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Abstract 
 
The Lower Mekong River Basin in Southeast Asia experiences frequent rainfall-triggered landslides especially during 

the monsoon season. In this study, the influence of land use and land cover (LULC) change and other causative factors 

on landslide susceptibility is evaluated in the Lower Mekong Basin. Frequency ratio analysis is performed to quantify 

the relationship between LULC change and susceptibility. Detailed landslide inventory maps are used for analysis 

with yearly LULC maps. The LULC change is used as a contributing variable in a logistic regression-based 

susceptibility model with other variables including distance to roads, slope, aspect, forest loss, and soil properties. The 

Receiver Operating Characteristic (ROC) curve and Area Under the Curve (AUC) are estimated for the model trained 

by each landslide inventory. The models show good performance, with AUC values ranging from 0.697 to 0.958 and 

an average AUC equal to 0.820. Both the Frequency Ratio analysis and the Logistic Regression models indicate LULC 

change from agricultural land to forest has a positive correlation with landslide occurrence. The most significant 

factors in the models are found to be distance to roads, slope, and aspect. A better understanding of the effects of 

LULC on landslide susceptibility can be useful for local land and disaster management and for the implementation of 

LULC as a factor in future susceptibility models. Using datasets that are unique to the Lower Mekong region, this 

study provides additional insights into the relationship between causative factors and landslide activity to better inform 

regional and global landslide susceptibility modeling.  
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1.0 Introduction 

A landslide encompasses a wide range of mass movements and can be defined as the downslope 

movement of soil, rock, or earth (Highland & Bobrowsky, 2008). The movements can be triggered by various 

external activities such as intense rainfall, earthquakes, changes in water level, waves, or stream erosion, which 

lead to a decrease in shear strength and an increase in shear stress on the slope (Dai et al. 2002). Landslides can 

also be caused by anthropogenic activities such as excavation, road construction, and land use changes. These 

factors often induce small, shallow landslides, but abrupt changes to the slope surface such as poor construction 

and planning can result in larger, more dangerous landslides (Jaboyedoff et al. 2016). Watersheds that have been 

recently affected by wildfires can be highly susceptible to rainfall-triggered landslides that usually occur within 

a short time following the burn (Degraff et al. 2015; Kean et al. 2011). This study focuses on rainfall-triggered 

landslides as they are the most frequent and cause loss of life and destruction of property across the globe (Froude 

& Petley 2018). Rapid urbanization can increase the risk for landslides, especially along poorly constructed roads 

and deforested areas in mountainous regions (Forbes et al. 2012). However, better land management of forests 

and cultivated areas can produce a decrease in rainfall-triggered landslide susceptibility (Pisano et al. 2017). 

In the Lower Mekong River Basin (LMRB) in Southeast Asia, the monsoon season brings an increase in 

flood and landslide disasters due to an increase in rainfall from large storms in combination with the complex 

topography of the region.  The LMRB has experienced extensive changes from urban and agricultural expansion, 

deforestation, river damming, and natural disasters such as flood and drought. In this region, changes in Land Use 

and Land Cover (LULC) are largely influenced by agricultural prices, road accessibility, construction projects, 

and climate change (Spruce et al. 2020). Spruce et al. (2020) assessed LULC changes in the Lower Mekong using 

two maps from 1997 to 2010. In their analysis, 2.5% of the total area of permanent agriculture decreased which 

could be associated with the abandonment of crops or converting cropland to forests. They also identified an 6.7% 

increase of the total area categorized by scrub/shrub/herbaceous which could be attributed to abandoned cropland 

reverting back to forest. Looking at the changes between LULC classes, some cropland had changed to deciduous 

forest/scrub over time between 1997 and 2010. Changes in land cover can have variable impacts on landslide 

susceptibility. In some cases, human impacts such as deforestation and mining serve to exacerbate instability on 

slopes (Winter et al. 2010). In other examples, thoughtful engineering and planning can serve to stabilize slopes 

(Prastica et al. 2019; Yan et al. 2019). 

The preconditions for landslides vary, but changes in land use and land cover (LULC) have been shown 

to have local impacts (e.g., Glade 2003; Hewawasam 2010; Mugagga et al. 2012; Reichenbach et al. 2014). Pisano 

et al. (2017) evaluated how land cover change affects slope stability over time in the Italian Southern Apennine 

Mountains by treating land cover as a dynamic variable, unlike many other landslides susceptibility studies that 

consider land cover as a static variable. This study found that a decrease in forest and cultivated land and increase 

in barren, pasture, and shrub land led to an increase in landslide susceptibility. A study by Persichillo et al. (2017) 

assessed shallow landslides in the northern Apennine Mountains in Italy in areas with land abandonment and 

changes in land management practices from 1954 to 2012. They found that cultivated lands that were abandoned 

and allowed to gradually recover naturally was the land cover change scenario most susceptible to landslides and 
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land cover was the most predisposing factor in all study areas. Similarly, Deng et al. (2018) investigated landslide 

distribution and agricultural abandonment in several provinces in China’s mountainous areas. They concluded 

that more landslides occurred in areas with high incidence of agricultural abandonment. Furthermore, the effects 

of land use changes on landslides were analyzed in a landslide-prone region in Northeast Turkey with 

mountainous topography and high rainfall frequency by Karsli et al. (2009). Land cover changes and landslides 

were identified using aerial images taken in 1973 and 2002. Their results indicated that the land cover type played 

an important role in landslide occurrence as 95% of the landslides identified from the imagery were in areas with 

acidic soil weakened by fertilizer use in agriculture.  

