
I N V I T E D COMMEN T A R Y

Coevolution of machine learning and process-based modelling
to revolutionize Earth and environmental sciences:
A perspective

Saman Razavi1,2 | David M. Hannah3 | Amin Elshorbagy2 | Sujay Kumar4 |

Lucy Marshall5 | Dimitri P. Solomatine6,7,8 | Amin Dezfuli9 | Mojtaba Sadegh10 |

James Famiglietti1

1Global Institute for Water Security, School of

Environment and Sustainability, University of

Saskatchewan, Saskatoon, Canada

2Department of Civil, Geological and

Environmental Engineering, University of

Saskatchewan, Saskatoon, Canada

3School of Geography, Earth and Environment

Sciences, University of Birmingham,

Birmingham, UK

4Hydrological Sciences Lab, NASA Goddard

Space Flight Center, Greenbelt, USA

5School of Civil and Environmental

Engineering, University of New South Wales,

Kensington, Australia

6Department of Hydroinformatics and Socio-

Technical Innovation, IHE Delft Institute for

Water Education, Delft, The Netherlands

7Water Resources Section, Delft University of

Technology, Delft, The Netherlands

8Water Problems Institute of RAS, Moscow,

Russia

9Science Systems and Applications, Inc., Global

Modeling and Assimilation Office, NASA

Goddard Space Flight Center, Greenbelt, USA

10Department of Civil Engineering, Boise State

University, Boise, USA

Correspondence

Saman Razavi, Global Institute for Water

Security, School of Environment and

Sustainability, University of Saskatchewan,

11 Innovation Blvd, Saskatoon, SK S7N 3H5,

Canada.

Email: saman.razavi@usask.ca

Funding information

IAS Vanguard Fellowship; Natural Sciences and

Engineering Research Council of Canada

Abstract

Machine learning (ML) applications in Earth and environmental sciences (EES) have

gained incredible momentum in recent years. However, these ML applications have

largely evolved in ‘isolation’ from the mechanistic, process-based modelling (PBM)

paradigms, which have historically been the cornerstone of scientific discovery and

policy support. In this perspective, we assert that the cultural barriers between the

ML and PBM communities limit the potential of ML, and even its ‘hybridization’ with

PBM, for EES applications. Fundamental, but often ignored, differences between ML

and PBM are discussed as well as their strengths and weaknesses in light of three

overarching modelling objectives in EES, (1) nowcasting and prediction, (2) scenario

analysis, and (3) diagnostic learning. The paper ponders over a ‘coevolutionary’
approach to model building, shifting away from a borrowing to a co-creation culture,

to develop a generation of models that leverage the unique strengths of ML such as

scalability to big data and high-dimensional mapping, while remaining faithful to

process-based knowledge base and principles of model explainability and interpret-

ability, and therefore, falsifiability.
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1 | INTRODUCTION

Machine learning (ML), particularly deep learning (DL), has achieved

revolutionary performance in areas such as computer vision

(Krizhevsky et al., 2012), natural language processing (Young

et al., 2018), and gaming (Silver et al., 2018). Such unprecedented suc-

cess has increased the momentum of ML applications in non-native

fields, such as Earth and environmental sciences (EES), where process-

based (also called knowledge-based) modelling has dominated to date.

For example, the number of ML-related presentations at the American

Geophysical Union's Fall Meetings has increased from 0.2% in 2015

to >4% in 2020 and as high as 28%, 9%, and 7.5% in the non-linear

geophysics, natural hazards, and hydrology sections, respectively. ML

is believed to provide processes and systems in EES with new and fer-

tile research horizons, leveraging the boom in computational power,

‘big data’ sets, and novel sensing technologies (Reichstein

et al., 2019).

