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Abstract: Streamflow is one of the key variables in the hydrological cycle. Simulation and forecast- 20 
ing of streamflow are challenging tasks for hydrologists, especially in sparsely gauged areas. Coarse 21 
spatial resolution remote sensing soil moisture products (equal to or larger than 9km) are often 22 
assimilated into hydrological models to improve streamflow simulation in large catchments. This 23 
study uses the Ensemble Kalman Filter (EnKF) technique to assimilate SMAP soil moisture products 24 
at the coarse spatial resolution of 9km (SMAP 9km), and downscaled SMAP soil moisture product 25 
at the higher spatial resolution of 1 km (SMAP 1km), into the Soil and Water Assessment Tool 26 
(SWAT) to investigate the usefulness of different spatial and temporal resolutions of remotely 27 
sensed soil moisture products in streamflow simulation and forecasting. The experiment was set up 28 
for eight catchments across the tropical climate of Vietnam, with varying catchment areas from 267 29 
to 6,430 km² during the period 2017–2019. We comprehensively evaluated the EnKF-based SWAT 30 
model in simulating streamflow at low, average, and high flow. Our results indicated that high- 31 
spatial resolution of downscaled SMAP 1km is more beneficial in the data assimilation framework 32 
in aiding the accuracy of streamflow simulation, as compared to that of SMAP 9km, especially for 33 
the small catchments. Our analysis on the impact of observation resolution also indicates that the 34 
improvement in the streamflow simulation with data assimilation is more significant at catchments 35 
where downscaled SMAP 1km has fewer missing observations. This study is helpful for adding 36 
more understanding of performances of soil moisture data assimilation based hydrological model- 37 
ling over the tropical climate region, and exhibits the potential use of remote sensing data assimila- 38 
tion in hydrology. 39 
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 41 

1. Introduction 42 
In recent years, soil moisture (SM) has been increasingly investigated in hydrological 43 

research as it has a strong influence on the interaction between different components 44 
within the hydrological cycle [1–3]. The SM content is a key variable that controls most of 45 
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the land surface hydrological processes and thus is considered one of the most important 46 
parameters in land surface hydrology models [4]. The increased need for satellite-based 47 
soil moisture information has led to the launch of many satellite missions to provide more 48 
accurate SM estimates at the global scale [5,6] that could be used to substitute in-situ SM 49 
observations that only cover a very limited portion of the land surface [7]. These SM prod- 50 
ucts include ASCAT (Advanced SCATterometer) [8], SMOS (Soil Moisture and Ocean Sa- 51 
linity) [9], AMSR-E (Advanced Microwave Scanning Radiometer for the Earth Observing 52 
System onboard the Aqua satellite) [10], AMSR-2 (Advanced Microwave Scanning Radi- 53 
ometer 2 onboard the Global Change Observation Mission – Water satellite) [11] and 54 
SMAP (Soil Moisture Active Passive) [12]. All of these SM data products are freely acces- 55 
sible, providing an opportunity to integrate SM information into hydrological models 56 
across the globe. 57 

Owing to the release of the above-mentioned data products, assimilation of soil mois- 58 
ture (SM) in hydrological simulations has received much attention within the past decade. 59 
Specifically, of 150 studies conducted during the period of 2001–2021 on soil moisture 60 
assimilation in hydrology modelling, nearly ninety percent have been published since 61 
2012 (see Supplementary 1). A number of studies have assessed remotely-sensed SM as- 62 
similation in various hydrological applications, including flood prediction [13,14], water 63 
balance estimation [15], and streamflow forecast [16,17], along with agricultural monitor- 64 
ing and forecasting [18,19]. These studies have established a new frontier in hydrological 65 
research to take advantage of SM estimates from space to inform hydrological modeling. 66 

However, satellite-based SM products also have several limitations, including shal- 67 
low penetration depth (typically shallower than or equal to 5 cm) and relatively coarse 68 
spatial resolutions (larger than or equal to 9km) [12]. Therefore, the SM observed from 69 
space may often improve the top-soil layer estimation, unless carefully integrated into a 70 
soil moisture or hydrologic model through direct insertion or data assimilation. Although 71 
several studies [20] have shown that coarse spatial resolutions of remote sensing soil mois- 72 
ture could be useful in improving streamflow simulations, many studies have pointed out 73 
the limitations of low spatial resolutions of soil moisture in data assimilation, especially 74 
in small catchments [21] or in flash flood forecasting [22]. 75 

To overcome the low spatial resolution of satellite-based SM products, several stud- 76 
ies have proposed different downscaled algorithms to obtain a finer soil moisture dataset 77 
in space. These algorithms can be classified into three primary types, including (i) meth- 78 
ods based on a satellite data combination of high and low resolution satellite data using 79 
active sensors [23,24], and visible, infrared and thermal sensors [25–28]; (ii) methods based 80 
on the relationship between SM and other geophysical variables that exist at a finer spatial 81 
resolution [29,30]; (iii) methods based on mathematical modelling (e.g., land surface mod- 82 
elling) to simulate coarse resolution remotely sensed SM to a fine resolution model to up- 83 
date SM outputs [31,32]. 84 

On the other hand, compared to native resolution satellite-based products, 85 
downscaled satellite-based SM products are prone to having shorter data records, com- 86 
plicating typical data assimilation methodologies. For instance, with the first downscaling 87 
method mentioned above, a widely-used algorithm is a thermal inertia principle-based 88 
algorithm [33]. This algorithm utilizes the universal relationship between land surface 89 
temperature (LST), vegetation index, soil wetness, and evapotranspiration to quantify SM 90 
as a function of LST and normalized different vegetation index (NDVI). However, the LST 91 
dataset, which is often retrieved from earth observations, often has large spatial and tem- 92 
poral gaps, resulting from atmospheric conditions (e.g., cloud and cloud shadows) [34]. 93 
Consequently, these LST’s gaps will cause gaps in space and time for downscaled SM 94 
product and result in an absence of temporal time series during the data assimilation pro- 95 
cess. Although efforts exist to fill the gaps from LST before the downscaling step [33,35], 96 
the challenge of supplementing temporally-downscaled SM data for assimilation still re- 97 
mains. 98 
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Investigation of the trade-offs between temporal and spatial resolution of remotely 99 
sensed SM products for constraining hydrologic models is an area of research that re- 100 
quires more attention. In a study of two catchments in Central Italy, Azimi et al., 2020 [36] 101 
examined the benefit of having more frequent SM observations (temporal timescale) in 102 
streamflow simulation. The authors concluded that reduced temporal sampling from a 103 
remotely sensed soil moisture product could significantly reduce model performance, in- 104 
dicating that temporal resolution likely plays a more important role than spatial resolu- 105 
tion in constraining the model. On the other hand, a study using SMAP soil moisture data 106 
assimilation in a community-based hydrologic model indicates that downscaled SMAP 107 
1km would improve the accuracy of streamflow simulation (normal streamflow condi- 108 
tions), rather than the model using coarse resolution SMAP 9km data [13]. 109 

In addition, the impact of the number, size, and nature of the hydrologic catchment 110 
requires further investigation—few studies have addressed the potential impacts of catch- 111 
ment characteristics on SM-based DA schemes. A majority of studies have examined the 112 
DA schemes in a focused area, and typically over relatively few catchments (e.g., < 4), 113 
making it difficult to make conclusive statements on the utility of such DA approaches 114 
(see Table 1 and Supplementary 2). Several studies that have included large samples of 115 
catchments concluded that a hydrological model with a SM-based DA framework may 116 
not significantly improve streamflow simulations, compared to the hydrological model 117 
without the DA [37,38]. 118 

Model complexity, and heterogeneous land surface characterization and meteorolog- 119 
ical forcing, can result in varying levels of uncertainty and model accuracy, issues not 120 
easily corrected through data assimilation. In fact, DA-driven hydrologic models often 121 
exhibit mixed results across climatic conditions. This is an active area of research, and 122 
more studies are encouraged. Currently, most studies focus on temperate regions (see Ta- 123 
ble 1). In the tropical climate, streamflow is often of great variation, due to the impacts of 124 
large-scale phenomena such as ENSO on the seasonal and year-to-year variation in soil 125 
moisture, which results from the high variability in rainfall [39]. Any technique such as 126 
DA that could enhance hydrological model performances in the tropical climate region is 127 
essential, but such studies have rarely been investigated [40], owing to the difficulty of 128 
accessing streamflow records over these regions [41]. 129 