Frequency Ratio (FR) analysis is a common method used to assess the relationship between susceptibility 

and the occurrence of a landslide event (Gariano et al. 2018; Pourghasemi et al. 2013). A study by Silalahi et al. 

(2019) used GIS mapping and FR analysis to assess the effects of contributing factors on landslides in Bogor, 

Indonesia. Their results indicated land cover as one of the most important factors contributing to landslides as 

well as lithology and soil type in this area. Additionally, Khan et al. (2019) used the FR to create a landslide 

susceptibility index which was used to produce a susceptibility map for northern Pakistan. Their study found 

barren land and irrigated agricultural land to have the highest FR values of the land cover classifications, however 

distance to roads was found to have the highest overall FR value. These and other studies use FR to assess 

conditioning factors and create susceptibility maps but however, rarely incorporate land cover as a dynamic 

variable. Additionally, statistical methods like Logistic Regression (LR) are effective in identifying input variable 

importance/significance and several studies have considered LULC within this framework (e.g., Reichenbach et 

al. 2018; Lee & Sambath 2006; Shahabi et al. 2014; Bai et al. 2010; Das & Lepcha 2019; Bornaetxea et al. 2018). 

LR has been an effective tool for developing landslide susceptibility maps and highlighting the significance of 

contributing variables however, few studies have considered how LULC can be considered dynamically in these 

models to explain changes over time in a region. Hemasinghe et al. (2018) analyzed susceptibility in mountainous 

regions predisposed to landslides in Sri Lanka. Their study examined slope, aspect, lithology, land cover, distance 

to rivers and roads as predictor variables. Land cover was determined to be the most influential factor in the study 

area. Known landslide locations were used to validate their susceptibility map, and a majority (76%) of the 

landslide points were in high and extremely high susceptibility areas. Land cover is similarly used as a static 

predictor variable in many other susceptibility studies, uniquely this study will treat land cover change as a 

dynamic variable that changes over time.  

The question posed in this study is - how do changes in land use and land cover (LULC) impact landslide 

susceptibility in the LMRB? We evaluate these interactions using several new landslide event inventories mapped 

between 2015 – 2018 that provide information within areas of Vietnam, Myanmar, and Laos (Amatya et al. 

2021)(Figure 1). Additionally, this study closely examines the effects of LULC change on landslide occurrence, 

a dynamic which is not completely understood in the LMRB (Shu et al. 2019). Our work seeks to understand the 

relationship of changing LULC over time and how this impacts susceptibility. The relationship between LULC 

changes and landslide occurrence will be analyzed using Frequency Ratio (FR) analysis and Logistic Regression 

(LR) modeling. The FR will be used to closely examine the frequency of landslides within the various LULC 
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change scenarios present in each of the landslide inventory locations. This study will use the LR models to 

compare LULC changes with other contributing factors like slope, forest loss, soil properties described in Table 

2. The FR and LR results will be compared to determine any similarities regarding the significance of LULC 

changes on landslide occurrence. Results of this work are important as population expansion, road development 

and farming continue to increase (and hence changes in land cover) in the LMRB (Spruce et al. 2018). This work 

is part of a broader effort to characterize landslide susceptibility, hazard, and exposure within the LMRB for 

decision making at the country and municipal level using satellite remote sensing products. 

 

2.0 Data 

2.1 Landslide Inventory 

The landslide inventories used in this research were mapped utilizing high-resolution satellite imagery 

from Planet (Planet Team, 2017) using the modified framework of Semi-Automatic Landslide Detection (SALaD) 

system (Amatya et al. 2021a). SALaD uses object-based image analysis and machine learning to map landslides. 

As we are focusing on rainfall event-based inventories, it is important we map landslides induced by that event 

only as pre-event landslides may have been triggered by phenomena such as earthquakes. A change detection-

based approach was introduced to the SALaD  framework (SALaD-CD) utilizing pre- and post-event imagery 

(Amatya et al. 2021b). The new framework incorporates image normalization, image co-registration and change 

detection. The landslide polygons produced by SALaD-CD were manually corrected and converted to initiation 

points using NASADEM (NASA JPL 2020). A total of 18 rainfall-triggered landslide inventories between 2015 

and 2018 were used in this analysis: 13 in Vietnam, three in Myanmar, and two in Laos (Figure 1). Details on the 

landslide inventories used in this study are provided in Table 1.  

 

2.2 Digital Elevation Model (DEM) 

NASADEM with 30 m spatial resolution was used to derive the input variables for slope and aspect 

(NASA JPL 2020). NASA DEM is derived from SRTM, which was launched in 2000, with processing 

improvements, elevation control, void-filling and merging with data that was unavailable at the time of the 

mission. NASADEM also provides an improved spatial resolution from the original three-arcsecond SRTM DEM 

to one-arcsecond, making it the finest resolution, global, freely-available DEM product.  Slope is one of the major 

influencers of landslide activity, and therefore was selected based on its likely correlation with landslide 

susceptibility (Bruschi et al. 2013; Chen et al. 2019; Indhanu et al. 2020). The aspect is derived using GIS and 

reclassified to represent North, South, East, and West facing slopes. Data is publicly available from  

https://doi.org/10.5067/MEaSUREs/NASADEM/NASADEM_HGT.001.  

