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Urban Air Mobility
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• Over the past few years, NASA has become interested in what’s called 
“Urban Air Mobility” (UAM).

• This concept involves passenger air vehicles operating between, for 
instance, a “vertiport” in an urban center, and a nearby airport.
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Psychoacoustic Testing for UAM

3

• There has been a lot of 
pontification on the role that 
noise will play in the rollout 
of UAM concepts.

• NASA maintains several 
psychoacoustics labs across 
the country that may be used 
to investigate the human 
response to the noise of 
UAM, even before recordings 
of vehicles are available.

Exterior Effects Room (EER) at NASA Langley
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Psychoacoustic Testing for UAM

NASA has been executing a series of lab psychoacoustic tests for UAM-like 
sounds (via the EER as well as other facilities).

The questions we are interested in investigating include:
1. What are the qualitative attributes of UAM sound that lead to annoyance? Do things like 

the presence of tones from motors, sharpness arising from broadband, or amplitude and 
frequency fluctuation in the sound lead to more annoyance?

2. What way should we be integrating annoyance over time? How does annoyance build up 
over the course of a single event? How does it build up over the course of multiple events?

3. What role does background sound play in the annoyance of UAM? How does a preexisting 
(e.g., urban) soundscape impact the perception of UAM vehicles?

These tests are meant to produce data that will be used in
building models of annoyance that are inclusive of these effects.
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Psychoacoustic Testing for UAM

What are the qualitative attributes of UAM sound that lead to annoyance? Do 
things like the presence of tones from motors, sharpness arising from broadband, 

or amplitude and frequency fluctuation in the sound lead to more annoyance?

• We can investigate the efficacy of existing methods of evaluating SQ:

𝑃𝐴 = 𝑁 × 1 + 𝑤𝐹𝑅
2 +𝑤𝑆

2

– Often attributed to Fastl/Zwicker, though seems to be from Widmann in the early ‘90s

– More 2011: Addition of tonality for aircraft noise

– Di et al. 2019: Extension to more types of noise

– Torija et al. 2022: Fit to UAV noise specifically

→We want to look into this for UAM noise in particular. Ultimately, we’d like 
to incorporate other effects as well (integration, masking, etc.).
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Investigating Sound Quality: TUSQ

• To generate data for this, an EER psychoacoustic test was executed

– Test of UAM Sound Quality (TUSQ)

– 40 subjects over a week of testing in June/July 2022

• The rest of this presentation will go over details of the test and some 
initial exploratory data analysis.

– Models do not have to be restricted to that form, but will probably be 
roughly:

𝐴𝑛𝑛𝑜𝑦𝑎𝑛𝑐𝑒 = 𝐿𝑜𝑢𝑑𝑛𝑒𝑠𝑠 + 𝑓 𝑇, 𝑆, 𝑅, 𝐹𝑆, 𝐼, …

→We need data that determine the function, but also data that determine the 
parity between the function and loudness.
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Test of UAM Sound Quality

• Motivation

• Two test questions: Loudness and other SQ

• Start with simulations

• Post-process to get stimuli

– Change in BPF

– Factorial test design

• How noise parameters influence sound quality
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Two test questions: Loudness and other SQ

9

𝐴𝑛𝑛𝑜𝑦𝑎𝑛𝑐𝑒 = 𝐿𝑜𝑢𝑑𝑛𝑒𝑠𝑠 + 𝑓 𝑇, 𝑆, 𝑅, 𝐹𝑆, 𝐼, …

• How does annoyance change 

if loudness is constant?

– Annoyance ratings

– 136 sound of various sound quality

– Constant loudness

• How does annoyance change 

with loudness?

– Paired comparisons

– 26 sounds selected from above

– Vary loudness of reference sound
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Start with simulations

10

Blade passage
Frequency (Hz)

Level cruise 5 degree 
descent

20

Auralizations

• F1A from Aircraft Noise Prediction Program 
(ANOPP2)

• Broadband synthesis developed for rotorcraft

• Auralize using NASA Auralization Framework
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Post-process to get stimuli: change in BPF

• Relate design parameters to changes in sound quality

• How did we generate the 8 baselines?
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Baseline auralizations

Blade passage
Frequency (Hz)

Level cruise 5 degree 
descent
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• For fixed BPF and flight 
condition

