
November 2022 

NASA/TM–20220014998 

Comparison of Likelihood Methods for Generalized 
Linear Mixed Models with Application to Quiet 
Supersonic Flights 2018 Data 

Nathan B. Cruze, Kathryn M. Ballard, Aaron B. Vaughn, William J. Doebler, 

Jonathan Rathsam, and Peter A. Parker 

Langley Research Center, Hampton, Virginia 



NASA STI Program . . . in Profile 

Since its founding, NASA has been dedicated to the 

advancement of aeronautics and space science. The 

NASA scientific and technical information (STI) 

program plays a key part in helping NASA maintain 

this important role. 

The NASA STI program operates under the auspices 

of the Agency Chief Information Officer. It collects, 

organizes, provides for archiving, and disseminates 

NASA’s STI. The NASA STI program provides access 

to the NTRS Registered and its public interface, the 

NASA Technical Reports Server, thus providing one 

of the largest collections of aeronautical and space 

science STI in the world. Results are published in both 

non-NASA channels and by NASA in the NASA STI 

Report Series, which includes the following report 

types: 

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase of

research that present the results of NASA

Programs and include extensive data or theoretical

analysis. Includes compilations of significant

scientific and technical data and information

deemed to be of continuing reference value.

NASA counter-part of peer-reviewed formal

professional papers but has less stringent

limitations on manuscript length and extent of

graphic presentations.

• TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain minimal

annotation. Does not contain extensive analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

• CONFERENCE PUBLICATION.

Collected papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or

co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA

programs, projects, and missions, often

concerned with subjects having substantial

public interest.

• TECHNICAL TRANSLATION.

English-language translations of foreign

scientific and technical material pertinent to

NASA’s mission.

Specialized services also include organizing  

and publishing research results, distributing 

specialized research announcements and feeds, 

providing information desk and personal search 

support, and enabling data exchange services. 

For more information about the NASA STI program, 

see the following: 

• Access the NASA STI program home page at

http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Phone the NASA STI Information Desk at

757-864-9658

• Write to:

NASA STI Information Desk

Mail Stop 148

NASA Langley Research Center

Hampton, VA 23681-2199



National Aeronautics and 
Space Administration 

Langley Research Center  
Hampton, Virginia 23681-2199 

November 2022 

NASA/TM–20220014998 

Comparison of Likelihood Methods for Generalized 
Linear Mixed Models with Application to Quiet 
Supersonic Flights 2018 Data 

Nathan B. Cruze, Kathryn M. Ballard, Aaron B. Vaughn, William J. Doebler, Jonathan 

Rathsam, Peter A. Parker 

Langley Research Center, Hampton, Virginia 



Available from: 

NASA STI Program / Mail Stop 148 
NASA Langley Research Center 

Hampton, VA  23681-2199 
Fax: 757-864-6500 

 The use of trademarks or names of manufacturers in this report is for accurate reporting and does not 
constitute an official endorsement, either expressed or implied, of such products or manufacturers by the 
National Aeronautics and Space Administration. 



v 

This page intentionally left blank. 



Abstract

Repeated measurement will be a feature of the survey data collected during the Quesst mission
X-59 community response tests (CRT). Since each participant will report his or her categorical level of
annoyance in response to multiple events, the responses from any single individual may be correlated with
one another. Several models within the class of generalized linear mixed models (GLMM) are pertinent
to the analysis of correlated categorical outcomes; the random intercept logistic regression model is one
example. Both Bayesian and frequentist methods for fitting these models are available, with frequentist
methods relying on some form of approximation (of either an integral or the integrand) that appears
in the marginal likelihood function. Given several anticipated similarities of the X-59 CRT data to
data collected during a past risk reduction, Quiet Supersonic Flights 2018 (QSF18), this short note is
intended to create awareness. It documents an instance in which a reported population average dose-
response relationship derived from QSF18 single event data was distorted by the integral approximation
applied in likelihood-based methods. We review some of the available literature on the topic, compare
the outputs of several different computational approaches implemented in available statistical software,
and present simple corrective actions that may be useful during the Quesst mission.
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1 Introduction

The class of generalized linear mixed models (GLMM) extends linear mixed models to include correlated
responses that are not normally distributed. In the context of past and forthcoming NASA community noise
studies, a noise exposure level, i.e., a noise dose, will be used to predict perceptual response to the noise
stimulus. The responses are an ordered categorical scale asking survey participants to rate their level of
annoyance to noise exposure from low-amplitude sonic booms using one of the following options: not at all
annoyed, slightly annoyed, moderately annoyed, very annoyed, and extremely annoyed. Given the regulatory
emphasis surrounding community noise, these categories are often binned to create a binary outcome. The
‘very annoyed’ or ‘extremely annoyed’ responses are recoded as ‘highly annoyed’ responses, and the remaining
categories are recoded as ‘not highly annoyed’. NASA has experience modeling both the polychotomous and
binary outcomes in a Bayesian framework. The work of Lee et al. (2019) examined seven candidate Bayesian
models, noting that the multilevel ordinal regression and multilevel logistic regression (specifically, a random
intercept logistic regression) performed better than five other candidate models applied to Quiet Supersonic
Flights 2018 (QSF18) data. Both of these candidate approaches are members of the class of GLMM.