2.3  Land Use/ Land Cover (LULC) 

Land use and land cover (LULC) data from the Regional Land Cover Monitoring System (RLCMS) is 

available via the SERVIR-Mekong Land Use Portal and is presented at 30 m spatial resolution and yearly 

temporal resolution from 1987 to 2018 for the Lower Mekong River Basin (Saah et al. 2020). The RLCMS uses 
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historical Landsat and MODIS data to create LULC maps. The methodology behind deriving the maps can be 

summarized, defining the classification typologies, creating the primitive layers using supervised classification 

and machine learning algorithms, combining the primitive layers into land cover maps, and lastly, an accuracy 

assessment. The typology classifications were determined by stakeholders from Cambodia, Laos PDR, Myanmar, 

Thailand, and Vietnam. LULC data from ten years prior to each landslide event, spanning from 2005 to 2018, 

were used for analysis in this study. Due to limited spatial representation of the original classifications, the land 

cover was reclassified into three categories shown in Table 3, similarly to the methodology in Chen et al. (2019). 

For more information on how this dataset was created and its details, please review Saah et al. (2020). Data is 

publicly available from https://landcovermapping.org.  

2.4 Roads 

Proximity to roads has been found influential on rainfall-triggered landslide occurrence in several areas 

in previous studies (Larsen & Parks 1997; Penna et al. 2014; McAdoo et al. 2018).  The construction of roads 

changes the hydrologic response and surface and subsurface flow paths in the affected area which can influence 

landslide susceptibility (Penna et al. 2014). McAdoo et al. (2018) found that within 100m of a road rainfall-

triggered landslides were more than two times as likely to occur in Nepal. The Global Roads Inventory Project 

(GRIP) is compiled from publicly available national vector datasets from governments, research institutes, NGOs 

and crowd-sourcing initiatives and includes over 21 million km of roads. The GRIP dataset is available as a vector 

dataset for each region of the world. The Southeast Asia GRIP dataset was used to derive a distance to roads raster 

which represents the distance to nearby roads for each pixel in the selected extent using GIS software for each 

landslide inventory location. For more information on how this dataset was created and its details, please refer to 

Meijer et al. (2018). Data is publicly available from https://www.globio.info/download-grip-dataset.  

2.5 Soil Properties 

The World Soil Information Service (WoSIS) provides standardized soil profile data for various 

environmental applications at global scale. The most current WoSIS snapshot is a compilation of nearly 

200,000 soil profiles from locations across the globe. These profiles are standardized and distributed using a 

database model, SoilGrids, which uses machine learning methods to map the spatial distribution of soil 

properties based on the soil profile observations (Hengl et al. 2017). Soil data is available for six standard depth 

intervals at 250 m spatial resolution. For a full description of this data, please refer to Batjes et al. (2020). Two 

soil layers representing bulk density and organic carbon were downloaded from SoilGrids for each study region 

at the at 0 – 5 cm depth. These variables were resampled to the resolution of the DEM at 30 m for model 

implementation. Data is publicly available from www.soilgrids.org.  

2.6 Forest Cover Loss 

Global Forest Change data is created from Landsat imagery at 30 m spatial resolution and characterizes 

forest extent, loss, and gain and is available from 2000 to 2019. In this study, this data is used to estimate the 

Forest Loss over the past ten years for each landslide inventory extent. For more information on the methodology 
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and details of this dataset, please review Hansen et al. (2013). Data is publicly available from 

http://earthenginepartners.appspot.com/science-2013-global-forest.  

 

3.0 Methodology 

3.1 LULC Analysis 

The landcover maps were reclassified from nine categories to three broader categories due to the limited 

spatial representation of the original land cover classifications in the small extents represented by the landslide 

inventory locations. These reclassification categories as well as the original categories represented in the study 

area described in Table 3 and shown in Figure 2 for the greater Lower Mekong region. The reclassified landcover 

maps were analyzed to estimate the amount and type of change over the 10-year time period prior to the landslide 

event in each study region as well as the overall LULC patterns in the greater Lower Mekong region from 1998 

to 2018. Overall, the time frame used to analyze LULC changes varies in the literature. Several studies chose time 

intervals that ranged from five to 30 years due to the availability of aerial imagery (Karsli et al. 2009; Persichillo 

et al. 2017).  The 10-year time period was selected based on previous studies that assessed LULC changes over 

time (Chen & Huang 2013). Chen and Huang (2013) compared LULC changes over 10 years (1999 to 2009) to 

determine the relationship between LULC change and landslides triggered by Typhoon Morakot in Taiwan. They 

found that areas with a change in land cover had a higher frequency of landslides than non-changed areas. Here, 

the LULC change over the ten-year time-period was estimated by assigning a change scenario to each pixel based 

on its land cover classification in the two maps (i.e., map of landcover in 2018 compared to the map of landcover 

in 2008). There is a total of nine possible LULC scenarios for each pixel including three no-change scenarios 

where the type of land cover classification did not change over the specified time-period. The percentage of total 

area of each LULC scenario is estimated and reported for each landslide inventory location and shown in Figure 

3 (A) and averaged over all locations in Figure 3 (B). Land cover classified as urban represents less than 1% in 

each study area except for one inventory, Nha Trang (NH), which is composed of 16% urban area. Only three of 

the inventories are characterized by greater than 25% agricultural area (Figure 3A). Forests comprise over 50% 

of each area and 81% of the total area used for analysis. The LULC change scenario with the largest area 

represented in the study locations is from agriculture to forest, representing 2% of the total area and less than 5% 

in each inventory extent (Figure 3B).  

3.2 Frequency Ratio Analysis 

Frequency ratio (FR) was used in this study to quantitatively examine the relationship between landslide 

occurrence and each LULC change scenario. The FR is the ratio of the percentage of landslide occurrence in a 

factor class to the total percentage of that factor in the area, and the average FR value is one (Khan et al. 2019). 

