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ABSTRACT

During solar flares plasma is typically heated to very high temperatures, and the resulting redistri-
bution of energy via thermal conduction is a primary mechanism transporting energy throughout the
flaring solar atmosphere. The thermal flux is usually modeled using Spitzer’s theory, which is based on
local Coulomb collisions between the electrons carrying the thermal flux and those in the background.
However, often during flares, temperature gradients become sufficiently steep that the collisional mean
free path exceeds the temperature gradient scale size, so that thermal conduction becomes inherently
non-local. Further, turbulent angular scattering, which is detectable in nonthermal widths of atomic
emission lines, can also act to increase the collision frequency and so suppress the heat flux. Recent
work by Emslie & Bian (2018) extended Spitzer’s theory of thermal conduction to account for both
non-locality and turbulent suppression. We have implemented their theoretical expression for the heat
flux (which is a convolution of the Spitzer flux with a kernel function) into the RADYN flare-modeling
code and performed a parameter study to understand how the resulting changes in thermal conduction
affect flare dynamics and hence the radiation produced. We find that models with reduced heat fluxes
predict slower bulk flows, less intense line emission, and longer cooling times. By comparing features
of atomic emission lines predicted by the models with Doppler velocities and nonthermal line widths
deduced from a particular flare observation, we find that models with suppression factors between
0.3 to 0.5 relative to the Spitzer value best reproduce observed Doppler velocities across emission
lines forming over a wide range of temperatures. Interestingly, the model that best matches observed
nonthermal line widths has a kappa-type velocity distribution function.

1. INTRODUCTION

The flare component of a solar eruptive event rapidly heats plasma in the Sun’s atmosphere to temperatures often
greater than 20 MK (e.g., Fletcher et al. 2011; Caspi et al. 2014; McTiernan et al. 2019). The hot flaring corona is
thermally connected to the cooler chromosphere (< 20 kK) through a relatively narrow transition region with a steep
temperature gradient, and the thermal conductive flux associated with such large temperature gradients is a primary
mechanism for transporting energy throughout flaring loops (e.g., Aschwanden & Alexander 2001; Ryan et al. 2013;
Warmuth & Mann 2016, 2020, and references therein).

When the electron-ion collisional mean free path A.; is long compared to the temperature gradient scale size L (i.e.,
the Knudsen number A.;/L > 1), then thermal conduction becomes an inherently non-local process. In this regime,
Campbell (1984) has demonstrated that thermal conduction is reduced relative to the Spitzer (1962) formalism.
Additionally, Bian et al. (2016) have shown that turbulent angular scattering of thermal electrons further reduces
the thermal conductivity and, since thermal conduction is a main driver of flare dynamics, the overall evolution of
temperatures, densities, and bulk velocities within the loop are all affected by the presence of turbulence.

The presence of turbulence is inferred from the broadening of atomic spectral line profiles and has been detected
during flares in numerous previous studies (e.g., Landi et al. 2003; del Zanna et al. 2006; Milligan 2011; Young et al.
2015; Jeffrey et al. 2016; Polito et al. 2018; Reeves et al. 2020, and references therein). Atomic emission line profiles
are therefore sensitive to turbulence both directly (through nonthermal broadening) and indirectly, through the hy-
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drodynamic evolution of flare loops driven in part by a turbulence-modified conduction term. This makes such line
profiles ideal diagnostics for studying the role of turbulence in flares.

Emslie & Bian (2018, hereafter EB18) have developed a new formalism describing the suppression of thermal con-
duction that includes both non-local and turbulent effects in a single kernel that must be convolved with the local
Spitzer heat flux to obtain the actual heat flux. In this work, we apply this approach to study the suppression of ther-
mal conduction by both non-locality and turbulence, by modeling the radiative hydrodynamic evolution of flare loops
to several parameterizations of the turbulence spectrum. In Section 2, we present our methodology for performing this
parameter study. These models can then be used to predict emission profiles in many atomic lines, and in Section 3
we compare predicted Doppler and nonthermal velocities with those observed during a particular flare. Finally in
Sectione 4, we summarize these results and present our conclusions.

