbit from the CR3BP.

141



Astrodynamics Convention & Modeling Reference Version 1.1, 12/1/22

Let’s demonstrate the process for solving this two-point boundary value problem in backward time. The target state

along the mission orbit in the ephemeris model is the same initial state calculated using multiple-shooting in Sec. 8.2.4:

𝒙𝑀𝐼𝑀,𝑑𝑒𝑠 = [−29190.364607km, 70749.103743km,−36686.168676km, 0.119813km/s, 0.054833km,−0.008184km]𝑇

expressed using truncated values in the Moon inertial frame with 𝑡𝑑𝑒𝑠 as January 1st, 2025, 00:00:00.00 UTC. Note that

this is the same target state that is used to construct a direct transfer using a backward time formulation. The goal for

this indirect transfer is to depart from a 200 km altitude circular LEO with 28.5 deg inclination in forward time.

Constructing an initial guess for this transfer, which is generated using single shooting, is more challenging than the

direct transfer. Let’s apply one process for using a fundamental analysis in the CR3BP to construct an initial guess for a

transfer: using a set of arcs that lie along the stable manifold of the periodic orbit that is used to design the mission orbit.

A stability analysis of the periodic orbit that exists in the CR3BP reveals that it possesses both a stable mode and

unstable mode, indicating the existence of stable and unstable manifolds that govern natural motion that asymptotically

approaches and departs the orbit. The orbit also possesses oscillatory modes, indicating the existence of nearby

quasi-periodic orbits. Arcs along a stable half-manifold of the selected 𝐿1 southern halo orbit are generated in the

CR3BP towards the Earth from fifty states; a projection of these arcs onto the 𝑥𝑦-plane of the Earth-Moon rotating frame

is plotted in Fig. 51a) in blue. Each trajectory is integrated backward in time until the first crossing of the 𝑥𝑧-plane that

possesses a positive value of 𝑦. This integration time enables visualization of the apogees, indicated by blue circle

markers that occur along the arcs.

Next, a set of arcs that depart the LEO is generated to guide specifying initial guesses for the targeting problem.

First, an orbital element description is used to specify possible approximations of initial states along the departure arc

and following application of the first maneuver. In this analysis, the periapsis radius equals the radius of the LEO

whereas the apoapsis radius is assumed to equal 340,000 km consistent with the radii of some of the apogees that occur

Fig. 51 a) Stable half-manifold arcs of the selected EM 𝐿1 southern halo orbit projected onto the Earth-Moon
plane and b) selected stable manifold and departure arcs used to guide initial guess construction.
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in the top left of Fig. 51a) along the stable half-manifold of the halo orbit in the CR3BP. Then, the argument of periapsis

and RAAN are varied with the goal of finding one or more arcs that possess apogees that lie near the apogees along the

stable manifold arcs. This orbital element description is specified in the GCRF and then converted to a nondimensional

state in the Earth-Moon rotating frame. To perform this transformation, an epoch is required but is not known exactly

until after corrections. Thus, an approximation is selected by subtracting the time along a stable manifold arc of interest

(between apogee and apolune) as well as half the orbit period predicted from the two-body problem from the fixed

initial epoch 𝑡𝑑𝑒𝑠 that occurs at apolune right before Δ𝒗3 is applied. In this example, a stable manifold arc of interest is

selected and its proximity to departure arcs is examined; the selected arc is plotted in blue in 51b). The flight time along

this stable manifold arc is 18.67 days and half the orbit period of a conic with the specified semi-major axis is 4.15

days. Thus, the epoch at which Δ𝒗1 occurs is estimated as 22.83 days earlier than January 1st, 2025. Following the

transformation from the GCRF to the Earth-Moon rotating frame on this epoch, each of the resulting nondimensional

state vectors is integrated in the CR3BP forward in time for half a period of the conic from the two-body problem to

produce an array of departure arcs.

This analysis reveals that there are departure arcs that end relatively close to the beginning of the stable manifold arc.