• Cube depicts 3-factor, 

– 2-level design

• 4th factor is another cube for 
high fluctuation strength

Post-process to get stimuli: factorial test design
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How noise parameters influence sound quality

• Baseline: 5-degree descent with 
20Hz blade passage frequency

• Broadband gain to change 
sharpness

• Tone amplitude to change tonality

• Moving average on loading and 
thickness noise to change 
impulsiveness

• Modulation amplitude to change 
fluctuation strength
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What factors are important for annoyance?
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Annoyance

Synthesis parameters

Sound quality
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Initial data results (a “first cut”)

• Subject’s annoyance responses to vehicle 
design (“synthesis”) and objective Sound 
Quality (SQ) parameters were evaluated 
separately, and for the “flyover” stimuli only 
(n =2560)

• Do either synthesis or SQ parameters 
predict annoyance in a linear fashion? 
What is the effect size?

• How consistent are inter- and intrasubject 

annoyance judgements?
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SYNTHESIS PARAMETERS

BPF        BBGain ToneAmp ToneFactor

SOUND QUALITY PARAMETERS

Sharpness   Tonality   Impulsiveness   Roughness   FluctStrength

SOUND REPRODUCTION, 
ROOM ACOUSTICS

Independent variables

Fixed effects

Dependent variable
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Initial data results: linear regression, ANCOVA
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SOUND QUALITY PARAMETER ANALYSIS:

• Regression R2 indicated that only 6% of the variability in overall 
subjective responses explained by sound quality factors.

• ANCOVA (Analysis of Covariance) analysis includes subjects as an 
independent variable. The R2 indicated 44% of the variability due to 
both sound quality factors and subjects, with subjects being the 
most influential parameter.

• What is the source of subject variability?

SOUND QUALITY PARAMETERS

Sharpness   Tonality   Impulsiveness   Roughness   FluctStrength



Christian, Boucher, and Begault, Fall NASA ATWG 2022

Initial data results: linear regression, ANCOVA
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SYNTHESIS PARAMETER ANALYSIS:

• Regression R2 indicated that only 10% of the variability in overall subjective 
responses explained by sound synthesis parameters. (31 out of 40 subjects 
are significantly affected by at least one parameter.)

• ANCOVA analysis includes subjects as an independent variable.

The R2 indicated 47% of the variability due to both sound 

quality parameters and subjects, with subjects being the

most influential parameter.

• Again, what is the source of subject variability?

SYNTHESIS PARAMETERS

BPF        BBGain ToneAmp ToneFactor
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Initial data results: raw data 
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• Subjects sorted by mean annoyance judgments shows
intersubject differences, different use of annoyance scale
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Initial data results: raw data
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• Example showing 3 out of 40 subjects who do not respond to changes in the SQ
parameter tonality consistently (due to other covariates; criteria shift; and/or scale use).
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Agglomerative hierarchical clustering (AHC) 

21

• Synthesis data (normalized coefficients) for BPF, Bbgain and 
ToneAmp fits a model with 40 subjects divided into 3 clusters 
(subject groups) of 14, 12 and 14 members
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Initial data results: linear regression by cluster
• Synthesis parameters: normalized coefs., subject group 1 vs 2 vs 3

• All groups significantly affected by increase in BPF; and….

• Group 1 also inversely sensitive to BBgain, but not to ToneAmp

• Group 2 also sensitive to ToneAmp, but not BBgain

• Group 3 also inversely sensitive to BBgain and sensitive to ToneAmp

22

GROUP 1 GROUP 2 GROUP 3
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Initial data results: need to determine effect size
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• 5 of 40 subjects’ data for 
BPF. While significant, the 
average effect size varies 
between subjects. 

• Large effect size for s2, s3

• Small effect size for s1, s4, s5
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Disclaimers
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• These results are a PRELIMINARY look at a subset of the 
total data (level flyover); no final conclusions should be 
drawn.

• Note that the subset of data for simulation of a 5-degree 
descent have a different sound characteristic, and likely 
a different subjective response.
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Ongoing Work
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• Further analyses are planned for these data:

– Determination of the relative importance of the sound quality 
parameters.

– Fitting models of psychoacoustic annoyance to the data.

– Comparison of results with tests from other authors.

• Combination with datasets from other tests (both results of 
similar SQ tests, and results of other types of tests from this 
series).

• Further presentation and dissemination of the data.
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