For brevity, we focus only on a random intercept logistic regression model applied to the QSF18 single-
event survey data captured near Galveston, Texas, in November 2018. Bayesian methods have been used
extensively to fit the random intercept logistic regression to available QSF18 data (Lee et al., 2019, 2020;
Vaughn et al., 2022; Doebler et al., 2022). More recent analysis of the same data has been performed using
likelihood-based methods, in particular, using the solving routines available in the lme4 package in the R
statistical programming language (Bates et al., 2015; R Core Team, 2022). In the course of performing
analysis on the entirety of the QSF18 single-event data, an unusual result was produced. Without obvious
error or warning during processing, the population average dose-response curve obtained after marginalizing
over the distribution of random effects in the frequentist random intercept logistic regression was markedly
higher than its Bayesian counterpart suggested, and the resulting curve poorly fit the collected data. As the
data collected during Quesst mission community response tests (CRT) to be conducted starting in 2024 may
have similar features, the discrepancies between the two population average dose-response curves motivated
our further investigation.

To that end, Section 2 describes the QSF18 single event data set and the initial analysis comparing
population average models. A brief review of literature and software documentation on various likelihood-
based methods is presented along with a revised analysis of the QSF18 data in Section 3. Discussion and
conclusions that may also apply to Quesst mission CRT data are made in Section 4.

2 Preliminary Analysis of QSF18 Data

The QSF18 single-event data1 collected in November 2018 over Galveston, Texas, consist of 4,998 dose-
response pairs collected from 371 unique participants during nine test days. Categorical responses were
captured and noise doses successfully estimated for 49 of 52 attempted low-amplitude sonic boom events over
the study duration. While 55 participants responded just once to the single-event survey during the study,
the majority of participants provided multiple responses. The median number of responses per participant
was 9 responses with a maximum number of 44 responses provided by one individual in the study.

Captured categorical responses and administered doses are depicted in the left and right panels, respec-
tively, of Figure 1. The single-event survey instrument allowed participants to indicate whether or not they
heard the particular low-amplitude sonic boom event. For those that indicated that they heard the sonic
boom, a follow-on question was asked: “How much did the sonic boom bother, disturb, or annoy you?”
Participants indicated their annoyance on a five- point ordinal scale. A total of 2,804 responses (approxi-
mately 56% of all collected responses, shown in yellow) indicated that the low-amplitude sonic booms could
not be heard, but as long as participants indicated their location on each administered questionnaire, they
could still be assigned a dose. By assumption, those who indicated that they could not hear an event were
assigned a ‘not at all annoyed’ response. On the high end of the scale, 34 responses were ‘very annoyed’ and
13 were ‘extremely annoyed’. After recoding to create the binary variable, only 47 (less than one percent

1These data are publicly accessible in the supplemental files with Lee et al. (2020), https://asa.scitation.org/doi/suppl/
10.1121/10.0001021 [Last accessed: 10/04/2022]
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of all responses) were ‘highly annoyed’ responses. Moreover, these responses came from a small group of
23 distinct participants. During the QSF18 study, noise exposure levels were measured in perceived-level
decibels (PL dB). These doses ranged from 55 to 90 PL dB with a median dose of 72 PL dB. This range is
roughly indicative of the range of anticipated doses to be administered in community overflights of the X-59
aircraft during the Quesst mission (Doebler & Loubeau, 2021). Additional details regarding QSF18 data
and study procedures may be found in Lee et al. (2020) and Page et al. (2020).

Figure 1: Bar chart of categorical annoyance responses (left) and histogram of administered doses (right)
collected during QSF18 study.

2.1 Random Intercept Logistic Regression

The entire class of GLMM can be expressed compactly in matrix form as in Equation 1:

g (E [y|u]) = Xβ +Zu. (1)

Upon a choice of transformation called a link function g(·), the mean value of a response y, conditioned on
one or more random effects u, is linearly related to a set of fixed effects β and the cluster-specific random
effects.

Defining the conditional mean response E (yij |xij , ui) ≡ p (xij , ui) and choosing the logit2 link function,
the random intercept logistic regression model is specified as

logit (p (xij , ui)) = β0 + β1xij + ui with ui ∼ N
(
0, σ2

u

)
(2)

where i ∈ {1, 2, . . . , I} is an index over the number of unique participants, j ∈ {1, 2, . . . , Ji} indexes the
(possibly different) number of responses provided by the ith participant and xij denotes the noise exposure
(dose) administered to the ith participant during the jth boom event. The scalar random effect ui denotes
a subject-specific intercept, assumed to be drawn from a normal distribution with mean zero and finite
variance, σ2

u. The categorical response, yij , is a binary indicator variable, taking value 1 if the participant is
highly annoyed and zero otherwise.

The expected value of a binary random variable is a well-defined probability or proportion. Whereas an
unconstrained linear probability model may produce predicted probabilities outside the interval (0, 1), the

2The logit function is the log of the odds ratio, logit (p) ≡ log
(

p
1−p

)
= k, and taking its inverse p = logit−1(k) = 1

1+exp(−k)
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inverse logit maps all real values that may arise in the linear predictor space into this interval. For a specific
participant, the probability that he or she is highly annoyed given dose and individual intercept is stated in
Equation 3:

p (xij , ui) = logit−1 (β0 + β1xij + ui) =
1

1 + exp (− [β0 + β1xij + ui])
. (3)

Equation 3 suggests a family of conditional or subject-specific dose-response curves as depicted in the plot of
notional curves in Figure 2. In the context of community noise, this model assumes that the growth rate of
annoyance is constant across all participants, but it allows for the possibility of different onset of annoyance
for each participant.

Figure 2: Notional conditional (subject-specific) dose-response curves.

2.2 Population Average Dose-Response Curves

Where Equation 3 depends on the subject-specific intercept, the ultimate data analysis goal of QSF18 (and
of the Quesst mission) is to obtain a population-average (marginal) model–one that is free of additional
conditions and simply relates the probability of high annoyance to the noise exposure level for a member of
the population at large. Skrondal & Rabe-Hesketh (2009) and Pavlou et al. (2015) note that appropriate
marginal predictions can be obtained by integration over the distribution of random effects. Thus, the
strategy for obtaining a population average or marginal dose-response curve from a fitted random intercept
model can be summarized as follows:

1. Obtain survey responses matched to doses. Since the QSF18 data were obtained from a panel sample,
the responses provided by a participant may be correlated with his or her other responses, and the
random intercept logistic regression or other GLMM may be an appropriate analysis model.