In fact, an example of a departure arc and stable manifold trajectory segment are plotted in Fig. 51b) in red and blue,

respectively, with a position discontinuity of approximately 25,000 km. Such a position discontinuity is expected, but

not guaranteed, to be small enough to indicate the potential for successful recovery of a continuous trajectory with

suitable guesses for the targeting problem variables. In addition, there is a discontinuity between the end of the stable

manifold arc and the fixed initial state that lies close to the periodic orbit (plotted in black) from the CR3BP. Along this

initial guess, the spacecraft initially travels towards 𝐿3 before passing close to a stable manifold arc in the configuration

space. The stable manifold arc then naturally approaches the EM 𝐿1 southern halo orbit, and the arc is terminated near

apolune of the orbit, i.e., the southernmost point along the orbit. This process does not guarantee the recovery of a

transfer that minimizes the total maneuver magnitude or another metric. However, this approach guides constructing an

initial guess for a transfer that exists within a large solution space; albeit with the use of custom codes to perform this

analysis. An alternative approach is to use a guess-and-check process within GMAT.

The constructed initial guess for a transfer enables definition of initial guesses for the individual parameters that are

varied by the corrector in GMAT. First, recall that the target state along the mission orbit lies at apolune. The selected

arc along the stable manifold of the EM 𝐿1 southern halo orbit in the CR3BP also begins near apolune in the backward

time problem; thus, the target state 𝒙𝑀𝐼𝑀,𝑑𝑒𝑠 at 𝑡𝑑𝑒𝑠 is propagated backward in time along the mission orbit for a small

integration time with an initial guess of Δ𝑡𝑖𝑛𝑡 = −2 hours. The initial guess for the maneuver to depart the mission orbit

in backward time or insert into it in forward time is equal to Δ𝒗3 = [5, 0, 0] m/s in a VNC frame defined relative to the

Moon; this initial guess possesses a small nonzero magnitude to reflect that a state along the periodic orbit does not

exactly coincide with a nearby state on the stable manifold and a maneuver is required to step off the natural path that
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resembles a periodic orbit. Next, the state is integrated backward in time to depart the vicinity of 𝐿1 until reaching

apogee. Then, an initial guess for the path adjustment maneuver that occurs at apogee is selected as Δ𝒗2 = [−250, 0, 0]
m/s in a VNC frame defined relative to the Earth. The magnitude of the velocity difference between the two arcs

that form the initial guess is over 500 m/s. However, the initial guess is constructed with a smaller magnitude of 250

m/s in the velocity component of this adjustment maneuver in case the corrector can approach a transfer with a lower

maneuver magnitude. Next, the spacecraft state is integrated backward in time until perigee and Δ𝒗1, the maneuver that

is typically supplied by a stage of the launch vehicle to depart LEO, is defined using VNC axes calculated relative to the

Earth. The initial guess provided to GMAT is Δ𝒗1 = [−3.13, 0, 0]𝑇 km/s. This initial guess is simply selected using the

approximation from the direct transfer design subsection because the apoapsis distance along the departure arc between

Δ𝒗1 and Δ𝒗2 is approximately 0.87𝑙∗; this value is slightly below the apoapsis radius of the initial guess for the direct

transfer but is expected to change during each iteration of the corrector. Recall that the elements of these maneuvers

differ from their associated values in a forward time problem by a negative sign.

The constraints and their thresholds for satisfaction must also be specified. Because the problem is solved using

single-shooting, only constraints on the initial LEO, or the target orbit at the end of the time interval in backward time,

must be specified. Consider a requirement that the initial LEO possess an inclination of 28.5 degrees in the GCRF. The

target perigee and apogee radii are both equal to 6578.14 km, corresponding to a circular orbit with a 200 km altitude.

The right ascension of the ascending node and location of perigee are allowed to vary in this example (although that may

not always be the case). The threshold for meeting these three constraints is equal to 0.1 km for the perigee and apogee

radii and 0.01 degrees for the inclination. These values are selected to be small; however, in practice, these thresholds

may be derived from mission or launch vehicle provider requirements.