2. METHODOLOGY

We model the hydrodynamic response to the heating produced from an injection of nonthermal electrons into
a loop using the RADYN code (Carlsson & Stein 1992, 1995, 1997; Allred et al. 2005, 2015) combined with the FP
particle transport code (Allred et al. 2020). RADYN has been used extensively in previous studies of flare heating (e.g.,
Abbett & Hawley 1999; Allred et al. 2005; Kowalski et al. 2015, 2017; Kowalski & Allred 2018; Kowalski et al. 2022;
Kennedy et al. 2015; Rubio da Costa et al. 2016; Kerr et al. 2016, 2019, 2020, 2021; Simoes et al. 2017; Brown et al.
2018; Graham et al. 2020) and its computational method is described in those works. Briefly, it solves the 1D equations
of hydrodynamics coupled with non-equilibrium atomic level population equations for six levels of H, nine levels of
He I and He II, and six levels of Ca I on an adaptive grid. The radiative transfer equation is solved using a 1.5D plane
parallel approximation. A key feature of RADYN is its ability to model optically-thick, non-LTE, lines and continua
for many transitions that are important for energy transport in the chromosphere, where much of the flare energy is
deposited.

For this study, we have modified the expression that RADYN’s uses to compute thermal conduction to incorporate the
formalism for non-local and turbulent conduction presented in EB18. First the local Spitzer (1962) heat flux, Fl, is
calculated as usual:

dr
T°/% — 1
dz ’ (1)
where ko, = 1.1x107 % erg K~ 7/2 cm~! s~1, T is the plasma temperature (K), and z is the distance (cm) along the loop,
measured upward from the photosphere. Fg is then convolved with a kernel, @), that accounts for both non-locality
and turbulence, as derived in EB18.
To model the effect of turbulence on thermal electron transport, EB18 assumed the velocity dependence of the

turbulent mean free path, Ar(v), has the form
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is the electron thermal speed and \; is the electron collisional mean free path at the thermal speed:
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where k (1.38 x 10716 erg K—!) is the Boltzmann constant, e (4.8 x 107! esu) is the electronic charge, n (cm~3) is
the background electron density, m. (9.1 x 1072 g) is the electron mass, and In A(=~ 20) is the Coulomb logarithm.

As shown by EBIS, the form of the heat flux in the presence of nonlocal effects and/or turbulence is given by the
convolution

F.(z)= /Q (2 —2;R,a) Fs(2')dz (5)
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Figure 1. The convolution kernel, @ (Equation (6)), for several values of R and «.

where the integral is done over the full loop length and the kernel function @ is given by (EB18, their Equation (27))

[e%e) 41—«
Q(z;R,a) = 6\0/§i | x° (xQ - §) exp l— <x2 + \/R(l ;le ) )\iez )] dx . (6)

@ is thus parameterized by R and «, and is plotted in Figure 1 for several values of R and « that have been used in
this study. We note that RADYN models half-loops, and by reflecting the RADYN half-loop about the apex, we make the
assumption that the full loop is symmetric.

The initial (preflare) state of the loop model has an apex temperature and electron density of 3.3 MK and 7.5 x
10% cm ™3, respectively. The temperature and density as a function of distance are plotted as the t = 0 s (black line)
in Figure 2. This state is obtained by evolving the radiative hydrodynamic equations with a coronal heating term as a
source of energy at the top of the loop until a state of hydrostatic equilibrium is obtained, as described in Allred et al.
(2015). In doing this relaxation to equilibrium, the unsuppressed Spitzer heat flux is used, so all models presented in
§3 (listed in Table 1) have the same initial state.