2. Fit the random intercept logistic regression model to obtain estimates of fixed effects β̂0, β̂1 and
estimated variance component σ̂2

u. These parameter estimates are necessary plug-in values. (Estimates
of subject-specific intercepts ûi are also generated in this step, but they are nuisance parameters for
the purposes of constructing the population average curve.)

3. Dropping subscripts, marginalize with respect to the distribution of random effects as in Pavlou et al.
(2015):

p̂ (x) =

∫ ∞

−∞

1

1 + exp
(
−
[
β̂0 + β̂1x+ u

])ϕ (
u|σ̂2

u

)
du (4)
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where ϕ
(
u|σ̂2

u

)
denotes a mean zero normal distribution with estimated variance σ̂2

u. The result is
a function describing a probability of high annoyance (equivalently, the proportion of the population
that is highly annoyed) as a function of dose alone and not depending on the intercept of any specific
individual.

The points plotted in Figure 3 are observed proportions of highly annoyed responses within each 1
decibel-wide dose bin. Intuitively, the association between the probability of high annoyance and dose will
be positive; the louder an event is, the more apt it is to be heard and possibly be disruptive. A single highly
annoyed response out of just three total responses collected within the 56 dB bin causes the unusual outlier
near the low end of the dose range. Similarly, a single highly annoyed response out of six collected in the 90
dB bin contributes to the next highest observed proportion of 0.167.

Two population average models have been plotted in Figure 3, both obtained by fitting separate random
intercept logistic regression models and peforming a numerical integration to marginalize with respect to
the distribution of random effects as in Equation 4. The dashed line, corresponding to a Bayesian model
with noninformative prior distributions as specified in Lee et al. (2020) and reproduced again in Vaughn
et al. (2022) and Doebler et al. (2022), fits the preponderance of data points. (Details about this model
are summarized in Appendix A.) By contrast, the population average model derived from a maximum
likelihood approach produced using default settings in a call to the glmer function in the lme4 library for
R predicts probability of high annoyance that is uniformly higher across the entire dose range. Moreover, it
does not fit the scatter of points well. The difference is concerning as it is understood that “we can perform
Bayesian inference using noninformative or weakly informative priors and obtain results similar to classical
estimates.” (Gelman et al., 2020, p. 16). Ultimately, the difference in population curves plotted in Figure 3
can be attributed to a limitation of the default settings in the glmer function to accurately approximate the
(log)likelihood function for the random intercept logistic regression model fit to QSF18 data.
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3 Available Methods and Revised Analysis of QSF18 Data

There is a considerable body of literature on maximum likelihood estimation and approximate likelihood
inference for generalized linear mixed models. Several textbooks on longitudinal analysis include overviews
of commonly used families of approximation techniques for likelihood-based methods; see, e.g., (Fitzmaurice
et al., 2011, Ch.14, 15) and (Liu, 2016, Ch.4.2, 8.2, 8.3). A review article by Tuerlinckx et al. (2006) provides
a thorough technical treatment of these families including penalized quasi-likelihood (PQL), marginal quasi-
likelihood (MQL), Expectation-Maximization routines, Laplace approximations, Gaussian quadrature rules,
and Markov Chain Monte Carlo (MCMC) techniques. Additionally, Kim et al. (2013), Breslow (2004),
Bolker et al. (2009), Josephy et al. (2016), Ojo et al. (2017), Handayani et al. (2017), and Stroup & Claassen
(2020) constitute a collection of software reviews, comparative studies, and review articles for users of
GLMM offering guidance for selecting from the variety of different numerical procedures. Stroup & Claassen
(2020) summarizes a few of the dilemmas faced by users of GLMM that spurred the many computational
approaches to likelihood-based inference, including adaptive Gauss-Hermite quadrature and linearization
strategies involving pseudolikelihood approaches (e.g., PQL and MQL).

Central to the discussion, integrals present in the marginal likelihood function of a GLMM typically
cannot be evaluated analytically. Let yi denote a vector of all collected responses for the ith participant,
Li (·) denote the contribution of the ith participant to the marginal likelihood function, and y and L (·)
denote the complete-data counterparts, respectively. Then the marginal likelihood for the random intercept
logistic regression is

L
(
β0, β1, σ

2
u|y

)
=

I∏
i=1

Li

(
β0, β1, σ

2
u|yi

)
=

I∏
i=1

∫ ∞

−∞

Ji∏
j=1

[p (xij , ui)]
yij [1− p (xij , ui)]

1−yij ϕ
(
ui|σ2

u

)
dui (5)

where p(xij , ui) was defined in Equation 3, and ϕ
(
ui|σ2

u

)
again denotes the normal probability density func-

tion governing random intercepts. Given the collected data y, maximum likelihood estimation seeks values
of the common model parameters for which the marginal likelihood function obtains its global maximum,
i.e., argmax

β0,β1,σ2
u

L
(
β0, β1, σ

2
u|y

)
. In practice, computation is often performed on the natural logarithm of the

likelihood function. Since the integral in Equation 5 cannot be evaluated analytically, likelihood-based meth-
ods entail some form of approximation, and the optimizers (β̂0, β̂1, σ̂

2
u) of Equation 5 are obtained under

the assumption that the approximation of the (log)likelihood function itself is sufficiently accurate. A vari-
ety of computing procedures have been developed, either to numerically evaluate the entire integral, or to
approximate the integrand in the likelihood function in Equation 5 (Tuerlinckx et al., 2006).