This two-point boundary value problem is solved in GMAT using a two-step corrections approach. In the first

corrections step, the integration time along the mission orbit (that defines the location of Δ𝒗3) and the two maneuvers,

Δ𝒗2 and Δ𝒗3, are all varied to achieve the desired periapsis radius and inclination at perigee before the LEO departure

maneuver is applied. Thus, seven variables are updated to achieve two independent constraints. In the second corrections

step, the integration time along the mission orbit Δ𝑡𝑖𝑛𝑡 and all three maneuvers are varied to achieve the desired periapsis

and apoapsis radii and inclination at perigee after the LEO departure maneuver is applied. The initial guesses for Δ𝑡𝑖𝑛𝑡 ,

Δ𝒗2, and Δ𝒗3 in the second step are set equal to the values calculated by the first corrections step. One reason to separate

out this corrections process into two steps is to reduce the sensitivity of solving a problem where the variables take on

values on different orders of magnitude and correspond to motion near two different bodies. The differential corrector in

each step is configured to use a Newton-Raphson method for up to 50 iterations; this maximum number of iterations can

be adjusted as needed to limit computational time or accommodate a poor initial guess. Maximum changes in the value

of each variable are also specified as 0.1 km/s for each maneuver component and 1 hr for Δ𝑡𝑖𝑛𝑡 ; these values can be

updated if a problem is too sensitive or the initial guess is being updated too many times before reaching a solution.
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Finally, a forward differencing method is used to numerically approximate the derivatives of the constraints with respect

to each variable. The perturbations used to calculate the finite difference is left at the default value in GMAT of 0.0001.

This value influences the error in the approximation of the derivative and may be updated as needed. During both

corrections steps, this transfer is modeled using a point mass ephemeris model of the Earth, Moon, and Sun, with SRP

and a 36 × 36 higher-order gravity field of the Earth. Recall that when implementing a multi-step corrections process in

GMAT, it is important to remember to re-initialize the spacecraft to ensure that the spacecraft possesses the same initial

state and epoch during each corrections step.

After implementing this procedure in GMAT, the initial guess and final values at each corrections step are listed in

Table 12. The first corrections step requires 16 iterations to meet the required constraints whereas the second corrections

step requires 2 iterations. The resulting direct transfer, computed in GMAT appears in Fig. 52 in royal blue. 16

revolutions around the mission orbit, as calculated in Sec. 8.2.4 using multiple-shooting, are also added to this figure in

dark blue; recall that this mission orbit requires a total maneuver magnitude of approximately 0.33 m/s over 176 days.

The magnitude of Δ𝒗1 to depart the initial circular orbit is 3.125 km/s. The magnitude of the second maneuver at the

first apogee along the transfer is 457.57 m/s and the magnitude of the third maneuver to insert into the mission orbit at

apolune is 55.47 m/s. The total transfer time is 23.15 days. Finally, the corrected transfer approximately resembles the

two arcs in the initial guess plotted in Fig. 51b). Using a multiple-shooting approach may produce a closer resemblance

between an initial guess constructed using those two arcs and the corrected transfer. A multiple-shooting approach may

also help to reduce the sensitivity of solving an alternative formulation of this problem in forward time.

Variable Initial Guess Value After 1st Corrections Step Value After 2nd Corrections Step

Δ𝒗1 (VNC, km/s)


−3.13

0
0


N/A


−3.124835

1.936560 × 10−6

−7.125414 × 10−6


Δ𝒗2 (VNC, km/s)


−0.250

0
0



−0.457445
−0.009962
0.000322



−0.457456
−0.010035
−0.000322


Δ𝒗3 (VNC, km/s)


0.05

0
0



−0.026031
0.023660
−0.042933



−0.025851
0.023681
−0.042982


Δ𝑡𝑖𝑛𝑡 ,3 (hours) -2 -2 -2

Target Parameter Target Value Value After 1st Corrections Step Value After 2nd Corrections Step
Periapsis radius (km) 6578.14 6578.140937 6578.122910
Apoapsis radius (km) 6578.14 N/A 6578.166759

Inclination (deg) 28.499999 28.5 28.500004
Table 12 Values of variables and target parameters after each corrections step when constructing an indirect
transfer by solving the targeting problem in backward time.
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Fig. 52 Corrected indirect transfer from LEO to selected EM 𝐿1 southern halo orbit, calculated by solving the
targeting problem in backward time.

Notes: Maneuver Magnitudes for this Indirect Transfer

For this indirect transfer, a slightly larger total maneuver magnitude is required in comparison to the direct

transfer. However, the total maneuver magnitude of the indirect transfer is within the anticipated range of

impulsive maneuver requirements to an Earth-Moon halo orbit [100, 102]. Furthermore, optimization techniques

can be used to further reduce the total maneuver cost of the transfer. Astrodynamics software packages such

as GMAT often possess optimizer plugins. An alternative approach to reduce the maneuver magnitude is to

construct the transfer in a custom code that implements a multiple shooting strategy using the initial guess

constructed in the CR3BP. Optimization or a gradual reduction in the maneuver magnitude can then be applied.