We then inject a beam of nonthermal electrons at the apex of a model flux loop and track their transport until their
eventual thermalization in the footpoints, typically in the chromosphere. For each case studied here, we inject the
same nonthermal electron distribution, which is characterized by a power-law with cutoff energy, E. = 12 keV, spectral
index, § = 7.6, and energy flux F =5 x 10'% erg cm ™2 s~'. This electron beam distribution was chosen to correspond
to that which was inferred at the peak of a C-class flare studied by Milligan & Dennis (2009, hereafter MD09) and
Milligan (2011, hereafter M11) and will aid in comparing their observations with our model predictions presented in



4 ALLRED ET AL.

Table 1. Label, R, a, Suppression Factor s, Oscillation Period,
Temperature and Density Relaxation Times

Label R o s Period (s) Atr (s) Atn (s)
Spitzer N/A N/A 1.00 558 402 688
R1.0A0.9 1.0 0.9 0.05 34.2 1556 2117
R1.0A1.7 1.0 1.7 0.10 39.0 1143 1625
R1.0A4.0 1.0 4.0 0.50 49.3 552 884
R2.0A4.0 2.0 4.0 0.33 46.4 661 1027
R10.0A9.0 10.0 9.0 0.90 51.3 422 722
R13.5A6.0 135 6.0 0.33 46.3 662 1030

the subsequent section. In each case the beam is injected for At = 20 s as estimated from observed impulsive rise
times.

The transport of injected electrons is modeled using FP, which we have configured to run in a 1D mode, meaning
all electrons are injected along the magnetic field line axis and pitch-angle diffusion due to Coulomb collisions is
neglected. As a test, we have run cases in which pitch-angle diffusion is included and found it makes little difference to
the beam heating rate, which is the important quantity for these simulations. We recognize that diffusive scattering
of the nonthermal electrons by turbulence could alter their energy deposition rate, especially if turbulent scattering is
important (cf. Emslie et al. 2018). However, in order to highlight the effect of turbulence on the conductive term, here
we do not consider its possible effect on the nonthermal electron transport, reserving such a study to a future work.
FP numerically solves the Fokker-Planck equation including Coulomb collisions and Ohmic losses associated with the
return current electric field, on an energy grid with 300 logarithmically-spaced cells ranging from 0.1 keV to 10 MeV,
using the method described in Allred et al. (2020). As configured, FP does not include the effects of runaway electrons,
accelerated out of the ambient plasma by the return current electric field, on the transport of beam electrons. These
can be important when the electron beam flux is high, but in this work the flux is sufficiently low that runaways
likely only comprise a small fraction of the return current (Alaoui et al. 2021). Turbulence, which causes suppressed
thermal conduction, also produces increased electrical resistivity, causing larger return current electric fields, but also
a corresponding increase in the Dreicer field (Dreicer 1959). Thus, we expect that the fraction of runways in the return
current is not directly affected by the level of turbulence present.

3. MODELING OF THE ATMOSPHERIC RESPONSE

To study how suppressed heat flux affects the evolution of flaring loops, we have chosen six sets of the parameters
R and «, and performed flare simulations for each. These parameter sets are listed in Table 1, where the first
column indicates labels by which we refer to the models. For comparison, we also have performed a simulation of
the unsuppressed case that implements thermal conduction using the standard Spitzer heat flux (Equation (1)) and is
labeled “Spitzer.” To best compare with the Spitzer theory, our “Spitzer” model simply implements the heat flux using
Equation 1 and does not limit it by the electron free-streaming rate as was done in most previous RADYN simulations.
The conductive flux suppression factor, s, is computed by integrating QA.; over z/\.; (Figure 1), and is the ratio
F./Fs that would be obtained if Fg does not appreciably vary over z, that is, when non-local effects are small. Of
course, in these simulations non-locality can be important and the actual conduction suppression can deviate from s.

The particular values of R and « listed in Table 1 were chosen to span a wide range of thermal conduction suppression,
with s ranging from 0.05 to 1. The most suppressed models (R1.0A0.9 and R1.0A1.7) have narrow kernels (see
Figure 1) and demonstrate cases where turbulence dominates over non-locality. The opposite extreme, where non-
locality dominates over turbulence, is demonstrated with the model R10.0A9.0, which has a relatively broad kernel.
We have chosen two parameter sets that have a = 4.0 (R1.0A4.0 and R2.0A4.0), since these have the interesting
property of producing kappa-type velocity distribution functions (see Equation (12) and the discussion in §3.2). These
have moderate suppression, with s equal to 0.5 and 0.33, respectively. Finally, we have chosen the model, R13.5A6.0,
which has a similar suppression factor, s = 0.33, as the R2.0A4.0 model, but since @ = 6 produces very broadened
Maxwellian velocity distributions (again see Equation (12)).