3.1 Methods for Estimating Parameters Provided in Common Software

Rather than present in-depth descriptions of each of these methods, we give a more heuristic or procedural
description of each, and we refer the reader to appropriate literature and software documentation for addi-
tional technical details. In particular, we focus on three broad classes of approaches to likelihood inference
found in R, MATLAB, JMP, and SAS software, noting that apart from SAS, these separate choices of soft-
ware or libraries don’t necessarily provide all of these options. (Bates et al., 2015, 2022; R Core Team, 2022;
MATLAB, 2021; JMP, 2022; Dong, 2020; SAS Institute Inc., 2020)

3.1.1 Adaptive Gauss-Hermite Quadrature

Adaptive Gauss-Hermite quadrature is an extension of traditional Gaussian quadrature that appeared in the
context of nonlinear mixed effects models in Pinheiro & Bates (1995). In essence, it uses a recentering and
scaling of traditional Gaussian quadrature to approximate integrals of the form∫ ∞

−∞
exp

(
−z2

)
f (z) dz ≈

Q∑
q=1

w̃qf (zq) (6)
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where zq indexes Q distinct quadrature nodes in the domain of the integral. The zq are roots of Hermite
polynomials HQ (z); the weights w̃q have a particular functional form involving lower-order Hermite poly-
nomials HQ−1 (zq) and the number of specified nodes Q (Liu, 2016, p. 262). Note that the term exp(−z2)
in the equation above is part of the kernel of a normal distribution, the distribution that governs random
intercepts in the random intercepts logistic regression model. The contribution of the ith participant to the
marginal likelihood function is approximately

Li

(
β0, β1, σ

2
u|yi

)
≈

Q∑
q=1

w̃q


Ji∏
j=1

[p (xij , zq)]
yij [1− p (xij , zq)]

1−yij

 (7)

where w̃q and zq are the appropriately scaled quadrature weights and nodes. In practice, maximum likelihood
estimates are obtained from the log of the quadrature approximation.

We state the following as fact about adaptive Gauss-Hermite quadrature:

� Compared to traditional Gaussian quadrature, adaptive Gauss-Hermite quadrature assures that more
quadrature points will lie in regions of interest (Liu, 2016, p. 262).

� In principle, the approximation of the integral can be improved with a higher number of quadra-
ture points, and results estimated by other methods are often compared to [adaptive Gauss-Hermite
quadrature] because the computation is very accurate when Q is large (Kim et al., 2013).

� The computational burden increases with the number of quadrature points and grows exponentially
with the number of random effects (Fitzmaurice et al., 2011, p. 411). More complicated models with
multiple random effects, especially with nesting or crossing of random effects, can quickly become
computationally intractable.

As of this writing, SAS software provides an adaptive Gauss-Hermite quadrature option in the GLIMMIX
procedure. The glmer function in the lme4 library for R implements this technique exclusively. Neither JMP
nor MATLAB software provide this functionality in the pertinent add-ins or toolboxes at this time.

3.1.2 Laplace Approximation

Some authors discuss Laplace approximation of the GLMM marginal likelihood function as a numerical
integration approach (Liu, 2016; Stroup & Claassen, 2020), whereas others prefer to discuss it in the context of
approximating the integrand and a motivation for linearization strategies (Tuerlinckx et al., 2006; Fitzmaurice
et al., 2011). Discussions in both contexts are apt. Assuming a second order Taylor series approximation,
the Laplace method is useful for approximating integrals of the form∫ b

a

exp [Nf(z)] dz ≈ exp [Nf(z0)]

∫ b

a

exp

[
−1

2
N |f ′′(z0)| (z − z0)

2

]
dz (8)

where the function f(z) is at least twice-differentiable and assumed to be unimodal with a maximum value
obtained at some value z0 (Liu, 2016, p. 259-260). N denotes a large number, and the limits of integration
a and b may be infinite. It is further assumed that the matrix of second derivatives (Hessian matrix) of
f(z) evaluated at z0 is positive definite. This combination of assumptions means that a second-order Taylor
series expansion about the mode z0 yields

f(z) ≈ f(z0)−
1

2
|f ′′(z0)| (z − z0)

2
, (9)

so that the integrand can be approximated with a more tractable form.
As it relates to GLMM and the random intercept logistic regression, the strategy is to express the marginal

likelihood function in the form of the left hand side of Equation 8 by taking a natural logarithm and then
exponentiating:

Li

(
β0, β1, σ

2
u|yi

)
=

∫ ∞

−∞
exp

ln

 Ji∏
j=1

[p (xij , ui)]
yij [1− p (xij , ui)]

1−yij ϕ
(
ui|σ2

u

) dui. (10)
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Laplace’s method can then be applied by taking a second order Taylor series expansion of the term in
braces above about a mode ûi, corresponding to an estimate of the random intercept for each of the i
study subjects. In practice there is dependence of ûi and the Hessian matrix evaluated at that point on the
(unknown) estimates β̂0, β̂1 and σ̂2

u, and different approaches to this optimization exist (Tuerlinckx et al.,
2006, p. 241-242). For example, MATLAB fitglme documentation3 identifies these different approaches as
‘Laplace’ and ‘ApproximateLaplace’; in the latter case, the fixed effects are said to be profiled out of the
likelihood (Murphy & van der Vaart, 2000; Cole et al., 2013).

We state the following facts about Laplace approximation:

� Laplace approximation is numerically equivalent to Adaptive Gauss-Hermite quadrature with a single
quadrature node (Tuerlinckx et al., 2006; Fitzmaurice et al., 2011; Liu, 2016; Stroup & Claassen, 2020;
SAS Institute Inc., 2020).