Values greater than one indicate that landslides occur more frequently relative to the total distribution within the 

variable being considered over the study area. FR values lower than one indicate a lower amount of landslide 

occurrence (Gariano et al. 2018). The equation used to calculate FR is as follows: 
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	             (1) 
 

   
Where Mi = number of pixels containing landslides in LULC class i, ∑𝑀%  = total number of pixels 

containing landslides in the study area, Ni = total number of pixels in the study area for that particular LULC 

class, and ∑𝑁% = total number of pixels in the study area. The FR of each LULC scenario is estimated for each 

study location. 

3.3 Logistic Regression 

A logistic regression model is used in this study to further assess the relationship between changes in 

LULC and landslide occurrence as well as determine any similarities with the results of the Frequency Ratio 

analysis. The model is outlined in the workflow diagram shown in Figure 4. Many susceptibility studies use 

logistic regression to evaluate binary response variables such as landslide occurrence (Lombardo & Mai 2018; 

Horafas & Gkeki 2017; Pourghasemi et al. 2013). Logistic regression models the probability of events based on 

the linear combination of independent contributing variables (Camilo et al. 2017). The model produces 

coefficients for each input variable, which are used to predict the probability of landslides over the study area. 

Positive coefficients indicate that there is positive correlation with the presence of this conditioning factor and 

landslide occurrence, and negative coefficients indicate a negative correlation between presence of the factor and 

landslide occurrence and there is an absence of this factor in locations where landslides occur. The predictions 

are used with raster data of each contributing variable to create a landslide susceptibility map. The equations used 

in logistic regression are as follows: 

               (2) 
 

𝑍 = 𝑏& + 𝑏'𝑥' + 𝑏(𝑥( +⋯+ 𝑏)𝑥)            (3) 
 

Where P = probability of occurrence of the event occurring, Z = linear combination, 𝑏&	= intercept, 𝑏%	 = slope 

coefficients, and 𝑥%	 = independent variables (Lee & Sambath 2006). To create training and testing datasets, an 

equal number of non-landslide points are generated. The logistic regression model is used to create landslide 

susceptibility maps for each of the 18 study regions mapped in the landslide event inventory. The model is trained 

with 70% of the landslide inventory as well as randomly generated points that do not coincide with landslide 

locations. The following predictor variables are tested in the logistic regression model in this study: slope, aspect, 

LULC change, distance to roads, bulk density, organic carbon, and forest loss. These variables were selected 

based on their spatial and temporal availability and potential correlation with landslide occurrence as well as their 

significance in the logistic regression models determined by their corresponding p-values. A significance level of 

0.01 implies there is less than 0.1 % chance that the coefficient may be equal to zero and therefore be insignificant 

in determining landslide susceptibility. A p-value less than 0.05 is statistically significant and p-values greater 

than 0.05 are determined as not statistically significant. All of the model input variables were reclassified into 

𝑃 =
1

1 + 𝑒!"
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categorical factors for simplified comparison between the categories. The classifications of each factor are shown 

in Table 4. These maps were validated using the Receiver Operating Characteristic (ROC) curve and Area Under 

the ROC Curve (AUC) analyses, common statistics for assessing the predictive capacity of susceptibility models 

(Felicísimo et al. 2013). The ROC was derived using a testing dataset that is comprised of 30% of the landslide 

inventory as well as randomly generated non-landslide points. These metrics are often considered to evaluate the 

performance of susceptibility models and the model with a larger AUC value is considered better predictive model 

(Gorsevski et al. 2006; Zhou et al. 2018; Lombardo & Mai 2018). 

 

4.0 Results  

Eighteen landslide inventories were used in this study to assess the relationship between land cover 

change and landslide occurrence. The percentage of total area represented by each LULC scenario averaged over 

all inventory locations is shown in Table 5.  The number of total landslides occurring in each LULC scenario 

from the 18 inventories are shown in Table 6. The Frequency Ratio value averaged over all inventories for each 

LULC scenario is shown in Table 7. The category forest with no change in LULC over ten years prior to the 

landslide event made up about 82% of the total area when averaging over all 18 inventory locations (Table 5). 

The majority of landslides (15,568) also occurred within this LULC category (Table 6). The average FR for Forest 

with no change was 2.06 (Table 7). The category making up the second largest percentage of total area is 

agricultural land with no change over ten years prior to the landslide event, which composed about 15% of the 

total area (Table 5). This LULC category experienced 2,530 landslides (Table 6) and had an average FR of 1.64 

when averaged over all locations (Table 7). The category of urban with no change represented about 1% of the 

total area within the 18 inventory locations (Table 5) and experienced no landslides. The LULC change scenario 

from agriculture to forest in the ten years prior to the landslide event comprised only 2.1% of the total area within 

all inventory locations (Table 5). However, this area experienced 614 landslides (Table 6) and had an average FR 

of 2.83 (Table 7) for all locations. The results of the FR analysis could indicate that areas experiencing a change 

from agriculture to forest are more susceptible to landslides than other land cover change scenarios. 

