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Background: Plasmonics




Fundamentals of Plasmonics

« Surface plasmons - light-induced
electronic excitations

* Oscillations of electric field and
polarization localized in space

* Plasmonic sensing uses change in local
dielectric environment at nanoparticle
surface

Mayer, Chem. Rev, 2011
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Fundamentals of Plasmonics
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Modeling Plasmonics

o Presence of plasmons is dependent on “plasma-like” permittivity of metals in
the optical frequency range (Drude Model)

o Can consider a spherical nanoparticle and solve Maxwell’s equations using
quasi-static approximations:
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* Spherical nanoparticle resonance condition: €', = X can range from 2-20 as

— 2€5ut aspect ratio increases

« For dielectrics typically used in biosensing (e.g.

water), e, ¢ ~ 2.0
* Therefore €. ~ -4 for resonance



The dielectric function of gold supports resonance

condition in optical frequencies

Dieletric function of gold
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Effects of Nanoparticle Shape on Plasmonic Resonance
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Case Study 1:

Nanoplasmonic Sensing at NASA

e

Work completed primarily by Timothy J. Palinski.
8 NASA prior role, current role: Honeywell International, Inc. Broomfield, CO. USA.



Applications of Plasmonic Fields

Biosensing Enhanced photodetection
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Sequence-Specific Detection of SARS-CoV-2

Sequence-Specific PNA PNA-RNA
Conjugation . Hybridization
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PNA Probe Target Viral RNA Sequence

2019-nCoV_N1 Probe ACC CCG CAT TACGTT TGG TGG ACC
2019-nCoV_N2 Probe ACA ATT TGC CCC CAG CGC TTC AG
B.1.1.7 SARS-CoV-2 ACC TCA AGG TAT TGG GAA CCT
B.1.351 SARS-CoV-2 CTGTTTTTC ATA GCG CTT CCA
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Simulated Sensor Response
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Experimental Sensor Response

a . Full Spectra SARS-CoV-2 b SARS-CoV-2 RNA Sensing
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Towards a Portable Plasmonic Reader

Typical Lab-Based Setup
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Affinité Instruments, PASPR
https://www.affiniteinstruments.com

T. Brulé, J.F. Masson et al., Analyst, 2017, 142, 2161-2168
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Towards a Portable Plasmonic Reader
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RNA Detection Using a Portable System
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Summary

Our recent results

We have designed, fabricated, and tested plasmonic structures for sensitive, on-chip detection of target biomarkers. These
structures consist of plasmonic gold nanoantennas coupled to a photonic waveguide. We demonstrate selective detection of target
RNA sequences which is manifested as a well-defined shift in the resonance feature. Integration of plasmonic/photonic structures
with photodetectors for on-chip field deployment is viable.

Device design DNA/RNA detection .
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Case Study 2:

Design and Testing of Nanoparticle Geometries for Liquid Biopsy

Work done under supervision of Dr. John X.J. Zhang & Dr. Gregory Tsongalis at Dartmouth College,
17 funded by SONY Corporation



Liquid Biopsies for Screening, Diagnosis, and Monitoring

Predictive Screening —
CTCs, ctDNA/RNA
Exosomes, Antibodies

Monitoring - Relapse, Oy Diagnostics - Tumor

Remission, Residual Fhy . staging, Disease
disease — 4 progression

Targeted Therapy - Prognostics — Tumor

Personalized medicine,
Adjuvant therapy

18 Tadimety, Syed, et al. /nteg. Biol. 2017



Liquid Biopsy Nanosensor: Principle of Operation
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Study Overview

« Different nanoparticle shapes have
different resonance features (plasmonic
spectra)

« They also have different sensitivities

« Can we rationally design a particle better
than a nanorod to improve limit of
detection?

* How can we build simulations to inform our
design?

Tadimety*, Wu* et al. Sci. Rep. 2021, Nanoparticle Image Courtesy of Dr. Nanjing Hao
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Study Workflow: Simulation, Experiment, and Testing

(b) Build Numerical (d) Conjugate for
( Simulation ctDNA Capture -2

Wavelength

(a) Synthesize (c) Print for On-Chip >
Particles Testing

— (e) Collect Spectra

21 Tadimety*, Wu* et al. Sci. Rep. 2021.



Colloidal Nanoparticle Synthesis Workflow

Stabilizer

HAuCl, ><

CTAB
HAuCl, Ascorbic Acid

\ -y Aging (30°C)
AgNO, ‘

22 Tadimety*, Wu* et al. Sci. Rep. 2021.
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Sensor Fabrication: Deposition of Colloidal Nanoparticles

(1) Bidirectional printing of arrayed nanorod spots (2) Sequence-Specific Multiplexed Conjugation
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Tadimety A. Ph.D. Thesis, Dartmouth College, 2020.
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Colloidal Nanoparticle Characterization

Nanospheres Nanorods Nanobipyramids
(20nm) (13nm x 45nm) (25nm x 70nm)

Tadimety*, Wu* et al. Sci. Rep. 2021.



Comparison of Simulation & Experiment: Resonance Spectra

(a) CST Simulation Extinction Peaks (b) Experimental Absorbance Peaks

—sphere

——sphere
e—r0d

1 —rod

—— bipyramid —— bipyramid

c 308
o c
= @
S =
< S
L (@] 0.6
o S
@ o
= o
3 3 0.4
=
& =

0.2

L I O L L L L L
500 600 700 800 900 500 600 700 800 900
Wavelength (nm) Wavelength (nm)
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Comparison of Simulation & Experiment: Sensitivities

(a) 14 Bulk Refractive Index Testing (b)760 Representative Bulk Refractive Index Testing
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Comparison of Simulation & Experiment: ctDNA Sensing

(a) o35 Synthesized Gold Rod (45nm x 13nm) Sensing (b) o5 Synthesized Gold Bipyramid (70nm x 25nm) Sensing
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27 Tadimety*, Wu* et al. Sci. Rep. 2021.



Case Study 1: Conclusions and Continued Work

 We have built single particle simulations P
that align well with plasmonic particle &0
behavior ’

 As hypothesized, nanobipyramids, with \) 1 | 4
sharp edges, performed twice as well as e ) P & W
nanorods L oot Narcater

 This type of analysis can lower limit of
detection and increase analytical

sensitivity " EEEN

« Continuing the work through pilot

patient sample testing in collaboration
with Dartmouth-Hitchcock Medical m
Center

28 Tadimety*, Wu* et al. Sci. Rep. 2021.



Case Study 3:

Rational Design of Nanoarray Geometries for Biosensing

29  Work done in collaboration with NASA under funding from National Science Foundation
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Project Overview: Introduction to Diffractive Coupling

Simulation Setup
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Rather than random (sparse) nanorod behavior, resonances can be narrowed and amplified through diffractive coupling
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Design Workflow:

Fabrication and Testing
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Experimental Testing of NIST Calibration Sample

Plasmon Resonance Measurements
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Ongoing Projects: Improving Sensor Figure-of-Merit
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Case Study 2: Ongoing Work

Figure of Merit Calculations from NASA Simulation

Width Spacing Thin Thick
(Glag)) (nm)

6.06 1.78
L M - 1.87 -
H 5.56 - 1.69
L - 1.65 -
M M 7.20 10.56
H - 4.60 -
L 1.52 - 0.87
H M - 3.85 -
H 9.19 - 4.76

Purple is current sensor, green are only simulations that were better.
Takeaway - slight design tweaks may substantially improve sensor performance
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