� Kim et al. (2013) note that the Laplace method approximately integrates the objective function ex-
panded about a mode ûi and produces asymptotically unbiased estimates with less computational
burden than adaptive Gauss-Hermite quadrature.

� The asymptotics in question are a function of cluster size (Tuerlinckx et al., 2006, p. 241). In the context
of the QSF18 and Quesst mission studies, cluster size refers to the number of responses provided by
each participant rather than the number of unique participants. Consequently, Laplace approximation
may provide less accurate estimates for data featuring small cluster sizes (Kim et al., 2013).

Presently, MATLAB offers Laplace approximation in the fitglme function in the Statistics and Ma-
chine Learning Toolbox. The SAS GLIMMIX procedure offers Laplace approximation; the accompanying
documentation emphasizes that the result is numerically but not computationally equivalent to adaptive
Gauss-Hermite quadrature (SAS Institute Inc., 2020, p. 3817). Strictly speaking, R does not implement
Laplace approximation, but the numerically equivalent results can be obtained by using a single quadrature
node in the glmer function call. JMP software does not offer Laplace approximation in the Generalized
Linear Mixed Model Add-In at this time.

3.1.3 Pseudolikelihood Approximations

The jargon ‘penalized quasi-likelihood’ (PQL) was developed in Breslow & Clayton (1993) to describe a lin-
earization strategy for approximate inference in GLMM. The technique is also known as ‘pseudolikelihood’
approximation (Wolfinger & O’Connell, 1993; Stroup & Claassen, 2020). We opt to use the term ‘pseudolike-
lihood’ approximation as that term is used throughout SAS, JMP, and MATLAB software documentation.
Pseudolikelihood methods approximate the integrand of the marginal likelihood function; the SAS GLIM-
MIX procedure documentation goes so far as to call it an approximation of the model (SAS Institute Inc.,
2020, p 3805).

Pseudolikelihood estimation stems from a linear Taylor approximation. Re-expressing Equation 3, the
mean of the response yij , conditional on the random intercept ui, is

yij = logit−1 (β0 + β1xij + ui) + ϵij (11)

where ϵij is a mean-zero error term. Taking a linear Taylor approximation of Equation 11 expanded around

current estimates of fixed effects β̂0, β̂1, and the mode ûi, and then grouping like terms, a well-defined linear
mixed model for a transformed response variable (the so-called pseudo-response) and transformed error term
emerges:

y∗ij ≈ β0 + β1xij + ui + ϵ∗ij . (12)

The pseudolikelihood estimation algorithm then makes repeated calls to a linear mixed model solver, cycling
between a fitting step from which new estimates β̂0, β̂1, and σ̂2

u are obtained, and an update step in which new
ûi and new pseudo-response variable y∗ij can be calculated. The process iterates until a stated convergence
tolerance is reached.

Further descriptions of the pseudolikelihood approach, including derivations for the general case of
GLMM, the random intercept logistic regression, and other multilevel logistic regression models, can be

3https://www.mathworks.com/help/stats/fitglme.html [Last accessed 10/04/2022]
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found in Handayani et al. (2017); pages 443-445, 466-470 of Fitzmaurice et al. (2011); and Tuerlinckx et al.
(2006), pages 243-244, respectively. We make the following additional observations about pseudolikelihood
methods:

� From the outset, pseudolikelihood approaches were devised as approximate computing methods for
GLMM, and potential for biased estimates resulting from a local linear approximation have been
studied in the literature, spurring other methodologies or bias corrections. See, e.g., McCulloch (1997),
Breslow & Lin (1995), Breslow (2004).

� The accuracy of the approximation depends on the validity of assumed normality, and extreme depar-
tures such as binary response data, poses a particular problem (Tuerlinckx et al., 2006). A simulation
study in Breslow (2004) showed that the estimate of the variance component was seriously underesti-
mated by pseudolikelihood methods for clusters of size 2, i.e., matched pairs of binary responses per
individual, but that the bias diminished as a function of cluster size.

� A variant of maximum likelihood, called restricted maximum likelihood (or residual maximum like-
lihood (REML)) was developed to overcome some of the known small sample biases associated with
maximum likelihood estimates (Fitzmaurice et al., 2011, p.101-104). Some software packages, including
MATLAB and SAS, offer both variants for pseudolikelihood approximation.

Presently, versions of pseudolikelihood estimation procedures are available in MATLAB, SAS, and in the
Generalize Linear Mixed Model Add-in for JMP. This procedure is not provided in the lme4 library for R,
however, a function called glmmPQL is available in the MASS library for R (Ripley et al., 2022). We do not
study the behavior of the glmmPQL function in this report.

3.2 Experimenting with Multiple Choices of Software

As Stroup & Claassen (2020) note, “it is clear there is no one-size-fits-all best method” for obtaining max-
imum likelihood estimates of parameters in a GLMM. Given the variety of computational strategies for
producing maximum likelihood estimates, standard statistical software packages may implement more than
one procedure or leave open the possibility that the same procedure can be tuned to offer better approxi-
mations of the likelihood function. Table 1 summarizes several of the aforementioned choices of statistical
software, and the provided estimation methods; if the software provides more than one estimation procedure,
its default procedure is listed first.

Table 1: Methods of estimation provided by popular software. See notes in Appendix B for more detail.

