

Debunking Stress Rupture Theories Using Weibull Regression Plots

ANNE DRISCOLL & GEOFF VINING FALL TECHNICAL CONFERENCE 2022

Outline

- Testing Overview
- Details on Stress Rupture Testing
- Weibull Regression Discussion
- Model Building
- Residual Analysis
- Team Dynamic
- Next Steps

NASA Strand and Vessel Testing

- NASA's Engineering Safety Center (NESC) project to assess safety of Composite Overwrapped Pressure Vessels (COPVs)
- COPVs
 - Transport gasses under high pressure
 - Metal Liner
 - Wrapped by a Series of Carbon Strands
- Research Question: Determine Reliability of COPVs at Use Conditions for the Expected Mission Life
 - Primary Focus on Strands
 - Secondary Focus on Relationship to Vessels
 - Strands Less Expensive to Test
- <u>https://www.nasa.gov/offices/nesc/home/Feature_COPVs_Jan-2012.html</u>

NASA Strand and Vessel Testing

• Analyses Use Classic Weibull Model

$$\mathbf{R}(t_i) = e^{-\left(\frac{t_i}{t_{ref}}SR^{\rho}\right)^{\beta}}$$

- Observed Life Time: t_i
- SR: Stress Ratio, ratio of stress level to strength scale parameter
- Critical Parameters:
 - ρ : Sensitivity to Stress Ratio
 - β : Shape parameter for time to Failure
 - t_{ref} : Reference time to Failure when SR=1

NASA Strand Study

- Previous Strand Test
 - Relevant strand study conducted at a national lab
 - 57 strands at high loads for 10 years
 - Net information learned:
 - Strands either fail very early or
 - Last more than 10 years
 - Limited information based on 10 years of study!
- Estimates of Critical Parameters for Planning

NASA Strand Study

- Team's Initial Concept
 - Much larger study that the original 10 year study
 - Censor very early
 - Reduces time
 - Allows for the larger study in a practical amount of time
- Proceed in phases
- Have detailed data records to track any problems

NASA Strand Study

Experimental Phases

- Phase A During "shake-out" of tests rigs
- Phase B "Gold Standard" Experiment for Strands
- Phase C "Proof" Study
- In Parallel: Vessel Studies (Opportunistic)

- Conducted During Shake-Out of Equipment
 - Small study (although bigger than the national lab study!)
 - Statistical goal: Determine if the parameters from the national lab study are valid as the basis for planning the larger study!
 - Note: Phase A gave the team an opportunity to re-plan the larger experiment, if necessary!

Phase B

- "Gold Standard" Experiment
 - Planned time required: 1 year
 - Used 4 "blocks" of almost equal numbers of strands
 - Allowed the team to correct for time effects
 - Allowed the team to mitigate problems, especially early
 - Study assumed the "classic" Weibull model
 - Size of the experiment assured ability to assess model

Block	SR	Number	Proportion
1	0.80	176	0.718
	0.85	50	0.204
	0.90	19	0.078
	Sum	245	1.00
2	0.80	170	0.708
	0.85	50	0.208
	0.90	20	0.083
	Sum	240	1.00
3	0.80	174	0.710
	0.85	51	0.208
	0.90	20	0.082
	Sum	245	1.00
	0.80	176	0.718
4	0.85	49	0.200
	0.90	20	0.082
	Sum	245	1.00

Observations

- Phase A: Surprisingly Similar to Initial Study
- Phase B:
 - Serious problem occurred with the gripping in the first block
 - Serious conversations with possibility of replacing!
 - Other three blocks well behaved and by themselves produced better than the planned precision for the estimates
- Final Decision: Drop the First Block

NASA Strand Study: Benefits

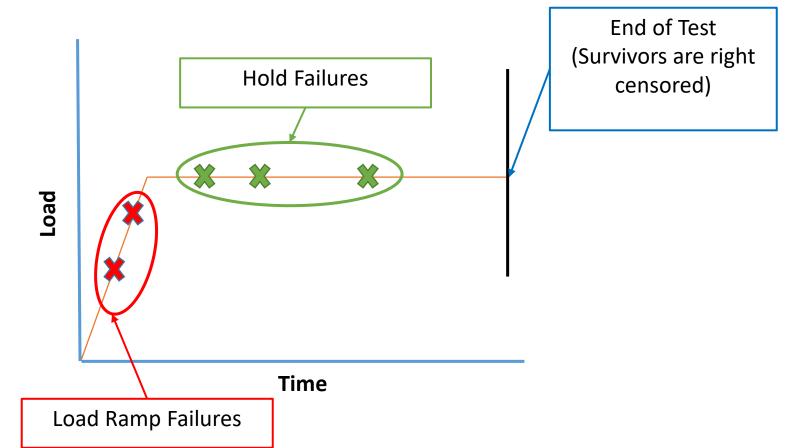
• Phase A:

- Opportunity to Confirm Initial Study Parameter Estimates
- Allowed opportunity to revise the experimental protocol if the estimates were significantly different
- Phase B:
 - Allowed opportunity to model changes in time over the year.
 - Mitigated the problem with the first block!
 - Provided simple mechanism for replacing the first block if needed!