The Frequency Ratio (FR) aids in understanding location specific conditions for landslide occurrence by 

providing the ratio of the landslide area to the total area. Figure 5 shows a matrix diagram of the FR for each 

landslide inventory and LULC change scenario. FR values less than one are represented by dark blue. From Figure 

5, we can see that all categories including urban produced FR values less than one. The scenario from forest to 

agriculture was only found significant in the Sin Ho, Vietnam with a FR of 1.63 and Hakha, Myanmar with a FR 

of 1.94. The scenario agriculture with no change in ten years prior to the landslide event had FR values greater 

than one for half of the inventory locations. Forests with no change had FR values greater than one for all but one 

location (Tam Duong, Vietnam). However, the highest FR values were for the LULC change scenario from 

agriculture to forest, ranging from 0 to 8.15 over the 18 landslide inventory locations. This scenario had relatively 

high FR values of 5.14 for Nha Trang, Vietnam; 6.33 for Vi Xuyen, Vietnam; 6.72 for Muong La, Vietnam; and 

the highest FR value of 8.15 for the landslide inventory in Phu Yen, Vietnam. The change observed from 
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agriculture to forest could be a representation of agricultural abandonment, where the agricultural fields are left 

to naturally recover and revegetate. Spruce et al. (2020) observed similar changes from agriculture to forest in the 

Lower Mekong between the period from 1997 to 2010. These high FR values could be explained by agricultural 

abandonment practices having an impact on landslide occurrence which would be consistent with the results 

found by Deng et al. (2018) and Persichillo et al. (2017).  

In addition to assessing the LULC within the extents of the 18 landslide event inventories, land cover 

changes were also analyzed over the greater Lower Mekong region from 1998 to 2018. Figure 6 shows the area 

in square km represented by each LULC category over the entire Lower Mekong region and a noticeable change 

in land use between 1998 and 2001. The urban areas increased by 11.3% from 1998 to 2001 and increased 

constantly at an average rate of 1.2% per year. The area represented by forests decreased by 5.5% of the total area 

from 1998 to 2001 with an average decrease of 0.3% per year. In contrast, the amount of agricultural area 

increased drastically by 11.6% from 1998 to 2001 with an average increase of 0.6% per year. The percentage of 

total area represented by each of the three LULC categories from 1998 to 2018 are shown in Figure 7. From this 

figure we can observe that the amount of agricultural land increased by approximately the same area that of which 

the forests decreased from 1998 to 2001. Figure 7 shows that the majority of the Lower Mekong region is forested 

ranging from 67 – 63% of the total area for the time period from 1998 to 2018. About a third of the area is 

classified as agricultural land, ranging from 30 – 34%, and the smallest percentage of total area of the region is 

classified as urban, ranging from 0.9 – 1.1%. Figure 8 shows the percentage of total area represented by each 

LULC change scenario over the greater Lower Mekong region between 1998 and 2018. The LULC can be 

summarized as 62.1% forest unchanged, 29.1% agricultural area unchanged, 5.8% changed from agriculture to 

forest, 1.7% changed from forest to agriculture, 0.9% urban unchanged, and the combined land cover change 

scenarios of urban to forest, urban to agriculture, and agriculture to urban constitute merely 0.3% of the total area.  

A logistic regression model was trained and validated for the extents of 18 landslide event inventories. 

Table 8 presents a summary of the logistic regression coefficients and p-values of all models for the landslide 

inventory locations with greater than 1000 landslides to avoid potential overfitting from the smaller observation 

counts. The logistic regression model results for each of the 18 inventories are provided individually in Online 

Resource 1. In Table 8, the inventory abbreviations are shown next to the corresponding values for the minimum 

and maximum coefficient and p-value for each category within the factors. From this table, Muong Lat (MT) 

represents the highest coefficients in the land cover change corresponding to forest (no change), agriculture to 

forest, and agriculture (no change). When examining the LULC over the inventory location, the landslides largely 

occur in a forested area with no variation in land cover. The land cover in the Muong Lat (MT) area is fairly 

homogenous with minimal area represented by the land cover change scenarios other than forest (no change). 

However, several landslides did occur within areas that underwent deforestation for agriculture and in invariable 

agricultural areas. The model trained with the Da Bac (DB) inventory produces minimum coefficients for all 

distance to roads categories which indicates that in this area, the presence of roads is not very influential on 

landslide occurrence. When examining the Da Bac (DB) location, there is an ample road network throughout the 
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province, but the landslide distribution does not appear to be influenced by the presence or absence of roads and 

the landslides do not cluster around roads.  

Furthermore, Mu Chang Chai (MC) contributes to the minimum coefficients for the slope categories 

which could indicate that slope is less influential in this location, even though the p-values corresponding to the 

slope factor were not significant. The inventory mapped in Mu Chang Chai (MC) occurred in a mountainous 

forested area with varying slope. The inventory in Mu Chang Chai (MC) produced the highest coefficient for 

forest loss and the minimum p-value which could be explained by a large cluster of landslides occurring around 

an area that had experienced substantial forest loss in the years prior to the event. Mu Chang Chai (MC) also 

represents the maximum coefficients for proximity to roads indicating that roads are more influential on landslides 

in this location compared to other inventories. When looking closely at the area, the landslide distribution appears 

to be influenced by proximity to the road network. However, the p-values corresponding to distance to roads in 

the Mu Chang Chai (MC) inventory indicate this factor was not found to be statistically significant in the logistic 

regression model. Overall, the coefficients for distance to roads decrease with distance indicating that road 

proximity has an influence on landslide occurrence. This would agree with the findings of Larsen & Parks (1997) 

which identified that landslide frequency decreased as distance to roads increased in Puerto Rico.  

The Logistic Regression models were validated using 30 % of the landslide inventories as well as 

randomly generated non-landslide points. The models were validated by plotting the true positive rate versus the 

false positive rate (ROC) and calculating the area under the resulting curve (AUC). The AUC values from the 

validation of the Logistic Regression model and the number of landslides within each landslide inventory are 

presented in Table 9. The model validation results found all AUC values to be estimated above 0.7 except for one 

inventory in Hakha, Myanmar with an AUC value equal to 0.697. This was the lowest AUC amongst the model 

results indicating the model trained for Hakha, Myanmar did not perform as well compared to the other locations. 