SOLAR FLARES WITH SUPPRESSED CONDUCTION 5

Spitzer R1.0A0.9 R1.0A4.0
- = X — 20
107¢ ' - N —
%106, K_’J L ﬁ/ L ﬁ/
©
S 16
g s
£ 10°: s 1t 1
|—
10%F E 1t 4
1015EUJ 1 1 1 1 1 1 1 1 1 1 A J 1 1 1 1 1 13
1014
= 108 _
S 0
>
§ 10%2L lOé
()
[a) 1011,
[
10107
10° 6
600
B
§, 400 3
>
8
5 200
0 0

0 2 4 6 8 10 120 2 4 6 8 10 120 2 4 6 8 10 12
Distance along loop (Mm) Distance along loop (Mm) Distance along loop (Mm)

Figure 2. The temporal evolution of the temperature (top row), electron density (middle row), and gas velocity (bottom row)
for the Spitzer (left column), R1.0A0.9 (middle column), and R1.0A4.0 (right column) simulations. The line color represents
the time from initial beam injection as indicated from the color bar.

3.1. Thermal evolution

Figure 2 shows the evolution of the temperature, electron density, and gas velocity for the first 20 s of the R1.0A0.9,
R1.0A4.0, and Spitzer simulations. We chose to show these three models because they represent the most, middle
and least suppressed cases. The R1.0A0.9 and R1.0A4.0 simulations reach hotter temperatures but have lower coronal
densities than the Spitzer simulation. This is because the reduced heat flux limits how quickly heat can be moved
from the corona into the chromosphere causing it to “bottle-up” in the corona and limiting the responding rate of
chromospheric evaporation. The transition region forms at a height where the density is such that the radiative losses
balance the heat flux divergence. A reduced heat flux, therefore, causes the transition region to form higher in the
loop. The flaring transition region (at ¢ = 20 s) is at 0.77 Mm, 0.79 Mm, and 0.87 Mm, for the Spitzer, R1.0A4.0, and
R1.0A0.9 simulations, respectively.

In Figure 3, we plot the temporal evolution of the apex temperature and density for each of the flare simulations.
Oscillations are apparent in each case, and their periods are written in the fifth column of Table 1. Models with more
reduced heat flux have shorter oscillation periods. Since their coronal temperatures are hotter, they have faster sound
speeds, so pulses travel through the loop in shorter times.
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Figure 3. The apex temperature (top) and density (bottom) as a function of time for the Spitzer (black), R1.0A0.9 (magenta),
R1.0A1.7 (red), R1.0A4.0 (orange), R2.0A4.0 (dark blue), R10.0A9.0 (brown), and R13.5A6.0 (cyan) simulations.

We define the temperature (Atr) and density (At,) relaxation times as the time intervals required for the model
looptops to cool and drain to their preflare values. These are listed in the sixth and seventh columns of Table 1. More
suppressed models have longer relaxation times. As discussed in EB18, turbulent suppression of conduction may aid in
explaining longer than predicted cooling times observed for numerous flares (Ryan et al. 2013). The temperature and
density relaxation times as a function of s are well-fitted by power-laws of the suppression factor s: Atr,, oc s~F7n
with indices B8y = 0.46 and 3, = 0.38, respectively, as shown in Figure 4.

3.2. Spectral line profiles

Using RADYN’s predicted temporal evolution of the temperatures and electron and hydrogen densities combined with
atomic line contribution functions obtained from the CHIANTI package (v.10.0.1; Dere et al. 1997; Del Zanna et al.
2021), we have constructed line intensities along our model loop for 14 optically-thin transition region and coronal
atomic lines presented in MDO09 (listed in their Table 1), with the exception of the He II 256 A line, which is likely
optically-thick and not well-suited to CHIANTT’s coronal approximation. We use CHIANTI’s ionization equilibrium
table and the abundance table from Schmelz et al. (2012), but we note that since our primary purpose in this section
is to compare profile shapes and Doppler velocities, differences in abundance tables are not critical to our study.