We argue this recent momentum might lead to disappointment,

akin to ‘artificial intelligence (AI) winters’ (Antun et al., 2022;

Choi, 2021; Colbrook et al., 2022; Hendler, 2008; Strickland, 2021), if

we do not properly recognize and address two inter-related grand

challenges: (1) the lack of explainability and interpretability, and there-

fore falsifiability, of how ML models emulate underlying systems; and

(2) the divorce of ML models from the knowledge base in those emu-

lations, and therefore missing opportunities in extrapolation beyond

available data. Motivated by these challenges is a recent increasing

drive towards ‘Explainable ML’ using various numerical heuristics

(e.g., Bach et al., 2015; Rudin, 2019; Samek & Müller, 2019; Toms

et al., 2020), typically rooted in sensitivity analysis (see section 3.4 of

Razavi et al., 2021 for a review), to explain why or how an ML model

responds to inputs. In parallel, there are growing efforts to integrate

physical knowledge into the fabric of ML models (e.g. Raissi et al.,

2019; Champion et al., 2019; Jiang et al., 2020). An often-ignored

fact, however, is that these challenges are intrinsically domain- and

problem-specific and their meaning and implications in applications

native to computer science (CS) can be different from those in the

context of EES, where typical systems of interest are complex, open,

partially observable and non-stationary.

A disciplinary focus, augmented by cultural barriers between dif-

ferent modelling communities, has led ML and process-based model-

ling (PBM) to evolve in isolation from each other and with different

worldviews towards problem solving. Apparently generic concepts

can mean different things to different communities. For example,

computer and environmental scientists often use different lenses to

view the notion of model explainability and interpretability. The for-

mer group looks more into ‘numerics’ and how inputs are mapped

onto outputs, while the latter focuses on ‘processes’ and how causali-

ties and feedback mechanisms give rise to an output conditional to an

input. The differences in worldviews may also be attributed to differ-

ences in modelling objectives in those communities; for example,

whether to solely gain predictive or generative power, or rather to

learn why and how a system behaves as it does.

This article provides a perspective on the current status and

potential directions of ML applications in EES (Figure 1). We first out-

line and contrast the unique features of ML and PBM, developed

within an ‘isolation phase’ since the inception of each modelling para-

digm, in light of modelling objectives in EES. We then discuss general

ML-PBM coupling frameworks in EES arising during the ongoing

‘hybridization phase’, dating back to at least the early 2000s and

recently re-promoted by Reichstein et al. (2019), and contend their

compounding potential is limited because their underlying philoso-

phies are rooted in isolation. We argue that truly integrating the two

modelling paradigms has not yet occurred, but a ‘coevolution phase’
has started emerging which, if jointly embraced by both ML and EES

communities, can provide fertile ground for transformative innova-

tions in an age of big data and computational power.

2 | HOW IS ML DIFFERENT FROM PBM
AND WHY DOES IT MATTER?

ML in most cases is rooted in connectionism, hyper-flexibility and vigor-

ous optimization, which are aliens to PBM (Razavi, 2021). Connection-

ist ML techniques, particularly those based on DL or more broadly

artificial neural networks (ANNs), stack many identical or similar alge-

braic operators both in parallel and series so they can collectively per-

form complicated tasks. As such, the roles and functions of different

individual operators in producing the model response are not readily

distinguishable, unlike the modular approach typically adopted in PBM

where each model part is designed to represent a specific system

component. Hyper-flexibility, which can be viewed as an inversion of

Occam's razor, is characteristic of a model that can literally fit any

dataset with any desired level of accuracy owing to its excessive

degrees of freedom. Vigorous optimization complements hyper-

flexibility by manipulating model parameters at any cost to maximize

the goodness-of-fit to calibration data. As a result, considerations of

identifiability, equifinality, parsimony and physical consistency of model

structure and parameters are rather irrelevant in the context of ML

yet are typical considerations of PBM, with either statistical models or

those based on differential or other types of equations (Beven, 2006;

Guillaume et al., 2019).

The above characteristics make ML uniquely suitable for complex

mappings due to possible correlations of any form embedded in any

dataset of any dimensionality and nature. Conversely, PBM is gener-

ally based on causations, presumptive or real, typically defined in low-

dimensional spaces consistent with human cognitive capacity and

bounded within the realm of existing knowledge or perceptions. As

such, PBM is suitable for system identification and hypothesis devel-

opment and testing to understand the processes and their interactions

within a system. However, the attachment to legacy knowledge and

often rigid setups can sometimes hinder the scalability of PBM to dif-

ferent datasets, which, in some cases, requires altering the model con-

ceptualization, structure and parameterization (Nearing et al., 2021).