Here, we build off of these previous studies and attempt to demonstrate the utility of 130 
satellite-based soil moisture for streamflow simulation, as well as assessing the impacts of 131 
temporal and spatial resolution on the model accuracy. We carefully investigate the ap- 132 
plication of two remotely sensed SM products (SMAP 9km and downscaled SMAP 1km) 133 
to examine whether spatial–temporal resolution has a substantial impact on the perfor- 134 
mance of the hydrological model to simulate streamflow through a data assimilation (DA) 135 
framework. We carried out the experiment over eight catchments across Vietnam—a trop- 136 
ical country that is under-represented in the literature. The hydrological Soil and Water 137 
Assessment Tool (SWAT) model [42] is selected as it performs well in numerous studies 138 
in the studied region [43–47], and there are several studies that have successfully imple- 139 
mented the DA framework in the SWAT model [36,48]. We selected the Ensemble Kalman 140 
Filter (EnKF) [49] as the DA algorithm due to its popularity in many hydrological assimi- 141 
lation works [31,38,50]. 142 

Section 2 presents eight catchments together with the selected datasets while Section 143 
3 provides a brief description of the hydrological SWAT model and data assimilation 144 
scheme that were used to conduct this study. Section 4 provides a comprehensive assess- 145 
ment of the findings, focusing on the discrepancies of model performance under different 146 
DA schemes. Section 5 concluded the study findings. 147 

Table 1. Summary of selected studies on remote sensing soil moisture data assimilation in hydro- 148 
logic models. These studies were investigated in terms of climate region, number of studied catch- 149 
ments, used remotely sensed (RS) soil moisture (SM) datasets, data assimilation (DA) technique 150 
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with hydrologic models. More details on recent studies (2015-present) can be found in Supplemen- 151 
tary Material 2. 152 

References 
Cli-

mate 
Region  

Catch-
ments/ 
RS SM 

Da-
tasets 

DA(*)/ 
Hydro-
logical 
Mod-
els(**) 

Main Findings 

Jadidoleslam et 
al., 2021 [37] 

Cold 
131/  

SMAP, 
SMOS 

EnKF, 
EnKFV/  

HLM 

DA driven models reduce the peak error and 
could be useful for the application of satellite 
soil moisture for operational real-time stream-

flow forecasting. 

Abbaszadeh et 
al., 2020 [13] 

Tem-
perate 

4/ 
SMAP 

EPFM/ 
WRF-Hy-

dro 

Assimilation of SM could improve streamflow 
simulation during flooding from hurricane 

Harvey in 2017, with a promising result from 
SM at 1km. 

Baguis et al., 
2017 [51] 

Tem-
perate 

1/ 
ASCAT 

EnKF/ 
SCHEME 

The DA algorithm could be a diagnostic tool 
to detect weakness in a model and to improve 

its performance. 

Patil and 
Ramsankaran, 

2018 [14] 

Tem-
perate 

2/ 
SMOS, 
ASCAT 

EnKF/ 
SWAT 

A coupling Soil Moisture Analytical Relation-
ship with EnKF could successfully update the 
sub-surface SM and streamflow components 

simulation. 

Laiolo et al., 
2016 [20] 

Tem-
perate 

1/  
EU-

MET-
SAT H-

SAF, 
SMOS 

Nudging/ 
Contin-

uum 

Streamflow prediction for a small basin using 
a distributed hydrological model could be im-
proved with the assimilation of soil moisture 
estimated from coarse spatial resolution re-

motely sensed products. 

Behera et al., 
2019 [15] 

Tropi-
cal 

1/  
AMSR-

E 

Kalman 
Filter/ 
VIC 

DA driven models could improve soil mois-
ture in root zone and water balance estima-

tion. 

Azimi et al., 
2020 [36] 

Tem-
perate 

2/ 
SMAP, 

SACAT, 
CATSA
R-SWI 

EnKF/ 
SWAT 

Both active and passive-based SM driven sim-
ulation generally improved streamflow simu-
lation. The impact of frequency of soil mois-
ture observation on data assimilation perfor-
mances in small catchments was discussed. 

Lü et al., 2016 
[52] 

Arid 
2/  

ASCAT 
EnKF/ 
HBV 

A combined surface soil moisture and snow 
depth data assimilation into a hydrological 

model was proposed to improve streamflow 
estimation in cold and warm season headwa-

ter watersheds. 

Yang et al., 
2021 [31] 

Tem-
perate 

3/  
ESA 
CCI, 

SMAP 

EnKF/ 
DDRM 

Assimilation of soil moisture products in high 
spatial gridded modelling could increase DA 
performances in terms of simulating profile 

soil moisture. 

De Santis et al., 
2021 [38] 

Cold, 
Tem-
perate 

775/  
ESA 
CCI 

EnKF/ 
MISDc-2L 

An assessment of large-scale DA experiments 
in hydrological model streamflow simulation 
was carried out over Europe. This study also 

considered impacts of vegetation density, 
topographical complexity and basin area on 

the DA performances. 
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Loizu et al., 
2018 [53] 

Tem-
perate 

2/  
ASCAT 

EnKF/ 
MISDc, 
TOP-
LATS 

This study examined the impacts of three dif-
ferent re-scaling techniques on SM data assim-
ilation for two hydrological models. A careful 
evaluation for observation error and re-scaling 
technique is recommended for successful im-

plementation of a data assimilation frame-
work. 

Note: 153 

(*) Acronyms for data assimilation techniques: ‘EnKF’ Ensemble Kalman Filter, ‘EnKFV’ EnKF include time-varying error 154 
variances, ‘EPFM’ Evolutionary Particle Filter with Markov Chain Monte Carlo. 155 

(**) Acronyms for hydrologic models: ‘HLM’ Hillslope Link Model, ‘WRF-Hydro’ Weather Research and Forecasting Hydro- 156 
logical model, ’SCHEME’ SCHEldt-MEuse, from the names of the two major rivers of Belgium, ‘SWAT’ Soil and Water Assess- 157 
ment Tool, ‘VIC’ Variable Infiltration Capacity, ’HBV’ Hydrologiska Byråns Vattenbalansavdelning, ‘DDRM’ Digital Elevation 158 
Model (DEM) based distributed rainfall-runoff model, ‘MISDc-2L’ Modello Idrologico Semi-Distribuito in continuo-2 layers, 159 
’TOPLATS’ TOPMODEL-Based Land Surface-Atmosphere Transfer Scheme. 160 

2. Materials and Methods 161 
2.1. Catchment Sites and Its Streamflow Observations 162 

We collected daily 2013–2019 streamflow time series from eight hydrological stations 163 
across Vietnam with their characteristics presented in Table 2. The in-situ streamflow da- 164 
tasets have been used to calibrate the hydrological models for each catchment, and eval- 165 
uate the performance of hydrological simulations with and without DA. These catchments 166 
were selected based on several study objectives. Firstly, they have a variety of catchment 167 
sizes so that we could examine the impacts of the spatial resolution of SMAP products on 168 
the data assimilation algorithm. Secondly, they are in contrasting climate conditions and 169 
geographic coordinates. Therefore, they have different runoff regimes and soil moisture 170 
patterns (Figure 1), which are useful for drawing a general conclusion on our experiment. 171 
Lastly, all catchments have passed homogeneity time series testing, and have natural run- 172 
off conditions due to the lack of manmade structures (i.e., weirs, dams, etc.). These condi- 173 
tions enable us to isolate the impact of the DA methods by removing potential changes in 174 
streamflow dynamics due to human activities. Details on testing of homogeneity time se- 175 
ries and checking of natural catchment conditions can be found in Do et al., 2022 [54]. 176 
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 177 
Figure 1. Locations of eight catchments (red circle represents catchment centroid) in Vietnam, and 178 
their monthly averaged runoff (black bar), monthly averaged soil moisture estimated from SMAP 179 
9km (SM9, blue line), and monthly averaged soil moisture estimated from SMAP 1km (SM1, red 180 
line). The runoff values were calculated based on the period of 2013–2019, while soil moisture values 181 
(volume soil moisture) were calculated based on the period of 2017–2019. A rescaling has been ap- 182 
plied for the runoff time series to compare its variation across catchments. The circle size indicates 183 
relative size of the catchment. The Roman numerals indicate contrasting climate regions where the 184 
studied catchments located in. These regions are defined following [55]. 185 