In a thermal non-turbulent plasma, the velocity distribution function, f(v), is a Maxwellian with width given by the
thermal velocity. With this assumption, line profiles will be Gaussians. However, the presence of turbulence causes the
velocity distribution function to deviate from a Maxwellian resulting in non-Gaussian line profiles, with widths that
are typically wider than than the thermal width. Bian et al. (2014) solved for the velocity distribution function in a
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Figure 4. The temperature (black plus signs) and density (blue plus signs) relaxation times as a function of suppression factor,
s, for the seven models in Table 1. The solid lines indicate best fit power laws with slopes of —0.46 and —0.38 for the temperature
and density relaxation times, respectively.

turbulent environment using a steady-state approximation to the Fokker-Planck equation. They found a distribution
function of the form (their Equations (7)-(10)),

flw)= A, (7
with U(v) the solution of

dU 2 2Dprs\ "
:(%+u> 7

dv 20 r (8)

where I' = vfe /Aei- The turbulent diffusion coefficient, Dyypp, is given by

3 3—a,,«
v v2 %
Diurt = = e 9
turb )\T('U) )\TO ( )
where we have used the expression for the turbulent mean free path in Equation (2). Substituting this into Equation (8)
gives

dU 2 5—a 7! 2p v
_:(%+RU4_ ) = Y Ute , (10)
dv 2v v, @ vp, &+ 2Rub—
In terms of the dimensionless speed w = v/ vz,
dU 2w
—_— = 11
dw 14+ 2Rwb—« (11)

Finally, we obtain the distribution function by integrating this and substituting into Equation (7)

v 2xdx
s = oo |- [* 2]

where the coefficient Ay is chosen to normalize f(w) to the local density. From this form of f(w), we note:

1. In the no-turbulence limit, i.e., when R = 0, f(w) regains its thermal Maxwellian form, as expected;

2. For the case with @ = 6, f(w) is also a Maxwellian, but is now broadened by a factor of v/1 + 2R. This result
follows from the fact that the collisional and turbulent terms appearing in the Fokker-Planck equation have
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the same velocity dependence (i.e., v=3). Thus, as previously noted by Bian et al. (2014), the presence of a
Maxwellian distribution function is not exclusive to the collisions-only situation. Caution must therefore be
observed in inferring the local temperature from the width of an observed Gaussian line profile;

3. For the case with o = 4, Dy, has a velocity dependence of v=1. In this case, f(w) becomes a kappa distribution
of the first kind, as discussed in Section 3 of Bian et al. (2014), with k = 1/2R;

4. For o < 4, the dependence of Dy, on v is such that, as w — oo, f(w) behaves as an exponential of a negative
power of w. For example, with a = 2, f(w) — AeV/CRw") while for a = 0, f(w) — Ae!/(Fw") " For large
w, these approach an asymptotic value, A, but this steady-state is only reached as ¢ — oo (Chavanis & Lemou
2005). So, to normalize f(w) for o < 4, we truncate f(w) at 10 Doppler widths and then subtract off the
asymptotic value to ensure that the line profiles go to zero for large w.

For a given set of R and a, line profiles are obtained by numerically calculating the integral in Equation (12) and are
normalized so that the integral over wavelength is the total line intensity. The line profiles are then Doppler shifted by
the bulk velocity along the loop axis projected along an observer’s line-of-sight. MD09 measured line-of-sight Doppler
velocities for several lines in EIS pixels that corresponded to the location of the hard X-ray footpoint as observed by
RHESSI (see their Figures 3-5). To better enable comparisons with this flare observation, we orient our model loop
footpoint at the same location on the solar disk, which is (X,Y") = (550”7, —94”). At the footpoint, we assume that the
loop is oriented along the vertical axis. Then using the WCS conversion routine, WCS_CONV_HPC_HCC, the projection
between an observer at earth and the vertical at the footpoint is readily determined to be cos(35.6°) = 0.81. We use
this factor as the line-of-sight projection of bulk flows along our model loop. The EIS observation of this flare used
a slit with angular width of 2”7, spectral instrumental full width at half maximum (Wj,s:) of approximately 0.056 A
(Harra et al. 2009), and a temporal integration time of 10 s, so to enable comparison to the EIS observation, we bin
the predicted emissions from our model loops into 2” bins and integrate them over 10 s intervals. The modeled line
profiles are convolved with a Gaussian with width given by W, to simulate instrumental broadening.