Software Provided Estimation Procedures

R lme4 package Adaptive Gauss-Hermite Quadrature
MATLAB with Statistics Toolbox Pseudolikelihood, Laplace Approximation
JMP with GLMM Add-in Pseudolikelihood
SAS GLIMMIX Procedure Pseudolikelihood, Laplace Approximation, Adaptive Gauss-

Hermite Quadrature, and others

As the preliminary analysis of QSF18 data discussed in Section 2 was conducted using R, we begin by
examining the impact of the number of quadrature nodes in the glmer function call on the magnitudes of
estimates of common model parameters in the random intercept logistic regression. Then we compare the
corresponding model outputs of different procedures in R, MATLAB, and JMP, which collectively provide
the three previously described estimation procedures. Finally, we perform integration over the distribution
of random effects using plug-in estimates we obtained to produce and compare corresponding population
average models.

3.2.1 Varying the Number of Quadrature Nodes in the glmer Function Call

In particular, the lme4 package in R exclusively implements adaptive Gauss-Hermite quadrature for the
loglikelihood function of a GLMM in its glmer function. A specific argument nAGQ takes a non-negative
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integer value, determining the number of quadrature nodes used in the adaptive Gauss-Hermite quadrature
routine. If the user does not explicitly specify a number of quadrature nodes in the glmer function call, it
defaults to the value of nAGQ=1 (Bates et al., 2022, p.34). Recall that a single quadrature node is numerically
equivalent to a Laplace approximation. As a matter of programming convention, the nAGQ argument can
also take the value 0. This does not specify zero quadrature nodes. Rather, it specifies a single quadrature
node (again, numerically equivalent to a form of Laplace approximation) and uses a faster but less exact
form of parameter estimation for GLMMs by optimizing the random effects and the fixed-effects coefficients
in the penalized iteratively reweighted least squares (PIRLS) step (Bates et al., 2022, p.34). The values of
nAGQ=0 and nAGQ=1 denote to the two different approaches described for dealing with the dependence of
random effects on unknown fixed effects and variance components (Tuerlinckx et al., 2006, p. 242).

Tuerlinckx et al. (2006) outlined a heuristic strategy for determining an appropriate number of nodes,
suggesting a sequence of analyses with an increasing number of nodes, and noting the point at which the
magnitudes of estimates do not change very much. This recommendation was demonstrated in Fitzmaurice
et al. in the amenorrhea data case study, where the authors tabulated the sensitivity of the estimate of
the variance component of a random intercept logistic regression model to the number of quadrature points
(Fitzmaurice et al., 2011, Table 14.3, p.419). The lme4 reference manual notes that models with “a single,
scalar random-effects term could reasonably use up to 25 quadrature points per scalar integral.” (Bates
et al., 2022, p.34) Following this reasoning, Figure 4 depicts the course of the trio of maximum likelihood

estimates β̂0, β̂1,
√
σ̂2
u as functions of the value of the nAGQ argument from 0 to 25, inclusive.
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Figure 4: Estimates of parameters of the marginal likelihood function obtained by varying the value of the
nAGQ argument in the glmer function call.

At the values of 0 and 1, both equivalent to forms of Laplace approximations, the estimates fluctuate
greatly in magnitude. We note that the estimates obtained at nAGQ=1 correspond to the default settings in
glmer, and that they correspond to the plug-in values driving the unusual population average model plotted
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earlier in Figure 3. As expected, an increase in the number of quadrature nodes improves the stability of
estimates. We judge that 15 quadrature points may offer a sufficient approximation of the marginal likelihood
function as little fluctuation is visible beyond that point.

The accuracy of Laplace approximation, and therefore, of the numerically-equivalent one-node quadra-
ture, is known to improve with increase in cluster size (Kim et al., 2013; Liu, 2016, p. 260). As an additional
experiment with quadrature, we take a subset of the QSF18 data corresponding only to those participants
who were highly annoyed at least once during the study. This is a subset of 418 dose-response pairs provided
by 23 unique participants over the study duration. One of the 23 participants responded just once, a sec-
ond responded twice to the single event surveys, and the remaining 21 subjects each provided four or more
responses with a median of 17 responses per individual. Refitting a random intercept logistic regression to
this subset of data, Table 2 shows the change in parameter estimates for select values of nAGQ. Extra digits
of precision are retained to show the minimal changes in point estimates even at coarser levels of approxi-
mation of the likelihood. Relative to the 418 collected responses, the 47 highly annoyed responses are now
a more frequent occurrence (approximately 11% of cases) within the data set. Moreover, in defining this
subset of data, the typical number of responses per participant (cluster size) increased from a median of 9
responses to a median of 17 responses. As the low- and high-number-of-node outcomes in Table 2 are similar
in magnitude, this illustrates some of the asymptotic gains in accuracy associated with increased cluster size
as well as improvement due to a (relatively) more frequent success outcome.

Table 2: Point estimates obtained from random intercept logistic regression by supplying select values of the
nAGQ argument in the glmer function. These regressions were fit to data from the subset of 23 participants
who indicated high annoyance at least once during the QSF18 study.

nAGQ Intercept β̂0 Slope β̂1 Std. Dev.
√
σ̂2
u

0 -12.58976 0.1384273 0.2428118
1 -12.67904 0.1393362 0.2508190
2 -12.67893 0.1393376 0.2494038
4 -12.67903 0.1393415 0.2485943
15 -12.67905 0.1393418 0.2485820
25 -12.67905 0.1393418 0.2485820

3.2.2 Comparing Procedures Across Different Software

Kim et al. (2013) opined, “Investigators often use one of the three [likelihood-based] methods...because it
is the default option of the package. However, the choice of method should be made according to the
characteristics of data and the purpose of modeling.” Some of the aforementioned features of the QSF18
data include binary responses with rare success outcomes (i.e., high annoyance) and possibly small numbers
of responses per participant over study duration. This combination of features is known to complicate the
computation of maximum likelihood estimates of parameters in the random intercept logistic regression,
especially for Laplace approximation and quadrature using small numbers of nodes.