Table 2. Description of hydrological stations used in this study. Average runoff characteristics in 186 
each catchment (min, median, mean, max) are based on time series 2013–2019. NDVI is the average 187 
NDVI value for each catchment during 2017–2019 extracted from MODIS MOD13Q1 250m product. 188 
SM9 and SM1 stand for the percentage of available SMAP 9km and downscaled SMAP 1km during 189 
the data assimilation period (2017–2019), respectively. 190 

Full  
Name 

Shor
t 

Nam
e 

Long. Lat. Area Min Median Mean Max 
NDV

I 
SM9 SM1 

(degree) 
(de-

gree) 
(km²

) 
(mm/d) (mm/d) (mm/d) (mm/d) (-) (%) (%) 

Giavong gvo 106.93 16.93 267 0.09 0.91 2.49 136.56 0.801 
42.3

7 
9.68 

Anhoa aho 108.90 14.57 383 0.36 1.87 7.54 254.91 0.628 
31.7

8 
10.4

1 

Banyen bye 103.03 21.27 638 0.21 0.65 1.51 33.04 0.740 
42.5

6 
21.4

6 
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Songluy slu 108.34 11.19 964 0.04 0.51 2.02 42.30 0.808 
41.7

4 
5.84 

Chu chu 106.60 21.37 2090 0.02 0.25 1.79 99.22 0.736 
31.7

8 
12.2

4 
Giang-

son 
gso 108.19 12.51 3100 0.18 1.28 1.95 28.71 0.753 

31.7
8 

11.6 

Nghiakh
anh 

nkh 105.41 19.22 4024 0.32 1.16 2.39 92.11 0.770 
31.7

8 
14.5

2 

Xala xla 103.92 20.94 6430 0.13 0.89 1.64 24.72 0.686 
34.1

6 
16.6

2 

2.2. Climatic Datasets 191 
The climatic datasets forced into the hydrological model in this study are daily pre- 192 

cipitation from GPM IMERG and daily maximum and minimum air temperature from 193 
NCEP CFSR V2. A detailed description of these datasets is given below. 194 

2.2.1. GPM IMERG Precipitation 195 
The half-hour 0.1 degree GPM IMERG Final run V6 (hereafter IMERG) [56] was 196 

downloaded from NASA Goddard Earth Science Data and Information Services Center 197 
(GES DISC, https://disc.gsfc.nasa.gov/). Daily precipitation totals were calculated by sum- 198 
ming 24-h periods beginning at 19:00 UTC the day prior to the day of the record to match 199 
with the local daily rainfall collection time frame. Satellite precipitation has been shown 200 
to favorably compare with rain gages in various locations [57–59]. 201 

2.2.2. NCEP CFSR V2 Air Temperature 202 
The 6-hour CFSR V2 for maximum and minimum air temperature [60] was down- 203 

loaded from the National Center for Atmospheric Research (NCAR, https://rda.ucar.edu/) 204 
Data Archive. Depending on the parameters, the available resolution varies from 0.3 de- 205 
grees to 2.5 degrees. In this study, we selected the finest resolution of 0.3 degrees. We 206 
obtained the maximum and minimum air temperature every 6 hours, and selected the 207 
maximum and minimum among these four periods per day to estimate the daily maxi- 208 
mum and minimum air temperature, respectively. 209 

2.3. Remotely Sensed Soil Moisture Datasets 210 
We obtained two soil moisture (SM) products originating from Soil Moisture Active 211 

Passive (SMAP). These products have exhibited their potential use in water resources and 212 
hydrology in the studied region [61,62], and are the data assimilation variables (i.e., state 213 
variables) which serve as the observed soil moisture to assimilate into the hydrological 214 
model. 215 

2.3.1. Soil Moisture Active Passive 216 
The 9km SMAP Level- 3 (hereafter SM9) was obtained from the National Snow and 217 

Ice Data Center (NSIDC DAAC, http://nsidc.org/data/smap). The SMAP provides, at ap- 218 
proximately 06:00 and 18:00 local time (LT), soil moisture data in descending and ascend- 219 
ing orbits, respectively. In this study, to match with daily simulation time in the study 220 
region, the SMAP ascending overpass time (18:00 LT) is selected as the observed soil mois- 221 
ture for a day. The accuracy for the SMAP data is designed with µRMSE of 0.04 m³/ m³ 222 
[5]. 223 

2.3.2. Downscaled Soil Moisture Active Passive 224 
Based on the assumption that daily soil moisture was negatively associated with the 225 

change in daily temperature under varying vegetation conditions, Fang et al., 2018 [63]; 226 
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Fang et al., 2020 [27] proposed a linear regression model to estimate the daily soil moisture 227 
condition with known daily temperature and vegetation index. Using this linear regres- 228 
sion model, we can create a finer spatial resolution for SM from high spatial resolutions 229 
of land surface temperature (reflecting the change in daily temperature) and of NDVI (re- 230 
flecting the vegetation conditions). In this way, very high spatial soil moisture from SMAP 231 
—downscaled SMAP—has increased from 9-km to 1-km resolution (hereafter SM1). This 232 
SM1 product has been validated in CONUS [27], Australia [64], and at a global scale [33]. 233 
In this study, we obtained SM1 from the global scale product [33], and extracted the 18:00 234 
LT, similar to the SM9. 235 

3. Methodology 236 
3.1. Principle of the Hydrological SWAT Model in Streamflow Simulation 237 

The Soil and Water Assessment Tool (SWAT) is a physically based, semi-distributed 238 
hydrologic model that simulates various hydrologic variables at time steps (i.e., daily, 239 
monthly, and yearly) at catchment scale. The Hydrologic Response Unit (HRU) is the basic 240 
spatial unit of the SWAT model. Runoff generation is estimated at the HRU level, and is 241 
then routed to sub-basins and, subsequently, to the entire basin [65]. In the SWAT model, 242 
runoff generation is the sum of three components—surface runoff (𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), lateral flow 243 
(𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙) and groundwater (𝑄𝑄𝑔𝑔𝑔𝑔). The mathematical expression of these three components is 244 
described in the following. 245 

The surface runoff process is a function of daily rainfall (𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑, unit in mm) and the 246 
retention parameter (𝑆𝑆, unit in mm) based on the empirical formula using Soil Conserva- 247 
tion Service (SCS) Curve Number (CN) method (SCS, 1972). 248 

𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
�𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 − 0.2 ∙ 𝑆𝑆�2

𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 + 0.8 ∙ 𝑆𝑆
 (1) 

 

 

The retention parameter S is calculated as follows. 249 

𝑆𝑆 = 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 �1 −
𝑆𝑆𝑆𝑆

𝑆𝑆𝑆𝑆 + exp (𝑤𝑤1 − 𝑤𝑤2 ∙ 𝑆𝑆𝑆𝑆)
� (2) 

 

 

Where 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum value the retention parameter can obtain from any 250 
given day (mm). SW is the total soil moisture (in mm) of the entire profile excluding the 251 
amount of water held at the wilting point. 𝑤𝑤1 and 𝑤𝑤2 are shape coefficients. 252 

The shape coefficients (𝑤𝑤1 and 𝑤𝑤2) are calculated as follows: 253 

𝑤𝑤1 = 𝑙𝑙𝑙𝑙 �
𝐹𝐹𝐹𝐹

1 − 𝑆𝑆3 ∙ 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚−1 − 𝐹𝐹𝐹𝐹� + 𝑤𝑤2 ∙ 𝐹𝐹𝐹𝐹 (3) 

𝑤𝑤2 =
�𝑙𝑙𝑙𝑙 � 𝐹𝐹𝐹𝐹

1 − 𝑆𝑆3 ∙ 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚−1 − 𝐹𝐹𝐹𝐹� − 𝑙𝑙𝑙𝑙 � 𝑆𝑆𝑆𝑆𝑆𝑆
1 − 2.54 ∙ 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚−1 − 𝑆𝑆𝑆𝑆𝑆𝑆��

(𝑆𝑆𝑆𝑆𝑆𝑆 − 𝐹𝐹𝐹𝐹)  (4) 

Where 𝐹𝐹𝐹𝐹 is field capacity, 𝑆𝑆𝑆𝑆𝑆𝑆 is the amount of water when the soil profile is com- 254 
pletely saturated (mm), and 2.54 is the retention parameter at the 𝐶𝐶𝐶𝐶 = 99. 𝑆𝑆3 (mm) and 255 
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚  (mm) are retention parameters, calculated given 𝐶𝐶𝐶𝐶1 (dry condition) and 𝐶𝐶𝐶𝐶3 (nor- 256 
mal condition) as follows. 257 