The model trained for Thaphabath, Laos outperformed the other models based on having the highest AUC value 

of 0.958. The average AUC value of all 18 models is 0.82. Based on the model validation results in Table 9, the 

number of landslides and AUC values are not correlated indicating the number of landslides within each location 

used to train the models did not affect the model performance. 

 

5.0 Discussion 

The land cover of the inventories used in this study were dominated by forests with minimal LULC 

changes present. According to Table 5, the scenarios of LULC change from forest to urban, agriculture to urban, 

urban to forest, and urban to agriculture combined make up only 0.082 % of the total area averaged over the 18 

inventory locations. Looking at the LULC analysis over the LMRB in Figure 6 and Figure 7, the relatively small 

area occupied by urban areas may make it difficult to see any conclusive patterns in landslide activity. The LULC 

scenarios involving urban activities were less prominent in the landslide inventories used in this study, but also 

occupy the lowest amount of total land area in the greater Lower Mekong region so this category is not only less 

represented in the 18 landslide inventory area locations, but overall in the Lower Mekong River Basin. The 
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amount of area occupied by urban and built-up classification is not comparable to the amount of agricultural and 

forested areas in the LMRB. Additionally, the scenario involving urban activities did not experience any 

landslides within the 18 inventories used in this study. Therefore, the impact of LULC change scenarios to or 

from the urban classification cannot be fully determined using the 18 inventories presented in this study. 

The Frequency Ratio (FR) reveals potential correlation between landslide locations and causative factors 

in the area. Overall, the scenario from agriculture to forest had the highest average FR value followed by the 

scenario of forest with no change (Figure 5). The forested areas that experienced no change had an average FR 

value of 2.06 when averaged over all 18 study locations, and this is most likely due to the prevalence of forested 

mountainous regions with steep slopes where most landslides occur in this region. The results of this study 

indicate that the land cover change scenario from agriculture to forest could have an impact on landslide 

occurrence and that areas changing from agriculture to forest may be more susceptible to landslides in the years 

following the land cover change. This could indicate that abandoned agricultural lands left to naturally recover 

are more susceptible to landslide activity than other land cover change scenarios, which would be similar to the 

conclusions drawn by Deng et al. (2018) and Persichillo et al. (2017). Further evaluation of land cover change 

from agriculture to forest with landslide inventories where this LULC change scenario is more prevalent than the 

inventories used here needs to be executed to further understand the impact of land use changing from agriculture 

to forest as invariable forests dominate the areas used in this study. Additionally, the FR being a univariate 

analysis must be taken into consideration. The areas where landslides occurred that were deforested for 

agricultural purposes could be influenced by additional factors. Other limitations include the spatial resolution 

and the availability of remotely-sensed datasets for the region. For example, the finest resolution for publicly 

available DEM data for the Lower Mekong River Basin is 30 meters, which is much coarser than other regions 

such as USA with one-meter DEM available. With landslides ranging in size, coarser spatial resolutions may not 

accurately represent the environment of very small, shallow slope failures. Enhanced spatial resolution of 

remotely sensed data would greatly benefit modelling efforts for landslide susceptibility in the Lower Mekong 

River Basin. 

We can make generalized conclusions for the 18 inventory locations and models regarding landslide 

causative factors using the coefficients and p-values from Table 8. When averaged over all 18 models the 

causative factors associated with distance to roads, forest loss, and slope display positive coefficients, which is 

expected considering these variables are known to be influential on landslide occurrence. Overall, the most 

significant variables based on the mean p-values were slope and aspect. The high significance of aspect could be 

explained by the models using flat as the basis factor. When considering all 18 inventories, the logistic regression 

models did not indicate that areas changing from agriculture to forest were as influential on landslide occurrence 

as the FR analysis did, which could be explained by the FR being a univariate analysis and the Logistic Regression 

being multivariate. However, the average coefficient for the LULC change category of agriculture to forest has 

the only positive coefficient of any of the change scenarios besides forest and agriculture with no change.  Forest 

with no LULC change had the highest and only positive average coefficient relative to the other land cover change 

scenarios which is most likely due to the majority of landslides in this study occurring in steep forested areas and 
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the considerable amount of forested area throughout the study locations. Areas that changed from forest to urban 

have the lowest average coefficient which could be explained by the limited number of landslide points within 

the area represented by this scenario in the inventories. Alternatively, this could mean that areas being developed 

are not susceptible to landslides due to other factors such as low slope which could indicate informed land 

management decisions in the region. 

 

6.0 Conclusions 

Land use and land cover (LULC) changes can affect slope stability and geological conditions that may 

influence the occurrence of landslide activity. This study assessed the influence of LULC changes on landslide 

susceptibility for 18 locations throughout the Lower Mekong River Basin (LMRB). The majority of landslides 

occurred in the LULC change scenario with the largest land coverage percentage, which is forested areas that did 

not experience any change in land cover. However, the LULC change scenario from agriculture to forest had the 

highest FR values overall. Both the FR analysis and LR models indicated that the LULC change scenario from 

agricultural land to forest could positively correlate with landslide occurrence. However, for real-time analysis 

the LULC data available on the SERVIR-Mekong Land Cover Portal would be needed to be updated each year 

as currently, maps are only available only up to 2018. 