8.4 Station-Keeping Near the Mission Orbit

The final analysis in this use case focuses on designing impulsive station-keeping maneuvers that produce a spacecraft

path that remains bounded in the vicinity of a desired motion. These maneuvers are necessary as, for example, state

uncertainties, model uncertainties or errors, and maneuver execution errors produce a spacecraft path that deviates

from the designed or expected path. There are a variety of useful station-keeping maneuver design strategies, problem

formulations, and solution approaches that have been developed within the astrodynamics community. This subsection

will present one foundational approach that involves designing maneuvers that occur at each 𝑥𝑧-plane crossing in the

Earth-Moon rotating frame to target a desired combination of 𝑥 and 𝑧 coordinates at the second subsequent 𝑥𝑧-plane

crossing. The presented approach uses a single shooting scheme within a local constrained optimization problem to

design maneuvers with the minimum magnitude that target components of the state at each 𝑥𝑧-plane crossing to lie

within a specified threshold of those associated with the desired path computed in Sec. 8.2.4.
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Problem Formulation Example: Designing Station-Keeping Maneuvers via Single Shooting in GMAT

Problem: Calculate a sequence of impulsive maneuvers at each 𝑥𝑧-plane crossing in the Earth-Moon rotating

frame to produce a bounded trajectory that remains close to a desired path in an ephemeris model.

Known information and constraints:

• Desired trajectory in a selected dynamical model for specified initial epoch 𝑡𝑑𝑒𝑠 and desired number of

revolutions around the orbit 𝑁𝑟

• Maneuvers occur at each 𝑥𝑧-plane crossing to target 𝑥 and 𝑧 coordinates of second subsequent 𝑥𝑧-plane

crossing, each within a tolerance of Δ𝑟

• State uncertainty error with maximum magnitude of 𝑒𝑝𝑜𝑠 and 𝑒𝑣𝑒𝑙 in the position and velocity components

• Maneuver execution errors of 𝑒𝑑𝑣% are applied

Variables to calculate:

• Impulsive maneuversΔ𝒗𝑖 for 𝑖 = [1, 2𝑁𝑟 ] with the locally minimum magnitude that satisfies the station-keeping

problem

Maneuver design approach:

1) Define initial state 𝒙𝑀𝐼𝑀,1,0 at 𝑡1 in Moon inertial frame

2) Use local constrained optimization to calculate the 𝑖-th impulsive station-keeping maneuver Δ𝒗𝑖 to apply at

𝒙𝑀𝐼𝑀,𝑖,0 and 𝑡𝑖 for 𝑖 = [1, 2𝑁𝑟 ]. This maneuver is calculated to possess the locally minimum magnitude to

produce 𝑥 and 𝑧 coordinates at the second subsequent crossing of the 𝑥𝑧-plane that each lie within Δ𝑟 of the

associated 𝑥𝑧-plane crossing of the desired trajectory in the Earth-Moon rotating frame

3) Apply a state uncertainty

4) Apply the calculated maneuver Δ𝒗𝑖 with a maneuver magnitude execution error

5) Integrate the perturbed path forward in time until the next 𝑥𝑧-plane crossing

6) Repeat Steps 2-5 until completing 𝑁𝑟 revolutions around the orbit

Benefits of this example? This single-shooting strategy can be straightforwardly implemented in custom codes

or GMAT. Targeting the station-keeping maneuvers to achieve a desired state after one revolution produces a

straightforward targeting condition.

Limitations of this specific example? Targeting the station-keeping maneuvers to achieve a desired state after

one revolution encourages, but doesn’t necessarily guarantee, the recovery of motion that remains near a desired

path between each 𝑥𝑧-plane crossing. If the computed maneuver is too small to implement, the designer may

wish to target an 𝑥𝑧-plane crossing that is further downstream.