𝑆𝑆 = 25.4 ∙ �
1000
𝐶𝐶𝐶𝐶

− 10� (5) 
 

 

Where 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = 25.4 ∙ �1000
𝐶𝐶𝐶𝐶1

− 10�, and 𝑆𝑆3 = 25.4 ∙ �1000
𝐶𝐶𝐶𝐶3

− 10� 258 
The 𝐶𝐶𝐶𝐶1 and 𝐶𝐶𝐶𝐶3 are calculated given 𝐶𝐶𝐶𝐶2value (given as SWAT model input) as 259 

follows: 260 
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𝐶𝐶𝐶𝐶1 = 𝐶𝐶𝐶𝐶2 −
20 ∙ (100 − 𝐶𝐶𝐶𝐶2)

(100 − 𝐶𝐶𝐶𝐶2 + 𝑒𝑒𝑒𝑒𝑒𝑒[2.533 − 0.0636 ∙ (100 − 𝐶𝐶𝐶𝐶2)]) (6) 

𝐶𝐶𝐶𝐶3 = 𝐶𝐶𝐶𝐶2 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒[0.00673 ∙ (100 − 𝐶𝐶𝐶𝐶2)] (7) 

After the surface runoff is formed, the rest of water infiltrates the land to generate 261 
soil water inflow. Lateral flow (𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙, unit in mm ) in each soil layer is given as follows: 262 

𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙 = 0.024 ∙ �
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𝜑𝜑𝑑𝑑 ∙ 𝐿𝐿ℎ𝑖𝑖𝑖𝑖𝑖𝑖
� (8) 

 

 

Where 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠.𝑙𝑙𝑙𝑙 is saturated hydraulic conductivity (mm/hr) at layer 𝑖𝑖 (𝑖𝑖 =1, 2, 3), 𝑠𝑠𝑠𝑠𝑠𝑠 263 
is the steepness of a slope (m/m), 𝜑𝜑𝑑𝑑 is the drainable porosity of the soil layer (mm/mm), 264 
and 𝐿𝐿ℎ𝑖𝑖𝑖𝑖𝑖𝑖  is the hillslope length (m). In addition, 𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙.𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the amount of soil water 265 
that exceeds field capacity at layer 𝑖𝑖 (𝑖𝑖 =1, 2, 3), is given as follows. 266 

𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙 − 𝐹𝐹𝐹𝐹𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖 𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙 > 𝐹𝐹𝐹𝐹𝑙𝑙𝑙𝑙  

𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 0 𝑖𝑖𝑖𝑖 𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙 ≤ 𝐹𝐹𝐹𝐹𝑙𝑙𝑙𝑙 
(9) 

Where 𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙  and 𝐹𝐹𝐹𝐹𝑙𝑙𝑙𝑙 are the water content of the soil layer 𝑖𝑖 (𝑖𝑖 =1, 2, 3), on a given 267 
day (mm) and at field capacity (mm). 268 

The 𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙 , if it exists, also generates deep percolation (𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑙𝑙𝑙𝑙, unit in mm) (from one 269 
layer to the underlying layer) as follows: 270 

𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑙𝑙𝑙𝑙 = 𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �
−∆𝑡𝑡 ∙ 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠,𝑙𝑙𝑙𝑙

𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙 − 𝐹𝐹𝐹𝐹𝑙𝑙𝑙𝑙
�� (10) 

 

 

 

Where ∆𝑡𝑡 is the time step (hr). The soil water at the third layer percolates to vadose 271 
zones and groundwater (shallow aquifer layer). We focus on assimilating the soil moisture 272 
dynamic but do not consider the ‘revap’ process—water may move from shallow aquifers 273 
to overlaying unsaturated zones. 274 

3.2. Setup the Hydrological SWAT Model 275 
To set up the SWAT model across various catchment size basins, we (i) defined the 276 

same threshold to create a river network (i.e., 30 km²) when using the DEM to delineate 277 
watersheds; (ii) set up a similar slope band setup (0-, 5-, 10-, 30-, and 50- degree). 278 

For the climatic data inputs, using Thiessen polygon areal weighted average method 279 
[66], we calculated the mean areal precipitation for each sub-basin from gridded IMERG 280 
precipitation and the mean areal air temperature (i.e., maximum and minimum) for each 281 
sub-basin from gridded CFSR V2. Therefore, the precipitation and air temperature points 282 
as input for the SWAT models are equal to the total of the sub-basins. 283 

To create HRU units, DEM, land use, and soil data are required. The 90-m void-filled 284 
digital elevation model (DEM) has been obtained from the hydrological data and maps 285 
based on SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS, hy- 286 
drosheds.org) [67,68]. The HydroSHEDS DEM has provided a reliable watershed deline- 287 
ation for the given studied basins with the difference between the catchment area gener- 288 
ated from HydroSHEDS DEM and metadata being within ± 15%. The 500-m land use land 289 
cover presented in this study is obtained from Collection 6 MODIS Land Cover 290 
(MCD12Q1 and MCD12C1) [69] from the Land Processes Distributed Active Archive Cen- 291 
ter (LP DAAC, https://lpdaac.usgs.gov/products/mcd12q1v006/). The MODIS Land cover 292 
provides 17 different land cover types annually from 2001 to 2019. This study obtained 293 
2016 land cover as representing the land use in the given studied areas. Furthermore, this 294 
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study reclassified the original 17 land cover types to 10 land cover types to match with the 295 
SWAT format. This study used 1-km Harmonized World Soil Database (HWSD) version 296 
1.2 maintained by the Food Agriculture Organization (FAO, http://www.fao.org) [70,71]. 297 
To prepare soil inputs for SWAT, we reclassified the HWSD’s soil mapping unit (SMU) to 298 
the FAO soil symbol, assigned soil properties for each soil layer using the HWSD data- 299 
base, and used soil water characteristics equations from Saxton and Rawls (2006) to create 300 
a proper user soil format for SWAT. Normally, two soil layers’ profiles are created (i.e., 0– 301 
300mm, 300–1,000mm). However, SMAP can only measure soil moisture at the depth of 302 
0–50 mm. Therefore, to have a realistic assimilation process, we re-classified the soil pro- 303 
file of SWAT from two layers to three layers (0–50 mm, 50–300mm, and 300–1000m) [16]. 304 
All described spatial processing (watershed delineation and HRU creation) have been 305 
conducted in QGIS v2.6.1 and QSWAT v1.7 [72]. Summarized descriptions of previously 306 
described datasets in Section 2 and DEM, soil, land use datasets for setup SWAT model 307 
are given in Table 3. The detailed climatic conditions, catchment attributes and model 308 
setup information (sub-basins and HRUs) are provided in the Table A1. 309 

Table 3. Description of data used for SWAT and data assimilation framework in this study. 310 

Attributes Data Type Description 
Period(s)/  

Resolution 
Sources 

Climatic  
data 

Precipitation IMERG Final Run V6 
2011–

2019/0.10° 
[56] 

Max-, min- air temper-
ature 

CFSR vs2 
2011–

2019/0.25° 
[60] 

Catchment  
attributes 

Land use land cover MCD12Q1 2016/500m [69] 
Soil HWSD -/1km [70] 

Digital Elevation 
Model 

HydroSHEDS  -/90m (3sec) [67] 

Data assimilation  
variable 

Soil moisture SMAP 
2015–2019/9-

km 
[12] 

Soil moisture Downscaled SMAP 
2015–2019/1-

km 
[33] 

Ground data Streamflow 
Eight hydrological sta-

tions 
2013–2019 VMHA* 

*VMHA Vietnam Meteorological and Hydrological Administration 311 

With respect to the parameterization of the SWAT model, we selected the warm-up, 312 
calibration and validation periods as 2011–2012, 2013–2016, and 2017–2019, respectively. 313 
Thirteen different parameters (see Table A2), which impact surface runoff, evaporation, 314 
soil moisture, and channel routing in the SWAT model, have been chosen for the param- 315 
eterization. The parameters’ turning process was undertaken with the SUFI-2 algorithm 316 
that is built in to the SWAT-CUP software [73]. In the end, we optimized the best suitable 317 
parameters for each catchment for daily streamflow simulation. The SWAT driven simu- 318 
lation at this step is considered as a deterministic SWAT model. 319 

3.3. Data Assimilation - Ensemble Kalman Filter (EnKF) 320 
3.3.1. Bias Correction of Observed SM and Ensembles Generation 321 