Table 3 provides the point estimates for parameters of the random intercept logistic regression obtained
under various settings of three popular likelihood-based methods: Laplace approximation, adaptive Gauss-
Hermite quadrature, and a pseudolikelihood (linearization) approach. The point estimates obtained from
the Bayesian hierarchical model are also presented for comparison. These tabulated triplets of estimates
are the necessary plug-in estimates in the numerical integration step that produces the population average
dose-response curve. Whereas the likelihood-based methods may entail some ‘loss’ of information due to the
necessity of approximation and differences in approaches to it, Bayesian hierarchical models add information
in the form of assumed prior distributions, and the obtained estimates may be sensitive to those choices of
prior distribution. Thus, the goal in comparing these software outputs is not necessarily to insist on exact
agreement across distinct methods, but rather, to help discern plausible results from implausible results.

Comparing estimates in the first and third rows and in the second and fourth rows of Table 3, the
numerical equivalence of Laplace approximations and adaptive Gauss-Hermite quadrature with a single node
is demonstrated. The default setting in the glmer function is a one-node quadrature, and in comparison with
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the estimates obtained from higher numbers of quadrature nodes, the REML-like pseudolikelihood method,
or the point estimates obtained from the Bayesian hierarchical model, these point estimates are not plausible.
The single quadrature node offers only a coarse approximation to the marginal likelihood function of the

logistic regression model. The estimates of the intercept and variance component (β̂0 and σ̂2
u) in particular

seem to be affected, and consequently, the resulting population average dose-response curve that takes these
values as given overestimates the probability of high annoyance across the entire range of noise exposure
levels. This fully explains the discrepant results plotted previously in Figure 3.

Table 3: Point estimates of parameters in the random intercept regression model obtained through different
choices of software and method. See software notes in Appendix B for more detail. (*)Denotes the default
setting in the glmer function call.

Software Method Intercept β̂0 Slope β̂1 Std. Dev.
√
σ̂2
u

MATLAB fitglme Approximate Laplace -16.22 0.141 2.26
MATLAB fitglme Laplace -22.29 0.158 7.13
R glmer Quadrature, 1 node (nAGQ=0) -16.22 0.141 2.26
R glmer Quadrature, 1 node (nAGQ=1)* -22.29 0.158 7.13
R glmer Quadrature, 4 nodes (nAGQ=4) -20.24 0.157 3.13
R glmer Quadrature, 15 nodes (nAGQ=15) -18.68 0.151 2.50
JMP Pro REML-like Pseudolikelihood -18.91 0.153 2.73

R and JAGS Bayesian Hierarchical Model -19.00 0.153 2.61

3.2.3 Improved Population Average Dose-Response Curves

With regard to the QSF18 data, the strategy for obtaining a population average dose-response curve involves
marginalizing with respect to the distribution of random intercepts, using the triplet of point estimates
obtained from a selected method of fitting the random intercept logistic regression as plug-in estimates in
Equation 4. Figure 5 is an update of Figure 3, including multiple population average curves based on the
values of estimates obtained from select methods tabulated in Table 3. The range of the vertical axis has
been reduced to add clarity to the plot, and consequently, outlier points are not displayed even though they
remain in the data set.

The dashed population average line still corresponds to the Bayesian hierarchical model, which provides
a useful reference. The darkest solid line, originally labeled ‘Maximum Likelihood’ in Figure 3, has been
relabeled reflecting the knowledge that it was produced using the default settings in the glmer function
call, corresponding to a one-point quadrature and numerically equivalent to a Laplace approximation of
the marginal likelihood function. The overestimation of probability of high annoyance resulted because the
one-point quadrature provides an approximation of the marginal likelihood function that is too coarse when
applied to the totality of the QSF18 data. Consequently, the resulting plug-in point estimates of the fixed
effects and variance component showed substantial biases, affecting the quality of the population average
dose-response curve. After taking corrective actions and increasing the number of quadrature points, the
resulting population average curves improve in terms of plausible fit to the could of data points, and the
population average dose-response curve corresponding to a 15-node quadrature is nearly coincident with that
of the Bayesian hierarchical model.

Additionally, a population average curve corresponding to use of the REML-like pseudolikelihood point
estimates (obtained from JMP) in Equation 4 offers a similarly plausible fit to the plotted data. It is worth

noting that the fixed effects estimates (β̂0, β̂1) obtained from the pseudolikelihood approach agree more
closely with those obtained from the Bayesian hierarchical model than the corresponding estimates from the
15-point quadrature do, and yet the resulting population average curve for the 15-point quadrature is “closer”
to the Bayesian counterpart. The estimated variance component (σ̂2

u) obtained from the pseudolikelihood
approach is larger than the Bayesian counterpart, whereas the estimated variance component from the 15-
node quadrature is smaller. This highlights the nonlinear interaction of plug-in estimates in the population
average dose-response curve in Equation 4 and its sensitivity to the value of σ̂2

u in particular.

11



55 60 65 70 75 80 85 90

0.
00

0.
05

0.
10

0.
15

QSF18 Population Average Dose Response Curves

55 60 65 70 75 80 85 90

0.
00

0.
05

0.
10

0.
15

Perceived Level (dB)

P
ro

ba
bi

lit
y 

of
 H

ig
h 

A
nn

oy
an

ce

Quadrature, 1 Node (Laplace Equivalent)
Quadrature, 4 Nodes
Quadrature, 15 Nodes
Pseudolikelihood
Bayesian Hierarchical Model

Figure 5: Population average curves obtained after numerically integrating over the distribution of random
intercepts. For clarity in plotting, corresponding confidence bands are omitted from the plot.