We have produced line profiles for the 14 lines listed in Table 2. As examples, we show line profiles for the first 10 s
interval of each of our simulations for the 0 VI 184 A, Fe XII 195 A, Fe XVI 263 A, and Fe XXIV 192 A lines in Figure 5.
Since a reduced heat flux drives slower chromospheric evaporation with a less dense corona, for each of these lines,
models with more suppressed heat flux are less intense and exhibit weaker Doppler shifts. For example, comparing
our most suppressed model (R1.0A0.9) with the Spitzer model, the Fe XXIV 192 A line has integrated intensities of
2.2 x 103 and 5.0 x 103 erg cm™2 s~! sr~! and Doppler shifts of —144 and —328 km s~ !, respectively.

Characteristics of the line profiles are summarized in Table 2. The third column is the ion formation temperature from
CHIANTT v.10.0.1. These differ slightly for a few lines compared to M11, which used CHIANTI v.6.0.1. The fourth
and fifth columns are the Doppler speed (with uncertainties) and nonthermal velocities determined in MD09/M11 (see
Table 1 of M11). The left and right columns under each model heading are the Doppler and nonthermal velocities,
respectively. The Doppler shifts are calculated from the line profile centroid. The nonthermal line velocities are found
by measuring the full width at half maximum, W, and subtracting the contributions from thermal and instrumental
broadening. Specifically, we measure the nonthermal velocity, vy, using the expression

_ 2 g2 o)
142 ln2(W Winst) m;

where c is the speed of light, \. is the line center wavelength, T},,4, is the temperature at the peak of the contribution
function (from CHIANTT), and m; is the ion mass.

: (13)

1
c? 2kTmae | 2
UNT R

3.3. Doppler Velocities

To better visualize how the Doppler velocities compare to the MD09/M11 observations, in the left panel of Figure 6
we show the Doppler velocities predicted from each of our simulations as a function of line formation temperature
(see also Figure 5 of MD09). All of our simulations produce downflows in cooler lines (chromospheric condensations)
and upflows in hotter lines (chromospheric evaporations). Similar to the to MD09/M11 observations, the R1.0A4.0,
R2.0A4.0, and R13.5A6 simulations predict the transition between upflows and downflows occurs between the Fe XII
(Tinaz = 1.6 MK) and Fe XIII (Tyq, = 1.8 MK) lines. However, the simulations predict downflows that are significantly
slower than the observations. For example, we find flows less than 16 km s~' in the O VI line compared to the observed
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Figure 5. Line profiles averaged over the first 10 s of the Spitzer (black), R1.0A0.9 (magenta), R1.0A1.7 (red), R1.0A4.0
(orange), R2.0A4.0 (dark blue), R10.0A9.0 (brown), and R13.5A6.0 (cyan) simulations for the 0 VI 184 A (top left), Mg VII 281 A
(top middle), Fe XII 195 A (top right), Fe XIIT 202 A (bottom left), Fe XVI 263 A (bottom middle), and Fe XXIV 192 A (bottom
right) atomic lines. In each panel, the bottom and top horizontal axes are the wavelength shifts from rest (A) and corresponding
Doppler velocity (km sfl)7 respectively. Negative velocity is upward. The vertical black dotted lines indicate zero shift.

(60 & 14) km s~1. The only exception is the Fe XI 188 A line in the R13.5A6.0 model, which appears to have a faster
downflow (29 km s~!) compared to the other models. However, that is a result of its very broad line profile merging
with a neighboring (redward) Fe XI line and not a real redshift. The too slow downflows could be an indication that
the preflare model chromosphere is relatively overdense compared to the real Sun, or perhaps the energy flux density
in the electron beam was underestimated. This is possible if the footpoint area is not fully resolved.