The EnKF is a sequential data assimilation technique that is best applied using unbi- 322 
ased observations. To limit error covariance of the modeled and observed states in the 323 
EnKF, systematic errors between satellite SM retrievals and model states must be cor- 324 
rected before assimilation. It is assumed that long-term statistics of model states are con- 325 
sistent with those of in-situ SM [74], thus the model simulated states are normally used to 326 
correct biases in the satellite SM retrievals. We first estimated observed SM (from SM9 327 
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and SM1) for the topsoil layer (0–50 mm) for each HRU by calculating average satellite- 328 
observed SM at each sub-basin using the areal weighted average method [66]. The sys- 329 
tematic differences between modeled (i.e., open loop) and remote sensing of soil moisture 330 
were then corrected using a mean-variance approach [16]. From the mean-variance match- 331 
ing, both model simulated SM and observed SM were estimated on monthly timescale 332 
and HRU spatial scale. The bias corrected SM was then used for the next analysis. 333 

We generated 100 ensembles using the Latin Hypercube sampling technique [16] and 334 
defined ranges of error variances used for generating ensemble of model forcing, soil field 335 
capacity and observed soil moisture states (see Table A3). Since we employed this EnKF 336 
data assimilation framework in multiple catchments with different climatic conditions, as 337 
well as with two different SM products, we assessed the error variances for each perturbed 338 
variable. 339 

3.3.2. EnKF algorithm 340 
The EnKF is a Monte Carlo approximation (i.e., ensemble) of the standard Kalman 341 

Filter for use in a non-linear model. It uses an ensemble of modelled states in a Bayesian- 342 
based auto-recursive analysis framework to optimally merge model estimates with state 343 
observations (i.e., SM). The EnKF was operated in two steps as follows. 344 

Step 1—Uncertainties from the ensemble of modeled forecasts and ensemble of ob- 345 
servations 346 

During the soil water routing progress at any time step, at each HRU, the ensemble 347 
of model state (i.e., soil moisture) forecast is given as below. 348 

𝑥𝑥𝑘𝑘+1𝑖𝑖− = 𝑴𝑴�𝑥𝑥𝑘𝑘𝑖𝑖+,𝑈𝑈𝑘𝑘𝑖𝑖 � + 𝑤𝑤𝑘𝑘+1 (11) 
  

Where 𝑴𝑴  is a non-linear model, which is the hydrological SWAT model in this 349 
study. The superscript 𝑖𝑖 represents a matrix of state ensembles with the forecast state 350 
(sign ‘-‘), and analyzed state (sign ‘+’). The subscript 𝑘𝑘 represents the time step. 𝑈𝑈𝑘𝑘𝑖𝑖  is an 351 
ensemble of the model forcing. In this case, 𝑈𝑈 is perturbed precipitation. 𝑤𝑤𝑘𝑘+1 is Gauss- 352 
ian white noise representing the error due to uncertainties of forcing and model structure. 353 
Further, the ensemble of observations using the ensemble of states is calculated as follows. 354 

𝑧̂𝑧𝑘𝑘+1𝑖𝑖 = 𝑯𝑯𝑘𝑘𝑥𝑥𝑘𝑘+1𝑖𝑖− + 𝑣𝑣𝑘𝑘+1 (12) 
  

Where 𝑧̂𝑧 is the model predicted observation ensemble at time 𝑘𝑘 + 1. 𝑯𝑯 is the obser- 355 
vation operation to match the model states with the observations. Here, 𝑯𝑯 is the areal 356 
weighted average soil moisture at HRU. 𝑣𝑣 is the observation error, with separation of 357 
model errors and assumption of normally distributed with covariance ∑𝑧𝑧

𝑘𝑘+1 . 358 
Step 2- Data assimilation progress 359 
The model forecasts are updated towards observations using Kalman Gain matrix 360 

(𝑲𝑲) ‘s weights as, 361 

𝑥𝑥𝑘𝑘+1𝑖𝑖+ = 𝑥𝑥𝑘𝑘+1𝑖𝑖− + 𝑲𝑲�𝑧𝑧𝑘𝑘+1𝑖𝑖 − 𝑧̂𝑧𝑘𝑘+1𝑖𝑖 � (13) 
  

Where 𝑥𝑥𝑘𝑘+1𝑖𝑖− , 𝑥𝑥𝑘𝑘+1𝑖𝑖+  represent an ensemble of model forecasts and of state after assim- 362 
ilation, respectively. 𝑧𝑧𝑘𝑘+1𝑖𝑖  is an observation ensemble generated using the observation co- 363 
variance matrix ∑𝑧𝑧

𝑘𝑘+1 . 364 
The best linear unbiased estimation of 𝑥𝑥𝑘𝑘+1𝑖𝑖+  when the Kalma gain is calculated as, 365 
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Where ∑𝑍𝑍𝑍𝑍
𝑘𝑘+1 is the covariance of the model predicted observation ensemble ob- 366 

tained from 𝑯𝑯𝑘𝑘𝑥𝑥𝑘𝑘+1𝑖𝑖− . ∑𝑋𝑋𝑋𝑋
𝑘𝑘+1 is the cross variance of the model forecast and observation 367 

prediction. After that, we resample the analyzed model state back into original layers at 368 
each HRU. The update retention parameters and soil moisture routing prior to the next 369 
step (t+1) are calculated as the equations (2) and (9), respectively. 370 

Figure 2 presents the flowchart of this study with detailed steps for each of the sim- 371 
ulation scenarios: the open-loop model (hereafter OL); the assimilation of SM9 into the 372 
SWAT model with the EnKF technique (hereafter EnKF-SM9); and the assimilation of SM1 373 
into the SWAT model with the EnKF technique (hereafter EnKF-SM1). The DA evaluation 374 
is in the period of 2017–2019 because this is the same as the validation period of the deter- 375 
ministic SWAT model. 376 

 377 
Figure 2. Flow chart of this study. EnKF-SM9 and EnKF-SM1 stand for streamflow simulations us- 378 
ing the SWAT model with the state variable of SM9 and EnKF technique, and streamflow simula- 379 
tions using the SWAT model with the state variable of downscaled SM1 and EnKF technique, re- 380 
spectively. 381 

3.4. Streamflow Performance Metrics 382 
The modified Kling–Gupta efficiency (𝐾𝐾𝐾𝐾𝐾𝐾, [75]) was used to evaluate streamflow 383 

simulations, with its formula as follows. 384 

𝐾𝐾𝐾𝐾𝐾𝐾
= 1 − �(𝑟𝑟 − 1)2 + (𝛽𝛽 − 1)2 + (𝛾𝛾 − 1)2 

(15) 
 

 

In which: 385 
𝑟𝑟 is the Pearson correlation coefficient, reflecting the error in shape and timing be- 386 

tween observed and simulated streamflow. 387 
𝛽𝛽 is the bias term, evaluating the bias between observed and simulated streamflow. 388 
𝛾𝛾 is the ratio between coefficients of variation in observed and simulated streamflow, 389 

assessing the flow variability error with bias consideration. 390 
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We also calculated the benefit of the DA by using the Efficiency Index (𝐸𝐸𝐸𝐸𝐸𝐸)[76], ex- 391 
pressed as 392 

𝐸𝐸𝐸𝐸𝐸𝐸 = 1 −
∑ �𝑄𝑄𝑑𝑑𝑑𝑑,𝑘𝑘 − 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜,𝑘𝑘�

2𝑛𝑛
𝑘𝑘=1

∑ �𝑄𝑄𝑜𝑜𝑜𝑜,𝑘𝑘 − 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜,𝑘𝑘�
2𝑛𝑛

𝑘𝑘=1

 (16) 

 

 

Where 𝑛𝑛 represents the total time steps. 𝑄𝑄𝑑𝑑𝑑𝑑,𝑘𝑘 , 𝑄𝑄𝑜𝑜𝑜𝑜,𝑘𝑘, and 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜,𝑘𝑘 denote the simu- 393 
lated streamflow with data assimilation, simulated streamflow without data assimilation 394 
(open loop), and observed streamflow at time step 𝑘𝑘, respectively. 𝐸𝐸𝐸𝐸𝐸𝐸 > 0 denotes an 395 
improvement in streamflow simulation after implementing the DA scheme and vice versa 396 
for 𝐸𝐸𝐸𝐸𝐸𝐸 ≤ 0. 397 

To focus on different aspects of flow time series, we transformed the flow time series 398 
before calculating 𝐾𝐾𝐾𝐾𝐾𝐾 or 𝐸𝐸𝐸𝐸𝐸𝐸, as follows [77]. 399 