Conversely, ML applications are typically agnostic to prior knowledge,
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assumptions, and setups and can therefore relatively easily scale to

any data type, size and spatio-temporal resolution.

This ‘agnosticism’ further enables ML to be more robust to miss-

ing data or knowledge about a problem in the sense that it may still

predict some variables with desired accuracy based on data that are

deemed incomplete from a process-representation viewpoint. The

other side of this agnosticism is that ML applications typically provide

little basis for interpretability and explainability; for example, to enable

the modeller to reason why a model may respond differently to differ-

ent perturbations and, more importantly, to explain that to a stake-

holder. In contrast, PBM applications tend to be more explainable and

intuitive, even under circumstances not seen in the period of record,

because they try to emulate real-world processes as observed or

speculated by the modeller.

To understand the significance of the above fundamental dif-

ferences, let us revisit the overarching objectives of modelling in

EES, which have largely been served by PBM in past decades. In

our view, they include: (1) nowcasting and prediction, (2) scenario

analysis and (3) diagnostic learning. The first aims to look into the

now or foreseeable future and predict what will happen, for exam-

ple, in a local or regional weather system (e.g. Shi et al., 2015). This

directly supports real-time operation and management at different

levels, from individual citizens to local, regional or global institu-

tions. The second takes a what-if view of the future and aims to

determine how the system might respond under new or altered

conditions, such as climate or land-use change (Maier et al., 2016).

Thus, it supports long-term decision-making pertaining, for exam-

ple, to adaptation to change and building resilience in human-

controlled systems.

The third, diagnostic learning, is about looking backward, using

models to simulate the past and present behaviour of a system to

determine why it behaves as it does. This supports the development

F IGURE 1 Machine learning and process-based modelling in Earth and environmental sciences: Past, present and future
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and testing of new theories and hypotheses, thereby extending our

process understanding and knowledge base. In other words, diagnos-

tic learning is about exploring causations and attributions of observed

variability to controlling factors; for example, to explain the observed

sea level rise in past decades (e.g., Wada et al., 2016). Modelling for

diagnostic learning is a fundamental underpinning of scientific discov-

ery, thereby improving model fidelity.

How does ML perform with respect to the above modelling

objectives? ML is expected to perform well in nowcasting and predic-

tion, particularly when the underlying real-world system remains

structurally unchanged in the forecasting horizon of interest. ML,

however, can become handicapped or unreliable in scenario analysis if

extrapolating well beyond the training data is needed or a potential

structural change in the underlying system via human intervention or

otherwise is of interest (see section 7 in the study by Razavi, 2021 for

an experiment). In such extrapolations, the purely data-driven correla-

tional structure of variables may not be transferable (Beven, 2020),

while PBM might be salvaged by domain knowledge built in models.

Furthermore, most ML techniques, particularly connectionists,

may arguably be of limited help for diagnostic learning because they

are not essentially built for system identification and attribution. In

other words, it is typically non-trivial to compartmentalize an ML

model and attribute its parts to the components of the system being

modelled. Thus, contributions of ML to learning have been generally

limited to those based on interrogating ML-driven correlational rela-

tionships or classification schemes to improve parameterizations

(Mount et al., 2016; Shen et al., 2018).

3 | THE NOTION OF HYBRIDIZATION AND
ITS SHORTCOMINGS

The desire to bridge ML and PBM has a long history in the AI commu-

nity (e.g. Towell & Shavlik, 1994) and has received much more atten-

tion recently (e.g. Karpatne, Atluri, et al., 2017; Raissi et al., 2019; von

Rueden et al., 2019). In the context of EES, such efforts have mainly

been under the notion of ‘hybridization’, cast in three general frame-

works as articulated in Abrahart et al. (2012) and more recently re-

introduced in Reichstein et al. (2019), herein referred to as sequential

framework, modular framework and surrogate modelling.