There were data limitation issues regarding the representation of land cover changes in the extent of the 

landslide inventories. Not all land cover change scenarios are represented in these study areas, more locations 

with landslide inventories that experienced land cover changes are needed to fully analyze the influence of LULC 

on landslide susceptibility. This method can further be applied to new landslide inventories for other locations in 

the Lower Mekong River Basin as the data becomes available to discover more consistent correlations between 

LULC change and landslide susceptibility. Specifically, the relationship between agricultural abandonment and 

landslide occurrence could be further analyzed to determine how this LULC change influences susceptibility in 

the Lower Mekong Region. The inclusion of dynamic LULC in landslide susceptibility models could greatly 

improve hazard assessment and should be investigated as the combination of land use changes over time due to 

population expansion and disturbances caused by climate change. This analysis is done primarily using remote 

sensing products, making it transferable to other landslide-prone regions around the world. Additional research 

efforts could further investigate the role of agricultural abandonment and natural recovery on rainfall-triggered 

shallow landslides. 
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Figure I. Geographic locations of the landslide inventories in the LMRB 
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Figure II. (A) The original LULC classifications and (B) the reclassified LULC classifications 
for the LMRB region in 2018. 
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Figure III. (A) Percentage of area for each LULC change scenario over 10 years for each 
inventory location (B) Percentage of area of each LULC change scenario averaged over all 
locations. 
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Table I. Landslide inventory description 

District Country Year Satellite Landslides 
(BX) Bat Xat Vietnam 2017 PlanetScope 99 

(DB) Da Bac Vietnam 2017 RapidEye 1086 

(MC) Mu Chang Chai Vietnam 2017 RapidEye 1256 

(ML) Muong La Vietnam 2017 RapidEye 758 

(PY) Phu Yen Vietnam 2017 RapidEye 1368 

(TT) Tram Tau Vietnam 2017 RapidEye 1490 

(MT) Muong Lat Vietnam 2018 PlanetScope 1718 

(NT) Nha Trang Vietnam 2018 PlanetScope 207 

(PT) Phong Tho Vietnam 2018 PlanetScope 302 

(SH) Sin Ho Vietnam 2018 RapidEye 707 

(TD) Tam Duong Vietnam 2018 PlanetScope 159 

(TU) Than Uyen Vietnam 2018 PlanetScope 312 

(VX) Vi Xuyen Vietnam 2018 PlanetScope 157 

(FM) Falam Myanmar 2015 RapidEye 5086 

(HK) Hakha Myanmar 2015 RapidEye 1737 

(HA) Hpa-An Myanmar 2018 PlanetScope 992 

(TB) Thaphabath Laos 2015 RapidEye 242 

(XN) Xieng Ngeun Laos 2018 PlanetScope 1178 
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Table II. Data descriptions, resolutions, and sources 

Dataset Derived variables Spatial resolution Source 
DEM 
[raster] 

Slope 
Aspect 

30 m NASA JPL (2020) 

Land cover 
[raster] 

Land use/land cover change (LULC) 30 m Saah et al. (2020) 

Roads 
[vector] 

Distance to roads -- Meijer (2018) 

Soil properties 
[raster] 

Bulk density 
Organic carbon 

250 m Hengl (2017) 

Forest Cover 
[raster] 

Forest cover loss 30 m Hansen et al. (2013) 
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Table III. Reclassification of land cover categories 

New classification Original classification 

Urban 
Urban and built up 
Mining 
Aquaculture 

Agriculture 
Cropland 
Grassland 
Shrubland 

Forest 

Forest 
Evergreen Broadleaf 
Mixed Forest 
Orchard or Plantation Forest 
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 Table IV. Classification of factors for model input variables 

Distance To Roads Forest Cover Slope Aspect Land Cover Change 
< 10 m no loss (0)   0° - 10° flat (-1) Urban (no change) 

  10 - 50 m loss (1) 20° - 25° north (0 - 22.5) Urban to Forest 

  50 - 100 m 
 

25° - 40° northeast (22.5 - 67.5) Urban to Agriculture 

100 - 200 m 
 

40° - 65° east (67.5-112.5) Forest to Urban 

200 - 1000 m 
 

> 65° southeast (112.5 - 157.5) Forest (no change)  

> 1000 m 
  

south (157.5 - 202.5) Forest to Agriculture 
   

southwest (202.5 - 247.5) Agriculture to Urban 
   

west (247.5 - 292.5) Agriculture to Forest 
   

northwest (292.5 - 337.5) Agriculture (no change) 
   

north (337.5 - 360) 
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Figure IV. Workflow diagram for logistic regression modelling of landslide susceptibility  
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Figure V. Matrix diagram displaying the FR for each landslide inventory location and LULC 
change scenario. FR values < 1 are represented by dark blue and no data values by ‘NA’ in 
white. 
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Figure VI. (A) Total area of Lower Mekong Region with classification of Urban (km2), (B) Total 
area of Lower Mekong Region with classification of Forest (km2), and (C) Total area of Lower 
Mekong Region with classification of Agriculture (km2) time series from 1998 to 2018, scaled to 
observe patterns within each classification. 
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Figure VII. Bar plot of the percentage of total area of each land cover classification within the 
Lower Mekong River Basin annually from 1998 to 2018. 
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Figure VIII. Pie chart depicting the percentage of total area represented by each LULC change 
scenario over the greater Lower Mekong region between 1998 and 2018. 
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Table V. Mean percentage of total area averaged over all locations  

LULC change scenario over 10 years 
 Urban Forest Agriculture 

Urban 0.93 % 0.003 % 0.05 % 

Forest 0 % 81.48 % 0.31 % 

Agriculture 0.03 % 2.11 % 15.05 % 
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Table VI. Sum of landslides within all locations 

LULC change scenario over 10 years  
Urban Forest Agriculture 

Urban 0 0 0 

Forest 0 15,568 6 

Agriculture 0 614 2,530 
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Table VII. Mean Frequency Ratio averaged over all locations 