- Normal streamflow time series (hereafter 𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛), to have more weights on high flow. 400 
- Square root streamflow time series (hereafter 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠), to have more weights on aver- 401 

age flow. 402 
- Inverse streamflow time series (hereafter 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖), to have more weights on low flow. 403 

It is noted that with inverse streamflow transformation, to avoid zero flow, we added 404 
1/100 of mean observed flow before the transformation. 405 

4. Results and Discussion 406 
4.1. Characteristics of Soil Moisture SMAP Products 407 

During the period of 2017–2019, apart from July, the average available data for SM9 408 
across the studied catchments is approximately 35% in each month (Figure 3). In July, a 409 
significant reduction in coverage of SM9 (below 25%) was observed. This is likely due to 410 
a large gap in July 2019 (see Figure A1) because SMAP satellite was in a safe mode and 411 
did not provide the observed soil moisture information [78]. The averaged coverage of 412 
SM1 was only one third of that of SM9 (approximately 11.5% in each month) and was 5% 413 
in July. The reason for SM1′s low coverage in July is similar to that of SM9 as the SM1 is 414 
the downscaled product of SM9 and therefore inherits the gap from SM9. 415 

 416 
Figure 3. Radar chart of average soil moisture available data (in percent) over 8 catchments in each 417 
month for SMAP 9km (SM9) and SMAP 1km (SM1) during 2017–2019. 418 

The relationship between estimated SM value from SM9 and SM1 presented in Figure 419 
4. Two small catchments—gvo and aho (<500 km², Figure 4a, b)—exhibited weak correla- 420 
tion between the two SM datasets as compared to the larger catchments. In these small 421 
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catchments, the SM1 product seems to estimate higher SM value as higher density points 422 
are observed at the lower part of 1-1 line. 423 

 424 
Figure 4. Comparison between soil moisture volume metric estimated at sub-basins over eight 425 
catchments (a) gvo, (b) aho, (c) bye, (d) slu, (e) chu, (f) gso, (g) nkh, and (h) xla using SM9 and SM1. 426 
The points colors indicate points density, with more red meaning higher points density. The values 427 
in the bottom right indicate correlation values between the two soil moisture datasets. n is the total 428 
pair days which both SM9 and SM1 have values at a sub-basin. 429 

Figure 5 illustrates the proficiency of two SM products for reflecting a dry-down 430 
event in a medium-sized bye catchment. We used precipitation and SM to examine the 431 
drying of soil over time with respect to a rainfall event. After the rainfall event on April 4, 432 
2018 (average 8.5 mm for the entire catchment), the catchment received less rainfall in 433 
subsequent days, and almost no rainfall after April 8. During the same period, we noted 434 
that both SM products exhibited similar dry down patterns. It is possible that SMAP ob- 435 
served the near-surface soil moisture conditions as they transitioned from saturated to dry 436 
conditions. Inter-comparison between these two SM products highlights the additional 437 
spatial patterns in soil moisture provided by each product. The SM1 dataset provides de- 438 
tailed variation in SM in space as compared to the SM9 dataset, demonstrated by its high 439 
standard deviation values (Figure 5c). However, we also see the coverage of SM1 was not 440 
complete for the entire catchment. This is because of the limited coverage of this product 441 
due to its dependence on LST data, which is influenced by cloud cover. 442 
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 443 
Figure 5. Spatial variation in a dry-down event in bye catchment from April 4, 2018, to April 9, 2018, 444 
with soil moisture SMAP 9km (SM9, a1, a2, a3), soil moisture SMAP 1km (SM1, b1, b2, b3), and (c) 445 
time series of dry-down event at the same period from GPM IMERG (black bar) and SM9 (blue) and 446 
SM1(red). The error bars indicate standard deviation of SM variation in the catchment. 447 

4.2. Performances of Deterministic Hydrological SWAT Model in Simulating Streamflow 448 
The statistical metrics for the SWAT model are presented in Table 4, and optimized 449 

parameter sets of the SWAT model for each basin are provided in Supplementary 3. The 450 
model performances for high flow (𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛) and average flow (𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠) were satisfactory, with 451 
median KGE values of calibration/validation of 0.617/0.607 for high flow and 0.702/0.695 452 
for average flow (Table 4). The SWAT streamflow simulations are robust across the catch- 453 
ments (all KGE values were greater than 0.5), except for aho and slu catchments. It is likely 454 
that the rainfall patterns in these basins could be affected by topography [43,79]. The 455 
streamflow simulation for low flow (𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖) was relatively poor, with a median KGE of - 456 
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0.263 and -0.086 for the calibration and validation periods, respectively. This poor perfor- 457 
mance for low flow has also been observed in previous studies [38]. 458 

Table 4. Statistical metrics for calibration and validation period with deterministic SWAT model. 459 
𝐾𝐾𝐾𝐾𝐾𝐾𝑛𝑛𝑛𝑛𝑛𝑛, 𝐾𝐾𝐾𝐾𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠, and 𝐾𝐾𝐾𝐾𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 indicate performances with 𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛 (more weight on high flow), 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 460 
(more weight on average flow), and 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖  (more weight on low flow), respectively. 461 

Station Name 
Calibration (2013–16) Validation (2017–19) 

KGE_nor KGE_sqr KGE_inv KGE_nor KGE_sqr KGE_inv 
gvo 0.623 0.703 0.413 0.670 0.686 0.674 
aho 0.486 0.613 -0.984 0.417 0.462 -0.382 
bye 0.786 0.864 0.176 0.575 0.796 0.259 
slu 0.334 0.598 0.419 0.303 0.410 -0.089 
chu 0.611 0.312 -2.708 0.694 0.470 -1.774 
gso 0.757 0.718 -2.727 0.639 0.704 -0.977 
nkh 0.542 0.700 -0.701 0.513 0.788 -0.082 
xla 0.698 0.786 0.479 0.681 0.750 0.650 

median 0.617 0.702 -0.263 0.607 0.695 -0.086 

4.3. Temporal Variation for Open Loop, EnKF-SM9, and EnKF-SM1 462 
Generally, soil moisture profiles across sub-basins in each catchment are mostly sim- 463 

ilar. For an illustrated purpose, we present here profiles of a sub-basin at xla river basin 464 
(>6,000 km²) in terms of precipitation, estimated SM from the open loop, EnKF-SM9, and 465 
EnKF-SM1 models for topsoil layer (0-50 mm), during the year of 2019 (Figure 6). It is 466 
interesting that variation in topsoil SM does not exhibit strong correlation with variation 467 
in precipitation. This observation is different from another study in the tropical regions 468 
[16]. The relationship between topsoil SM and precipitation is even weaker when we ex- 469 
amine it at smaller catchments (data not shown). Looking at details for typical 10-day pe- 470 
riods in January 2019 (box A) and September 2019 (box B), we found the impacts of the 471 
DA framework on the SM simulations. Specifically, the SM simulations with the DA had 472 
drier down or more fluctuation as compared to simulations without DA, according to the 473 
variation in observed SM from SM9 and SM1. With respect to temporal simulated stream- 474 
flow, the OL-based SWAT model produced results quite similar to the simulated time 475 
series from the deterministic SWAT model (Figure 7a). On the other hand, the simulated 476 
streamflow from EnKF-SM9-SWAT and EnKF-SM1-SWAT are slightly better, with higher 477 
𝐾𝐾𝐾𝐾𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠  values (Figure 7 a). When we examined the error density between the observed 478 
and simulated streamflow from different simulation scenarios, the error density from 479 
EnKF-SM1-SWAT had the peak closest to the zero-error vertical line (Figure 7 b). 480 
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 481 
Figure 6. Profile of a sub-basin of xla river basin during the year of 2019 for temporal variation in 482 
(a) areal precipitation; (b) soil moisture at the topsoil layer (0–5 mm) of OL, EnKF-SM9 model and 483 
observed SM9; (c) soil moisture at the topsoil layer (0–50 mm) of OL, EnKF-SM1 model and observed 484 
SM1; (d) zoom of the last ten days in January 2019 (box A); (e) zoom of the last ten days in September 485 
2019 (box B). 486 

 487 
Figure 7. (a) Streamflow hydrograph comparison, and (b) error density between observed and sim- 488 
ulated streamflow from different hydrological SWAT simulation scenarios during the year of 2019 489 
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at xla river basin. The black dash line in (b) is the zero error vertical line. The inlet panel in (b) zooms 490 
in the peak error density from different simulation scenarios. 491 