Sequential framework refers to a hybridization framework in

which an ML model receives the output of a process-based model and

attempts to estimate its errors (e.g. Anctil et al., 2003; Li et al., 2021;

Shamseldin & O'Connor, 2001) or their distribution as a measure of

model uncertainty (e.g. Solomatine & Shrestha, 2009; Wani et al.,

2017). This form of hybridization is useful to improve our overall pre-

dictive power via ML in a data-driven fashion, when PBM cannot

explain some aspect(s) of observed data.

In modular framework, a (sub-)model takes charge to directly rep-

resent a process, or a set of processes combined, in the body of

another larger model. This framework is intrinsically ad hoc depending

on the problem at hand and data available. When serving as a sub-

model in PBM, ML can target processes that are not well understood

theoretically to enable a process-based representation, but provide

sufficient direct observations for input–output mapping

(e.g. Bennett & Nijssen, 2021; Chen & Adams, 2006; Chua &

Wong, 2010; Corzo et al., 2009; Mekonnen et al., 2015). Alternatively,

PBM may at times be preferred within larger ML models, when it

offers place-specific knowledge or proven skills in representing partic-

ular processes in the underlying system of interest (e.g. Chua &

Wong, 2010; Humphrey et al., 2016; Jiang et al., 2020).

Surrogate modelling is fundamentally different from the above

two frameworks as it employs ML to develop an emulator of some

targeted aspects of a complex process-based model (e.g. Maskey

et al., 2000; Yu et al., 2020). The main motivation for this framework

is to improve computational efficiency and tractability of model-based

analyses, particularly in multi-query applications (Razavi et al., 2012).

In general, these hybridization frameworks are expected to

improve our computational efficiency and predictive power of any

system of interest in EES, which are particularly beneficial to opera-

tions for nowcasting and prediction. However, we argue such hybrid-

izations still treat the theories and models of the two paradigms in

isolation, while integrating them through different and ad hoc inter-

facing procedures. Therefore, any resulting ‘hybrid model’ may natu-

rally inherit limitations of the parent models, particularly when it

comes to scenario analysis and diagnostic learning.

4 | TOWARDS COEVOLUTION OF ML
AND PBM

The notion of hybridization may yet need to break through philosoph-

ical barriers between CS and EES communities, and shift attention

from a ‘borrowing culture’ centered at adoption of CS tools in EES

applications to a ‘co-creation culture’ that brings the two communi-

ties together to build new modelling paradigms engineered to address

outstanding and emerging challenges in EES. Enabled with a coevolu-

tionary approach towards model building, such modelling paradigms

would: (1) leverage the unique strengths of ML such as scalability to

big data and high-dimensional mapping, while (2) remain faithful to

knowns in the knowledge domain yet more agnostic to existing mech-

anistic formulations that might be deficient.

This endeavour can build upon some new, yet embryonic, meth-

odological approaches under two complementary notions, referred to

herein as ‘knowledge-driven regularization of ML’ and ‘data-driven dis-

covery of knowledge’. Regularization is widely used to leash any possi-

bly undesired flexibility of mathematical models with an aim to

improve their generalizability (Johansen, 1997; Krogh & Hertz, 1991).

A common approach of regularization is to introduce a ‘penalty func-

tion’ to the model development exercise, sometimes as simple as the

sum of squares of the model parameters, that needs to be minimized

during model calibration (Razavi & Tolson, 2011). This regularization

approach can be extended to account for the knowledge base avail-

able, by designing and minimizing ‘knowledge-driven training functions’
that measure violations from known physical laws and principles. For

example, Karpatne, Watkins, et al. (2017) designed a training function
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to enforce the monotonicity of the water density–depth relationship

in an ML-based lake temperature model. Raissi et al. (2019) furthered

this approach by incorporating a set of known differential equations

(ordinary or partial) such as Navier–Stokes into a training function.