4 Discussion and Conclusions

Large observed discrepancies in the plotted population average dose-response curves for QSF18 data can
be explained by differences in approaches to approximating the marginal likelihood function of the random
intercept logistic regression model. A multiplicity of likelihood-based methods, all involving some form of
approximation, have been developed to fit many classes of generalized linear mixed models. Each method
has strengths and weaknesses depending on the modeling context.

The QSF18 study served as a pilot study for the future Quesst mission CRT that will commence in
2024. As such, several features of the QSF18 data may be indicative of the objective measurements of
noise exposure levels and the perceptual experiences of survey participants that will ultimately be collected
during the Quesst mission. These data sources will be linked through a statistical model to produce a dose-
response relationship. While the sample sizes at each CRT have yet to be determined, they are anticipated
to be larger than the QSF18 study. At each CRT community, a longitudinal survey will be deployed,
gathering repeated measurements from a recruited panel of participants. By its very design, the X-59
aircraft has been built to quiet the sonic booms produced during supersonic operation, and the resulting
‘sonic thumps’ may be less disruptive than traditional sonic booms, if they can be heard at all. Therefore, it is
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expected that high annoyance will be a rare outcome in the collected survey data. Logistic regression models
incorporating random effects will be likely analysis tools for exploratory analysis and dose-response modeling.
The combination of rare, binary outcome and repeated measurements with a variable (and sometimes small)
number of responses per participant in the QSF18 data manifested a few of the limitations of available
likelihood-based methods for fitting the conditional and population average dose-response curves.

It is believed that data collected during each Quesst mission CRT will have similar features. Laplace
approximation and the numerically equivalent one-node adaptive Gauss-Hermite quadrature have known
limitations when the cluster size is small, but the accuracy may improve with an increased number of
responses per participant. We note that each planned CRT is longer in duration with more opportunities
for recruited participants to respond to surveys, and, in contrast to the QSF18 study, an incentive structure
tied to the number of completed surveys will be offered to the recruited panel to encourage full participation.
Nevertheless, the performance of Laplace approximation may very well depend on survey response rates,
and these response rates may even differ across the five currently planned CRT sites. Pseudolikelihood
approaches rely on local linear approximations to the logistic regression model and the resulting estimates
may be subject to varying degrees of bias. Many practitioners point to adaptive Gauss-Hermite quadrature
as a gold standard, provided a sufficient number of nodes are applied in the quadrature. In the context of the
random intercept logistic regression, which has a single, scalar random effect term, the number of quadrature
nodes is not so computationally prohibitive so that specifying a high number of nodes, say nAGQ=25, may be
feasible even if data from multiple CRT sites are pooled together in one large dataset. If additional random
effects terms are introduced during model development, e.g., random slopes and intercepts and/or random
effects pertaining to location of each CRT site, then the computational burden grows exponentially, and
smaller numbers of nodes may be a necessary compromise. We also note that as of this writing, the glmer

function can only accommodate adaptive Gauss-Hermite quadrature with two or more quadrature nodes for
models with a single, scalar random effect. Thus, the more complex models just described could either be
fit using a single quadrature node (nAGQ=0 or 1 in the glmer function call) provided it offered a sufficiently
accurate approximation, or else, a different choice of software or library would be needed to facilitate the
use of adaptive Gauss-Hermite quadrature.

A large number of candidate models with different combinations of covariates may be fit to the collected
Quesst CRT data. Given their computational speed relative to Bayesian methods, likelihood-based methods
will likely be employed during some of the early model-building activity. We recommend that simple assess-
ments of the accuracy of the chosen likelihood-based estimation procedure, e.g., sensitivity of estimates to a
varying number of quadrature points, be incorporated into preliminary analysis of Quesst mission CRT data
and subsequent dose-response modeling.
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A Bayesian Random Intercept Logistic Regression Model

A Bayesian hierarchical model, equivalent to that of Lee et al. (2020), is specified as below:

yij ∼ Bernoulli(pij) (13)

pij = logit−1 (β0 + β1xij + ui) (14)

ui ∼ N(0, σ2
u) (15)

β0 ∼ N(0, 102) (16)

β1 ∼ N(0, 102) (17)

σ2
u ∼ IG(0.01, 0.01) (18)

Whereas likelihood methods treat estimation as an optimization problem, Bayesian methods treat the prob-
lem as one of sampling from a posterior probability distribution. Equations 13-15 fully define the likelihood
function. Noninformative prior distributions in Equations 16-18 complete the specification of the Bayesian
model, namely mean-zero normal distributions with standard deviation of 10 for the fixed effects, and inverse
gamma with shape and scale parameters both equal to 0.01 applied to the variance component. Given this
choice of noninformative priors, it is expected that the results of the Bayesian hierarchical model should be
comparable (but not necessarily identical) to likelihood-based results. The point estimates reported from
the Bayesian model were posterior means obtained by (Doebler et al., 2022, Table 4), using Markov Chain
Monte Carlo methods provided by R, JAGS, and related R packages (Plummer, 2003; Plummer et al., 2021)
to fit the random intercept logistic regression.

B Software Notes

The following versions of software, packages, and add-ins were used in the initial and revised analysis:

� R v4.1.2

– lme4 v1.1-27.1; glmer is a function in this R package that implements adaptive Gauss-Hermite
quadrature methods for integral approximation in the loglikelihood function.

– rjags v4-12

� JAGS v4.3.0

� JMP Pro v16.0.0 with the Generalized Linear Mixed Model Add-In v5. At the time of writing, JMP Pro
only provides functionality for fitting generalized linear mixed models in a user community contributed
add-in that provides REML-like pseudolikelihood methods for select classes of GLMM.

� MATLAB 2021a with Statistics and Machine Learning, and Optimization Toolboxes

– fitglme is a function in the Statistics and Machine Learning toolbox at offers variants of Laplace
approximation and pseuodlikelihood methods.
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