4.4. Statistical Performances for Data Assimilation with SM9 and SM1 492 
Figure 8 represents boxplots of streamflow simulations from the OL, EnKF-SM9, 493 

EnKF-SM1 models in two cases- all catchments (n=8) and catchments > 500 km² (n=6). The 494 
defined error values for each basin for EnKF-SM9 and EnKF-SM1 are provided in Supple- 495 
mentary 4 and 5, respectively. Overall, in the high flow assessment metric (Figure 8a), the 496 
EnKF-SM1 model was slightly better than the OL model at either consideration of all 497 
catchments or catchments greater than 500 km². Meanwhile, the EnKF-SM9 model was 498 
only better than the OL model in the case of catchments greater than 500 km². We interpret 499 
this result as evidence that the high-spatial SM1 is robust in all types of catchments, while 500 
the SM9 is too-coarse for small watersheds. Furthermore, the assessment of average flow 501 
provided the same conclusion (Figure 8b). This finding is similar to Abbaszadeh et al., 502 
2020 [13], as it implies the importance of spatial resolution over temporal resolution, but 503 
is in contrast to the work of Azimi et al., 2020 [36]. 504 

On the other hand, low flow assessment (Figure 8c) revealed that the EnKF-SM9 505 
model had a higher median KGE score than the OL-model, either at all catchments or at 506 
catchments > 500 km². This may be because the OL model considers forecast error by per- 507 
turbing rainfall forcing only, while the EnKF-SM9 model considers both forecast error and 508 
model error by perturbing rainfall forcing and soil moisture. The soil water content 509 
changes are more sensitive with changes in low flow in dry conditions than high flow in 510 
wet conditions or average flow. 511 

 512 

 513 

Figure 8. Performance metrics in streamflow simulation in (a) normal-, (b) square root-, and (c) in- 514 
verse-time series for open loop (OL)-, EnKF-SM9-, and EnKF-SM1-based SWAT model during the 515 
period 2017-2019. With respect to all catchments, total simulated catchments are 8. With respect to 516 
catchments having an area greater than 500 km², total simulated catchments are 6. 517 

4.5. Assessment of Factors Impact on DA Performances 518 
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We examined the relationship between the Efficiency index (𝐸𝐸𝐸𝐸𝐸𝐸) with the available 519 
SM for two DA models, EnKF-SM9 and EnKF-SM1 (Figure 9). From all flow types (high, 520 
average, and low flow), the EnKF-SM1 models exhibited higher Eff scores than the EnKF- 521 
SM9 models. When we excluded small catchments (< 500 km²), higher Eff scores were 522 
observed for EnKF-SM models. Since SM1 has a shorter data record, our results suggest 523 
that spatial information plays a more important role than temporal information. We also 524 
found that the SM1 available day has a significant positive correlation with 𝐸𝐸𝐸𝐸𝐸𝐸 scores, 525 
while this relationship for available SM9 is not significant (see Figure A2), suggesting a 526 
potential approach for improving the high-spatial SM-based DA model that increases its 527 
temporal information. 528 

 529 
Figure 9. Comparison between average efficiency index of streamflow simulation using assimilation 530 
of EnKF-SM9 model and assimilation of EnKF-SM1 model and OL-based model for all catchments 531 
(a, b, c) and catchments > 500 km² (d, e, f). Points above zero-dash line indicate an improvement in 532 
streamflow simulation after implementing the data assimilation framework as compared with the 533 
OL-based model simulation. 534 

The relationships between the 𝐸𝐸𝐸𝐸𝐸𝐸  and normalized different vegetation index 535 
(NDVI) for average flow, high flow, and low flow are given in Figure 10 a, b and c. Catch- 536 
ments with dense vegetation (higher NDVI values) seem to have lower 𝐸𝐸𝐸𝐸𝐸𝐸 scores, re- 537 
flecting the limitations of satellite-based SM to accurately capture soil water content at 538 
these dense vegetated catchments. This result is consistent with that of Azimi et al., 2020 539 
[36]. However, our results provide new insight. When we compared the two SM-based 540 
models, the EnKF-SM1 seems to have less dependence with NDVI, demonstrated by its 541 
𝐸𝐸𝐸𝐸𝐸𝐸 not being significantly reduced when NDVI values were high, as compared to the 542 
departure of 𝐸𝐸𝐸𝐸𝐸𝐸 of the EnKF-SM9 model. 543 
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 544 
Figure 10. Relationship between efficiency of data assimilation for (a) 𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛(high flow score); (b) 545 
𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠(average flow score); and (c) 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖(low flow score) time series with average NDVI values 546 
over eight catchments. 547 

5. Conclusions and Further Study 548 
As satellite-based remote sensing technology continues to advance, operational ap- 549 

plications of satellite-based soil moisture products are becoming more routine. These val- 550 
uable earth observations are proving to be a significant addition to several water resource 551 
management applications. However, there remain many unanswered questions regard- 552 
ing the most effective approach for integrating these data, as well as how temporal reso- 553 
lution, spatial resolution, and data record length affect their utility. The primary goal of 554 
this study was to address some of these questions and examine the trade-offs between 555 
optimal spatial vs optimal temporal resolution for two remotely sensed soil moisture (SM) 556 
products in a hydrologic data assimilation framework. Two remotely sensed SM da- 557 
tasets—downscaled SMAP 1km (SM1) and SMAP 9km (SM9)—were assimilated in the 558 
hydrological model (Soil and Water Assessment Tool, SWAT) using the Ensemble Kalman 559 
Filter (EnKF) algorithm. The effect of basin size was assessed by comparing simulated 560 
streamflow performance in eight catchments ranging in size from 267km² to 6,430 km² 561 
across tropical Vietnam. 562 

Model fidelity was influenced by both temporal and spatial resolution, however, the 563 
DA-based models were slightly better than the open-loop models in three aspects of flow 564 
assessment with KGE metrics (low, average, and high flow). In addition, the EnKF-SM1 565 
model was more pronounced, especially for small catchments. This indicates that the im- 566 
provement in the streamflow simulation due to assimilated soil moisture is more signifi- 567 
cant in catchments where downscaled SMAP 1km has fewer missing observations. We 568 
also found that the vegetation effects on soil moisture are less significant in the EnKF-SM1 569 
models compared to EnKF-SM9 models, further demonstrating the reduced uncertainty 570 
in streamflow from applying the finer spatial resolution soil moisture product. To this 571 
end, this study demonstrates the potential benefits of higher spatial resolution remotely 572 
sensed SM for improving hydrologic applications. 573 

Overall, the results of this study provide useful information for developers of satel- 574 
lite-based SM product for improving their soil moisture retrieval algorithms at a global 575 
scale, especially in tropical regions. In addition, we conclude that optimal strategies for 576 
the integration of satellite-based soil moisture in hydrologic models must carefully con- 577 
sider basin size, climate, land cover, and, perhaps most importantly, the spatial and tem- 578 
poral resolution of the satellite-based products. 579 
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www.mdpi.com/xxx/s1, 581 

Author Contributions: Conceptualization, methodology, software, visualization, validation, writ- 582 
ing—original draft preparation, M.H.L.; methodology, validation, software, writing—review and 583 



Remote Sens. 2022, 14, x FOR PEER REVIEW 21 of 28 
 

 

editing, B.Q.N.; conceptualization, methodology, writing—review and editing, H.T.P.; methodol- 584 
ogy, software, writing—review and editing, A.P.; data curation, visualization, writing—review and 585 
editing, H.X.D.; writing—review and editing, R.R.; writing—review and editing - J.D.B; funding 586 
acquisition, writing—review and editing, supervision, V.L.. All authors have read and agreed to the 587 
published version of the manuscript. 588 

Funding: This research received no external funding. 589 

Institutional Review Board Statement: Not applicable 590 

Informed Consent Statement: Not applicable 591 

Data Availability Statement:  592 

Acknowledgments: We would like to express our sincere gratitude to the Vietnam Meteorological 593 
and Hydrological Administration for providing us with the required hydrological measurements 594 
that enabled this study. Special acknowledgement also goes for following institutions for providing 595 
easy access to their products (institution | products), including NASA| GPM IMERG precipitation, 596 
SMAP soil moisture, MODIS land cover, MODIS NDVI; NCAR | CFSR air temperature; FAO | 597 
HWSD soil properties; and Hydro SHEDS| DEM. We would also like to thank Dr. Bin Fang (the 598 
University of Virginia) for sharing the global downscaled SMAP 1 km from his research. We also 599 
publish codes relevant to this study, including (i) R language codes for preparation of forcing inputs 600 
(climatic data and catchment attributes) for multiple swat projects (version 2012)” in the following 601 
link https://github.com/mhle510/swatIP; (ii) R language codes and complied execution file for 602 
SMAP data assimilation for hydrologic SWAT model streamflow simulation using Ensemble Kal- 603 
man Filter in the following link https://github.com/mhle510/smap_enkf_swat; and (iii) Fortran 604 
source codes for EnKF algorithms with SWAT version 2012 in the following link 605 
https://github.com/amolpatil771/SWAT_DA. 606 