The speed of the chromospheric evaporation is more directly related to the heat flux. The models with low sup-
pression, Spitzer and R10.0A9.0, predict upflows that are faster than observed in the Fe XVI and hotter lines. For
the strongly suppressed models, the opposite is true. The R1.0A0.9 and R1.0A1.7 models predict —144 and —172
compared to the observed < —257 km s~! for the Fe XXIV 192 A. Interestingly, the moderately suppressed models,
R1.0A4.0, R2.0A4.0, and R13.5R6.0 predict upflow velocities that are within the MD09/M11 uncertainties. Therefore,
these have plausible levels of thermal conduction suppression.

3.4. Nonthermal Velocities

The nonthermal velocities listed in Table 2 are plotted in the right panel of Figure 6. Even though the Spitzer
simulation has no turbulence, it shows a small level of excess broadening (seventh column of Table 2), resulting from
the superposition of a distribution of Doppler shifts occurring within the temporal and spatial bins, as speculated by
M11 and discussed in Polito et al. (2019) and Kerr et al. (2020) in the context of Fe XXI. But this small amount of
broadening is only comparable to the M11 observations for the Fe XVI 263 A and Fe XVII 269 A lines. For other lines,
especially the very hot Fe XXIII and Fe XXIV lines, the Spitzer simulation is unable to produce sufficiently broad line
profiles. For example, M11 observed vyp = 122 km s~! in Fe XXIII 264 A line compared to 55 km s~ ! predicted
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Table 2. Doppler (v) and nonthermal (vyr) velocities measured in several lines from MD09/M11 and from our models

Ton Ao Tmazx MD09/M11 Model
Spitzer R1.0A0.9 R1.0A1.7 R1.0A4.0 R2.0A4.0 R10.0A9.0 R13.5A6.0
v UNT v UNT v UNT v UNT v UNT v UNT v UNT v UNT
A WK)“ (km s™")

O vi 184.12 0.3 60 + 14 68 16 33 2 26 4 32 14 65 12 78 15 46 12 103
Mg vi1 268.99 0.4 51+ 15 71 15 15 2 25 4 30 12 46 10 59 14 35 10 90
Mg vit 280.74 0.6 53 £ 13 64 11 16 -1 28 0 32 7 49 6 64 9 42 6 107
Fe vinn 185.21 0.6 33+ 17 74 16 28 -1 33 1 37 11 56 9 68 12 34 9 72
Fe x 184.54 1.1 35+ 16 97 -2 22 -9 33 -9 35 -2 56 -3 72 -2 40 -3 95
Fe x1 188.22 1.3 43+ 15 60 -5 33 —6 49 -5 48 4 71 10 96 -2 54 29 153
Fe x11 195.12 1.6 28 + 17 81 -1 43 —5 52 -3 51 5 83 7 101 1 62 7 125
Fe x111 202.04 1.8 —18+ 14 54 —15 24 —16 38 —15 36 —15 61 —14 79 —16 48 —14 121
Fe x1v 274.20 2.0 —22+12 58 —22 24 —17 35 —16 33 —20 57 —19 74 —22 53 —-19 130
Fe xv 284.16 2.2 —32+8 73 —31 28 —21 35 —-21 32 —28 61 —27 76 —30 60 —26 141
Fe xvI 262.98 2.8 —39 £ 20 48 —48 43 —29 39 —-31 37 —46 77 —43 92 —48 73 —40 163
Fe xvi1 269.42 5.6 —69 £ 18 78 —99 70 —50 44 —59 49 —-90 102 —84 121 —94 97 —-79 209
Fe xx11  263.77 14.1 < —230 £ 32 122 —292 55 —132 31 —158 28 —242 108 —220 133 —275 134 —217 313
Fe xx1v  192.03 17.8 < —257+28 105 —328 31 —144 10 —172 20 —273 112 —247 143 —311 136 —235 324

@ Formation temperatures are from CHIANTT v.10.0.1 (Del Zanna et al. 2021) and differ slightly from those listed in M11, which used CHIANTI v.6.0.1.