Station-keeping maneuvers are calculated to produce a controlled path that remains near the desired trajectory

calculated in Sec. 8.2.4 despite state uncertainty and maneuver execution errors. First, a small perturbation is applied to
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the initial condition that is calculated in Sec. 8.2.4; the resulting state is the initial condition for the controlled path. In

addition, state uncertainties are added to the state at each 𝑥𝑧-plane crossing after each maneuver has been calculated. The

position and velocity components of these uncertainties are randomly selected from a uniform distribution to possess a

maximum magnitude of 1 km and 1 cm/s, respectively [108]. Maneuver magnitude execution errors are also applied

and randomly selected from a uniform distribution to possess a maximum magnitude of 2%. With state uncertainty and

maneuver execution errors applied after each station-keeping maneuver has been computed, the spacecraft will not

follow its predicted path. Finally, the dynamical environment is modeled using a point mass ephemeris model of the

Earth, Moon, and Sun, with SRP, consistent with the mission orbit computation example.

In this example, impulsive station-keeping maneuvers are calculated at each 𝑥𝑧-plane crossing to target the 𝑥 and

𝑧 coordinates of the second subsequent 𝑥𝑧-plane crossing to within 100 km of the associated crossing of the desired

trajectory that is calculated in Sec. 8.2.4 in the ephemeris model. In this particular formulation, the three components

of an impulsive maneuver, located at an 𝑥𝑧-plane crossing, may vary without any magnitude or direction constraints.

Then, the trajectory associated with a state and the current guess for the impulsive maneuver at the 𝑥𝑧-plane crossing

is numerically integrated in the same dynamical model as the desired trajectory in Sec. 8.2.4 until it completes two

crossings of the 𝑥𝑧-plane, i.e., when 𝑦 = 0. The resulting state is then described by 5 state components that may vary as

the impulsive maneuver is also varied. To avoid overconstraining the problem, only 2 of these state components are used

to define target variables: in this example, the goal is to adjust the impulsive maneuver until the 𝑥 and 𝑧 components of

the state vector at the 𝑥𝑧-plane crossing equal their desired values in the Earth-Moon rotating frame to within 100 km.

The desired values for these state components is selected using the associated 𝑥𝑧-plane crossing of the desired trajectory

at a similar epoch. Although this formulation means that the desired values will vary at each maneuver computation,

this approach is designed to a produce a trajectory that closely resembles a desired trajectory that exists in the same

dynamical model in both space and time. Alternative, simpler formulations may constrain the state components to equal

the associated values along a periodic orbit from the CR3BP. In that case, the goal may be to simply recover nearby

bounded motion, rather than a trajectory that lies close to a specific reference path that exists in the higher-fidelity model.

Based on the target and free variable definitions, more than one maneuver may satisfy the station-keeping maneuver

design problem. Thus, local constrained optimization is also employed to calculate the maneuver with the locally

minimum magnitude that solves the station-keeping problem. This constrained optimization problem involves defining

the free variable vector:

𝑽 = [Δ𝑣𝑋 ,Δ𝑣𝑌 ,Δ𝑣𝑍 ]𝑇

to contain the three components of the nondimensional impulsive maneuver Δ𝒗 in the Moon inertial frame applied to

a nondimensional state 𝒙𝑀𝐼𝑀,0 that is also expressed in the Moon inertial frame but located along the 𝑥𝑧-plane of the

Earth-Moon rotating frame. These maneuver components are expressed in the inertial frame to limit the computational
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time associated with additional frame transformation steps during optimization; however, this problem could be

straightforwardly modified to use maneuver components expressed in the rotating frame. The goal is to compute a free

variable vector that minimizes the following scalar objective function:

𝐽 (𝑽) = | |Δ𝒗 | |2

while satisfying the following constraints:

(𝑥 𝑓 − 𝑥𝑑𝑒𝑠)2 ≤ (100/𝑙∗)2, (𝑧 𝑓 − 𝑧𝑑𝑒𝑠)2 ≤ (100/𝑙∗)2

This constraint includes the desired values, 𝑥𝑑𝑒𝑠 and 𝑧𝑑𝑒𝑠, of the 𝑥 and 𝑧 components of the state in the Earth-Moon

rotating frame at the second subsequent 𝑥𝑧-plane crossing, derived from the reference trajectory. In addition, 𝑥 𝑓 and 𝑧 𝑓

are their actual values along the perturbed path of the spacecraft. Once a free variable vector and, therefore, an impulsive

maneuver is calculated to solve this local constrained optimization problem, the nondimensional state 𝒙𝑀𝐼𝑀,0 is perturbed

by the state uncertainties and the maneuver is applied along with an error in its magnitude. The resulting trajectory

is generated for half a revolution until the next 𝑥𝑧-plane crossing in the Earth-Moon rotating frame. The state at this

𝑥𝑧-plane crossing then supplies the nondimensional state 𝒙𝑀𝐼𝑀,0 for the next station-keeping maneuver computation.