Knowledge-driven regularization of ML has great potential that

needs to be exploited. In principle, a vast array of knowledge types

can be built into ML, whether quantitative, such as those typically rep-

resented in PBM including conservation laws, monotonicity and rates,

and feedback mechanisms, or qualitative, such as any information

around the general form of a relationship. Regularizing ML with such a

knowledge base, which typically comes with known limits of validity,

provides a basis for building confidence in modelling results, even in

extrapolation into parts of the problem space for which no data are

available. However, a major challenge is that the design of a

knowledge-driven training function is inherently a domain- and scale-

specific problem and its implementation can largely be heuristic. What

helps is that such knowledge representation in ML does not necessar-

ily need to be exact or deterministic and can be effectively treated as

soft constraints during training, with the degree of softness controlled

by a weight factor in the training function.

In parallel, new fronts are emerging for data-driven discovery of

knowledge, following the longstanding ambitions to discover the

unknown dynamical properties of a system from data, with roots in

efforts to reconstruct the state space of a system and its possible

future trajectories purely from time series data (Casdagli et al., 1991). A

first front revolves around using ML to transform an original variable

space, where data are collected, into a new space typically with lower

dimensionality that explains the governing processes in a more parsi-

monious and interpretable way (Champion et al., 2019; Iten

et al., 2020). A second front aims to derive differential or other types of

equations governing a system from data collected across spatio-

temporal domains, for example, via sparse regression methodologies

(Brunton et al., 2016; Rudy et al., 2017). While any set of equations

derived from data may not necessarily embed causal relationships, this

approach can allow for theory and hypothesis development around

dynamical properties, possible feedback mechanisms, and emerging

behaviours. When leveraged by big data, such techniques have poten-

tial for new scientific discoveries, particularly in poorly known systems,

across a range of space and time scales. Such insights can potentially

improve extrapolatability and generalizability beyond observations by

constraining model behaviour within the new knowledge learned.

Data-driven discovery of knowledge should not be limited to purely

natural processes. Today, EES is dealing with a wide range of human-

induced or -driven processes that are still largely unknown or under-

characterized. For example, modelling and predicting the impact of pol-

icy, societal response to conservation measures or the role of corruption

on the management of water and other resources is too complicated. A

critical question is how such processes come together and interact with

natural processes to sustain, amplify or dampen outcomes like drought,

groundwater depletion or streamflow withdrawals (Elsawah et al., 2020).

Where data are available around such human-natural systems, either

quantitative, qualitative, or a combination thereof, ML can help us find

relationships that may not be readily apparent.

This potential can even lead to an inversion of views about tech-

niques such as data assimilation (DA), which traditionally use PBM as

the ‘reference’ with which different datasets are fused. Standard DA

techniques can be deficient if signals in the data are dominated by

processes that are poorly or un-represented in PBM, a common situa-

tion for many real-world systems with ubiquitous human impacts. In

such situations, ML embedding physical knowledge may be used as an

alternative reference for DA, as it may demonstrate improved explan-

atory power of the processes involved. More generally, any new

knowledge gained about the underlying processes through the use of

ML can be built into PBM.

5 | THE BOTTOM LINE

Current excitement in the EES and CS communities around ML pro-

vides a fertile ground for breaking through cultural barriers by devel-

oping initiatives aimed at coevolution of ML and PBM. Eventually,

such initiatives may lead to the development of models that further

expand our cognitive capacity to make sense of the underlying pro-

cesses in higher-dimensional spaces, and across heterogeneous and

non-stationary domains. Commercialization potential of ML to

address Earth and environmental problems can be a catalyst in this

endeavour; it has already motivated high-tech companies, which have

been spearheading the transformative and widespread impacts of ML

on society through smartphones and other applications, to invest in

such new ideas (e.g. the ML-based flood warning system by Google

[Vincent, 2020]). These interdisciplinary synergies and private invest-

ments must be embraced in sustainable ways when training the new

generation of scientists and practitioners. Away from any possible

‘hype’ or overexcitement around ML, we need to ensure they retain

curiosity about understanding Earth and environmental processes

while being equipped with emerging ML technologies.
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