Conflicts of Interest: The authors declare no conflict of interest 607 

  608 



Remote Sens. 2022, 14, x FOR PEER REVIEW 22 of 28 
 

 

Appendix 609 

Table A1. Characteristics of climatic conditions and catchment attributes in eight studied catch- 610 
ments. The precipitation and potential evapotranspiration in each catchment are estimated from the 611 
calibrated SWAT model for the entire area of that catchment. 612 

Types 

Data 
De-

scrip-
tion 

Spatial 
Resolu-

tion 

gvo aho bye slu chu gso nkh xla 

Benhai 
River 

Trakhu
c River 

Nam-
nua 

River 

Luy 
River 

Luc-
Nam 
River 

Krong 
Ana 

River 

Hieu 
River 

Ma 
River 

Area 
(km2) 

  267 383 638 964 2,090 3,100 4,024 6,430 

Dry 
Season/  

Wet 
Season 

  I-VIII/ 
IX-XII 

I-VIII/ 
IX-XII 

XI-IV/ 
V-X 

XI-IV/ 
V-X 

XI-IV/ 
V-X 

XII-IV/ 
V-XI 

XII-V/ 
VI-XI 

XI-IV/ 
V-X 

Precipi-
tation  

(unit in 
mm) 

IMERG 
Final v6 

~10km 1,911 2,165 1,644 1,577 1,807 1,798 1,755 1,629 

Poten-
tial 

Evapo-
transpi-
ration 

(unit in 
mm) 

Har-
greaves 
method 

with 
data 
from 
CFSR 
vs2 

~25km 1,024 849 1,051 788 1,258 1,223 1,018 1,402 

Digital 
Eleva-

tion 
(DEM)  
(unit in 

m) 

Hy-
droSHE

Ds 
90m 

Min: 10 Min: 19 
Min: 
470 

Min: 25 Min: 7 
Min: 
407 

Min: 33 
Min: 
282 

Max: 
1213 

Max: 
1008 

Max: 
1736 

Max: 
1747 

Max: 
1003 

Max: 
2407 

Max: 
2416 

Max: 
2164 

Mean: 
215 

Mean: 
366 

Mean: 
945 

Mean: 
451 

Mean: 
248 

Mean: 
658 

Mean: 
396 

Mean: 
958 

Land 
use* 

MODIS
12Q1 

500 m 

FRSE 
(50.36) 

FRSE 
(67.10) 

FRSE 
(32.07) 

FRSE 
(46.15) 

SHRB 
(70.67) 

CRGR 
(41.10) 

SHRB 
(45.94) 

SHRB 
(75.97) 

SHRB 
(47.18) 

SHRB 
(31.31) 

SHRB 
(63.75) 

CRGR 
(18.02) 

FRSE 
(27.84) 

SHRB 
(30.04) 

FRSE 
(42.85) 

FRSE 
(18.44) 

   SHRB 
(16.97) 

 FRSE 
(26.51) 

  

   FRSD 
(11.5) 

    

Soil** HWSD 1km 

Ao 
(100) 

Ao 
(98.67) 

Ao 
(100) 

Ao 
(77.26) 

Ao 
(92.95) 

Fr 
(39.62) 

Ao 
(98.85) 

Ao 
(100) 

   Lc 
(18.64) 

Af 
(5.58) 

Af 
(30.21) 

  

     Ao 
(30.09) 

  

Sub-ba-
sins, 

HRUs 

10% 
soil, 
10% 

 5 sub-
basins 

9 sub-
basins 

9 sub-
basins 

17 sub-
basins 

35 sub-
basins 

59 sub-
basins 

91 sub-
basins 

125 
sub-ba-

sins 
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land 
use, 
10% 

slope 

24 
HRUs 

50 
HRUs 

60 
HRUs 

116 
HRUs 

186 
HRUs 

314 
HRUs 

590 
HRUs 

579 
HRUs 

Note: 613 

* Full name for land use- ‘FRSE’ Evergreen forests, ’FRSD’ Deciduous forests, ’SHRB’ shrubland, ‘CRGR’ cropland. Only major 614 
land use (>5% of total catchment area) or the first four major land use are listed. Values in blanket are percentage value over 615 
total catchment area. 616 

** Full name for soil data- ‘Ao’ Orthic Acrisols, ’Af’ Ferric Acrisols, ‘Fr’ Rhodic Ferralsols, ‘Lc’ Chromic Luvisol. Only major 617 
soil (>5% of total catchment area) or the first four major soil are listed. Values in blanket are percentage value over total catch- 618 
ment area. 619 

 620 

Table A2. Name, description, range and control processes of SWAT parameters. “r_”, “v_”, and 621 
“a_” refer to modify the default value by making a relative change to the default value, replacing 622 
the default value by the specific value and adding a specific value, respectively. 623 

Parameter 
Name 

Units Description Default Range Process 

R_CN2.mgt none SCS runoff curve number 
HRU 

specific 
-0.25, +0.25 Surface Runoff 

V_SUR-
LAG.bsn 

none Surface runoff lag time 4 0.05, +24 Surface Runoff 

R_HRU_SLP.h
ru 

m/m Average slope steepness 0.217 -0.25, +0.25 Surface Runoff 

V_GW_REVA
P.gw 

none 
Groundwater “revap” co-

efficient 
0.02 0.02, +2 

Evapotranspira-
tion 

V_ESCO.hru none 
Soil evaporation compen-

sation factor 
0.95 0, +1 

Evapotranspira-
tion 

V_CH_N2.rte none 
Manning’s “n” value for 

the main channel 
0.014 0, +0.3 Channel 

V_CH_K2.rte mm/hr 
Effective hydraulic con-

ductivity in main channel 
alluvium 

0 0, +500 Channel 

R_SOL_AWC(.
.).sol 

mm 
H2O 
/mm 
soil 

Available water capacity 
of the soil layer 

0.1112 -0.25, +0.25 Soil 

R_SOL_K(..).so
l 

mm/hr 
Saturated hydraulic con-

ductivity 
7.113 -0.25, +0.25 Soil 

V_AL-
PHA_BF.gw 

days Base flow alpha factor  0.048 0, +1 Groundwater 

V_GW_DE-
LAY.gw 

days Groundwater delay 31 0, +500 Groundwater 

V_GWQMN.g
w 

mm 
H2O 

Threshold depth of water 
in the shallow aquifer 

required for return flow to 
occur  

1000 0, +5000 Groundwater 

V_RCHRG_D
P.gw 

None 
Deep aquifer percolation 

fraction 
0.05 0, +1 Groundwater 

 624 
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Table A3. Name, description and the range of perturbation defined errors of the EnKF data assimi- 625 
lation framework. 626 

Perturbation variables Description Range 
Observed soil moisture Observed soil moisture coefficient 50–200 

Precipitation Precipitation error coefficient 0.1–1.0 

Field capacity for soil layer 1 
Field capacity for soil layer 1 coeffi-

cient 
0.1-0.3 

Field capacity for soil layer 2 
Field capacity for soil layer 2 coeffi-

cient 
0.05–0.2 

Field capacity for soil layer 3 
Field capacity for soil layer 3 coeffi-

cient 
0.01–0.1 

Soil moisture layer 1 
Soil moisture error standard deviation 

for layer 1 
0.01–0.1 

Soil moisture layer 2 
Soil moisture error standard deviation 

for layer 2 
0.01–0.1 

Soil moisture layer 3 
Soil moisture error standard deviation 

for layer 3 
0.01–0.1 

Curve number Curve number error standard 1–5 
 627 

Figure A1. Available soil moisture (grey rectangular) for SMAP 9km (SM9) and downscaled SMAP 628 
1km (SM1) at each catchment during 2017–2019. The y-axis label is written as hydrological station 629 
name and soil moisture products. An available soil moisture day is counted as at least 30% of basin 630 
area has soil moisture pixels. 631 

 632 
Figure A2. Relationship between the efficiency index and available soil moisture with the 𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛 time 633 
series. 634 
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