s 55 = xEER Z g £z s 355 = =EE2 % z £z
o 22 e psee @ 2 2 e o 2%k e oeeee e 2 )
-400¢ ‘ ] 3501 w ]
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Figure 6. Doppler (left panel) and nonthermal velocities (right panel) measured from EIS observations of several atomic
lines by MD09/M11(green circles) compared with predicted velocities from the Spitzer (black plus signs), R1.0A0.9 (magenta
asterisks), R1.0A1.7 (red squares), R1.0A4.0 (orange diamonds), R2.0A4.0 (dark blue triangles), R10.0A9.0 (brown x’s), and
R13.5A6.0 (cyan triangles) simulations. The lines are listed along the top of the plots and the horizontal axis is the expected
temperature of formation for the line. In the left plot, negative velocity is upward and the horizontal black dotted line indicates
zero velocity.

by the Spitzer simulation. The highly suppressed models, R1.0A0.9 and R1.0A1.7, also predict line profiles that are
much narrower than observed. The R13.5A6 model has a broadening factor of /1 + 2(13.5) = 5.3 and produces
line profiles that are much broader than in M11, e.g., 313 km s~! in the Fe XXIII line. M11 did not report the
uncertainties in the nonthermal line widths, but assuming that they are comparable to the reported Doppler velocity
uncertainties, we find that R1.0A4.0, R2.0A4.0, and R10.0A9.0 produce nonthermal broadenings that are similar to the
observations. Of these, R1.0A4.0 has the smallest squared residuals. As described in the previous section, this model
also produces Doppler velocities that match well with the observations. It is, therefore, plausible that the nonthermal
line widths and Doppler velocities observed by MD09/M11 indicate a moderate level of turbulence produced during
that flare. Interestingly, in our best fit model, since o = 4, the velocity distribution function is characterized by a
kappa distribution, with a rather low value of kK = 1/2R = 1/2. In the analysis of other flares, Polito et al. (2018)



SOLAR FLARES WITH SUPPRESSED CONDUCTION 11

and Jeflrey et al. (2016) also found kappa distributions (with significantly higher values of £ ~ (2 — 3)) best fit line
profiles, and Polito et al. (2018) concluded that turbulence is a likely cause.

4. SUMMARY AND CONCLUSIONS

We have used the RADYN flare modeling code to study how the effects of turbulence and non-locality on conductive
heat transport affect flare radiation hydrodynamics. Specifically, we have implemented the EB18 thermal conduction
model into RADYN and performed a parameter study, varying R and «, to understand how the suppressed heat flux
affects the speed of chromospheric evaporation and the time scales of flare cooling and draining. We have studied seven
sets of parameters with suppression factor ranging from 0.05 to 1.0 (i.e., unsuppressed). We used RADYN to simulate
an injection of a beam of nonthermal electrons and the subsequent heating. The same beam distribution was used
for each simulation, and was chosen to match the power-law inferred from a RHESSI observation of a C-class flare by
MDO09. Our key findings are summarized below:

1. The transition region forms at a lower density in more highly suppressed models, resulting in lower intensities in
transition region and coronal spectral lines;

2. Models with more highly suppressed thermal conduction result in longer cooling (At7) and draining (At,,) times.
These are well-fitted by power-laws of the suppression factor s: Atz,, oc s~#7» with indices 87, equal to 0.46
and 0.38, respectively;

3. The flaring chromospheric evaporation front is slower for models with more highly suppressed thermal conduction.
The models R1.0A4.0, R2.0A4.0, and R13.5R6.0, which have s = 0.5, 0.33, and 0.33, respectively, produce upflow
Doppler shifts in several lines that are comparable to observations of a C-class flare presented in MD09/M11;

4. Predicted nonthermal line widths, primarily due to turbulent broadening, from the R1.0A4.0, R2.0A4.0, and
R10.0A9.0 models are comparable to the M11 observations;

5. Overall, the R1.0A4.0 model produces Doppler velocities and nonthermal line widths that best match the obser-
vations. This model has a moderate level of turbulent suppression with s = 0.5. Since R = 1.0, the turbulent
and collisional mean free paths are similar. In this model oo = 4.0, so the velocity distribution function is a kappa
distribution of the first kind with a rather low value of kK = 1/2R = 1/2.

This work represents a first step in understanding how turbulence affects the evolution of flare loops and the resulting
emission. In future work, we will further improve upon our models by including the effects of turbulent diffusion on
the transport of the nonthermal electrons and the effects of runaway electrons accelerated out of the ambient thermal
distribution.
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