Of course, there are other station-keeping strategies that may be useful. Alternative formulations may involve

other maneuver locations and cadences, targeting other state components (e.g., a velocity component at a subsequent

𝑥𝑧-plane crossing), reaching these targets over different time horizons (e.g., after more revolutions near the halo orbit

or a specified time interval), calculating multiple maneuvers simultaneously, and using initial guesses derived from

dynamical systems theory (e.g., using stable mode information), etc [108–112]. The development, implementation and

comparison of these formulations has been a significant avenue of research in the astrodynamics community. Some of

these alternative formulations may produce a lower cumulative station-keeping maneuver magnitude than the values in

this particular example.

Following the procedure used in this example, a sequence of 30 station-keeping maneuvers over 15 revolutions of

the 𝐿1 northern halo orbit are computed in custom codes implemented in MATLAB with the same ephemeris model

as Sec. 8.2.4. The resulting path is displayed in Fig. 53a) in the pulsating Earth-Moon rotating frame in blue. The

maneuver locations are plotted using black circles with scaled red arrows reflecting the maneuver directions and relative

magnitudes. The magnitudes of these maneuvers, applied every half a revolution, are plotted in Fig. 53b). Over the span

of approximately 166 days, the station-keeping maneuvers possess a total cumulative magnitude of 11.17 m/s; this value

is below the 100 m/s available for station-keeping maneuvers. Note, however, that the expected total magnitude of these

maneuvers typically depends on the goals, variables, and thresholds specified in the station-keeping maneuver design
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problem. Finally, the position difference between the controlled path and the desired trajectory at each 𝑥𝑧-plane crossing

is plotted in Fig. 53c). The red line indicates the threshold on the desired deviation between the 𝑥𝑧-plane crossings

before any state uncertainty or maneuver execution errors are applied. The blue points indicate their actual values at

each 𝑥𝑧-plane crossing when state uncertainty and maneuver execution errors perturb the path of the spacecraft; if these

errors and uncertainties were not incorporated, the maneuvers would produce 𝑥𝑧-plane crossings that remain below the

red line. Although some of these blue points exceed the threshold of 141 km, each of the 30 𝑥𝑧-plane crossings still

remains relatively close to those of the desired trajectory in the configuration space.

Fig. 53 a) Trajectory generated for 15 revolutions in the ephemeris model, b) magnitudes of the impulsive
station-keeping maneuvers, and c) position deviation in the 𝑥𝑧-plane crossings between the controlled path and
the desired path calculated in Sec. 8.2.4.
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9 Summary
As stated in the executive summary, the purpose and direction of this document is to provide U.S. government

agencies, specifically National Aeronautics and Space Administration (NASA) and Department of Defense (DoD) space

related centers, with a foundational summary of astrodynamics concepts for trajectory design, navigation, and operations

in the cislunar, lunar, and libration point regions. The information and examples included in this document are critical

to mission design and navigation where lunar perturbations are required to be modeled accurately and consistently. The

authors hope that each section supplies the reader with the necessary mathematical background, coordinate system

definitions and transformations, dynamical systems descriptions, and methods and guidance to design trajectories within

these Earth and lunar regions. The Goddard Space Flight Center (GSFC) open source General Mission Analysis Tool

(GMAT) is used as the reference software for demonstration but the information applies to any astrodynamics tool or

application. A wide variety of resources constructed by NASA and other government agencies, academia, and industry,

for mathematical specifications and practical considerations are listed in the numerous references.

In closing, the authors wish to thank the National Geospatial-Intelligence Agency (NGA) for their support and

collaboration in the design and development of this valuable reference. Future versions of this document are expected to

address in-depth integration techniques, dynamics of stable lunar orbits, applications to other mission types such as

distant retrograde orbits and Near Rectilinear Halo Orbits, and consideration of relative and co-orbiting spacecraft.
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