LULC change scenario over 10 years  
Urban Forest Agriculture 

Urban NA NA NA 

Forest NA 2.06 0.20 

Agriculture NA 2.83 1.64 
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  Table VIII. Summary of Logistic Regression Coefficients and P-Values over all inventory locations 

  Factor   Category Coefficient P-value 
min max mean min max mean 

Intercept Intercept -21.78 MT -2.84 DB -13.02 1.99E-05 PY 9.83E-01 MC 6.24E-01 

Land Cover 
Change 

Urban to Forest -9.76 FM 0.71 MT -3.51 8.02E-02 PY 1.00E+00 MT 6.88E-01 
Forest to Urban -15.73 PY -9.11 FM -12.63 9.73E-01 PY 9.84E-01 HK 9.79E-01 
Forest (no change)  -0.61 DB 16.33 MT 5.48 6.71E-06 FM 9.87E-01 MT 4.29E-01 
Forest to Agriculture -13.65 XN 3.99 MT -5.41 4.39E-01 FM 9.98E-01 TT 8.83E-01 
Agriculture to Urban -13.12 PY -10.58 FM -12.02 9.71E-01 FM 9.91E-01 PY 9.82E-01 
Agriculture to Forest -15.46 MC 16.01 MT 0.26 3.39E-05 FM 9.87E-01 MT 5.03E-01 
Agriculture (no change) -1.29 DB 14.79 MT 3.76 2.20E-25 MC 9.88E-01 MT 3.19E-01 

Distance to 
Road 

20 - 50 m -2.06 DB 15.54 MC 4.15 5.20E-02 DB 9.86E-01 MC 6.50E-01 
50 - 100 m -1.04 DB 15.65 MC 2.73 1.67E-01 FM 9.86E-01 MC 6.05E-01 
100 - 200 m -1.30 DB 16.02 MC 4.21 1.77E-01 DB 9.86E-01 MT 6.76E-01 
200 - 1000 m -0.65 DB 16.30 MC 4.53 3.80E-01 FM 9.85E-01 MC 6.79E-01 
> 1000 m -1.19 DB 15.86 MC 5.45 2.20E-01 DB 9.87E-01 XN 6.39E-01 

Soil Bulk 
Density 

60 - 100 cg/cm
3
 -1.13 PY -0.88 FM -1.01 1.12E-01 PY 3.61E-01 FM 2.36E-01 

100-130 cg/cm
3
 -1.32 FM 1.28 MT -0.36 2.28E-18 MC 6.77E-01 DB 2.93E-01 

Forest Loss forest loss = 1 -0.77 FM 2.48 MC 0.67 4.13E-14 MC 4.73E-01 HK 6.47E-02 

Slope 

10 - 20 deg 0.58 DB 2.07 XN 1.41 1.26E-15 FM 1.95E-01 DB 2.76E-02 
20-25 deg 0.49 MC 3.17 MT 2.12 2.95E-24 FM 7.29E-02 MC 9.13E-03 
25 - 40 deg 0.22 MC 4.09 MT 2.70 5.15E-32 FM 3.93E-01 MC 4.92E-02 
40 - 65 deg 0.40 MC 4.42 DB 2.97 2.30E-27 FM 3.67E-01 MC 4.59E-02 
> 65 deg -15.52 MC 3.33 XN -9.60 2.41E-02 XN 9.93E-01 PY 8.33E-01 

Aspect 

North -2.20 TT -0.64 FM -1.24 9.32E-06 FM 1.34E-01 XN 3.20E-02 
East 0.35 HK 1.85 DB 1.16 1.69E-12 FM 3.09E-02 HK 3.87E-03 
Southeast 0.96 HK 2.90 DB 1.94 3.18E-26 FM 1.34E-09 HK 1.68E-10 
South 0.53 HK 3.12 DB 1.80 5.27E-21 DB 1.32E-03 HK 1.66E-04 
Southwest -0.12 HK 2.48 DB 1.27 4.77E-14 XN 5.11E-01 HK 6.39E-02 
West -0.53 HK 1.64 XN 0.24 1.70E-08 XN 4.43E-01 PY 1.51E-01 
Northwest -2.50 TT 0.98 XN -0.86 1.77E-06 HK 5.95E-01 MC 7.78E-02 

 
*Color coded abbreviations correspond to the landslide inventories in Table 9 
**Red mean values represent the maximum within each factor and blue mean values represent 
the minimum within each factor 
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Table IX. Model validation results (AUC) for each inventory location 

District Country Landslides AUC 

(BX) Bat Xat Vietnam 99 0.820 
(DB) Da Bac Vietnam 1086 0.892 
(MC) Mu Chang Chai Vietnam 1256 0.854 
(ML) Muong La Vietnam 758 0.835 
(PY) Phu Yen Vietnam 1368 0.856 
(TT) Tram Tau Vietnam 1490 0.844 
(MT) Muong Lat Vietnam 1718 0.794 
(NT) Nha Trang Vietnam 207 0.853 
(PT) Phong Tho Vietnam 302 0.906 
(SH) Sin Ho Vietnam 707 0.816 
(TD) Tam Duong Vietnam 159 0.838 
(TU) Than Uyen Vietnam 312 0.713 
(VX) Vi Xuyen Vietnam 157 0.755 
(FM) Falam Myanmar 5086 0.732 
(HK) Hakha Myanmar 1737 0.697 
(HA) Hpa-An Myanmar 992 0.869 
(TB) Thaphabath Laos 242 0.958 
(XN) Xieng Ngeun Laos 1178 0.740 

 
* Colors correspond to landslide inventories highlighted in Table 8 
 