Analysis: Stress Rupture Data

Description of Stress Rupture Test

- Stress Rupture
 - Failures occur after a period of time where there is no increase in load
- Failures are needed to determine reliability
- Must extrapolate from where test is performed versus where reliability predictions are made
- Test strands at higher loads and then extrapolate
- Need a model to make predictions

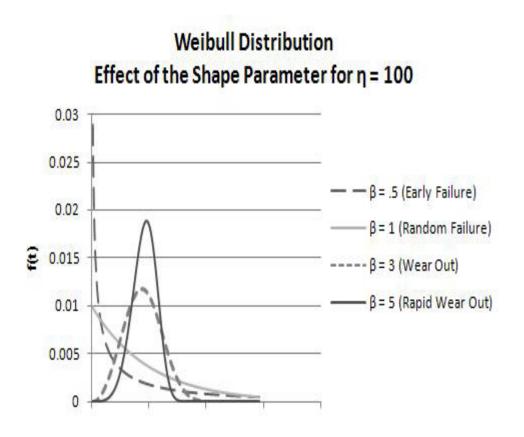


Basic Weibull Distribution

- Probability Density Function $f(t,\beta,\eta) = \frac{\beta}{\eta} \left(\frac{t}{\eta}\right)^{\beta-1} e^{-\left(\frac{t}{\eta}\right)^{\beta}}$
- Survivor Function = 1 F(t) $S(t) = e^{-\left(\frac{t}{\eta}\right)^{\beta}}$

 β : shape parameter

 η : scale parameter (characteristic life, time where 63.2% of units will fail)



Smallest Extreme Value Distribution

- Smallest extreme value (SEV) distribution is an alternate parameterization of the Weibull distribution
- SEV represents Weibull as a log-location-scale distribution
 - If t_i is Weibull, then $log(t_i)$ is SEV
- Weibull/SEV relationship mimics the Normal/Lognormal relationship
- Parameters
 - Log-location: $\mu = \log(\eta)$ Scale: $\sigma = \frac{1}{\beta}$
- Residuals
 - $e_i = \log t_i \mu$
 - Scaled: $z_i = \beta e_i = \beta (\log t_i \mu) = \frac{\log t_i \mu}{\sigma}$
- Survivor Function
 - $S(t_i) = P(T > t_i) = e^{-e^{z_i}}$

Classic Stress Rupture Model: Weibull

• Classic Weibull Survival Function

$$S(t_i) = P(T > t_i) = e^{-\left(\frac{t_i}{t_{ref}}SR^{\rho}\right)^{\beta}} \quad \text{Note: } \eta = t_{ref}SR^{-\rho}$$

0

- Observed Life Time: t_i
- SR: Stress Ratio, ratio of stress level to strength scale parameter
- Critical Parameters:
 - ρ : controls the relationship between the failure time and stress ratio (SR)
 - β : Shape parameter for time to Failure
 - t_{ref} : Reference time to Failure

Classic Stress Rupture Model: SEV

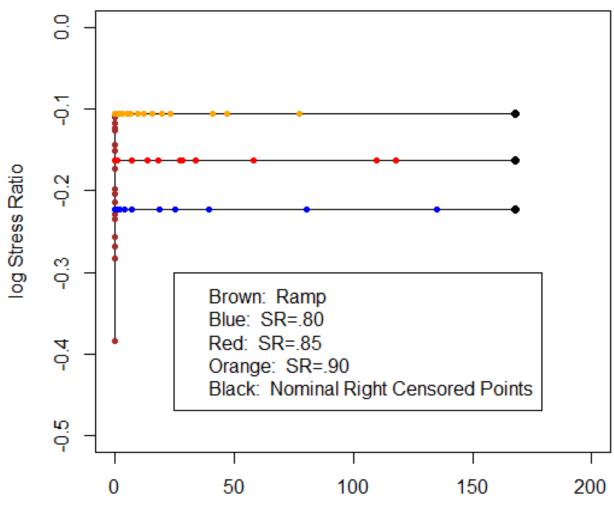
• SEV Survival Function $S(t_i) = e^{-\left(\frac{t_i}{t_{ref}}SR^{\rho}\right)^{\beta}} = e^{-e^{\beta\left(\log t_i - \theta + \rho \ln(SR)\right)}}$ where $\theta = \log(t_{ref})$ and $\mu = \log(\eta) = \theta - \rho \ln(SR)$

Now working with a linear model, similar to simple linear regression

- Scaled Residuals
 - $z_i = \beta e_i = \beta (\log t_i \mu) = \beta (\log t_i \theta + \rho \ln(SR))$
 - Used for predictions of the log probability for specific observations

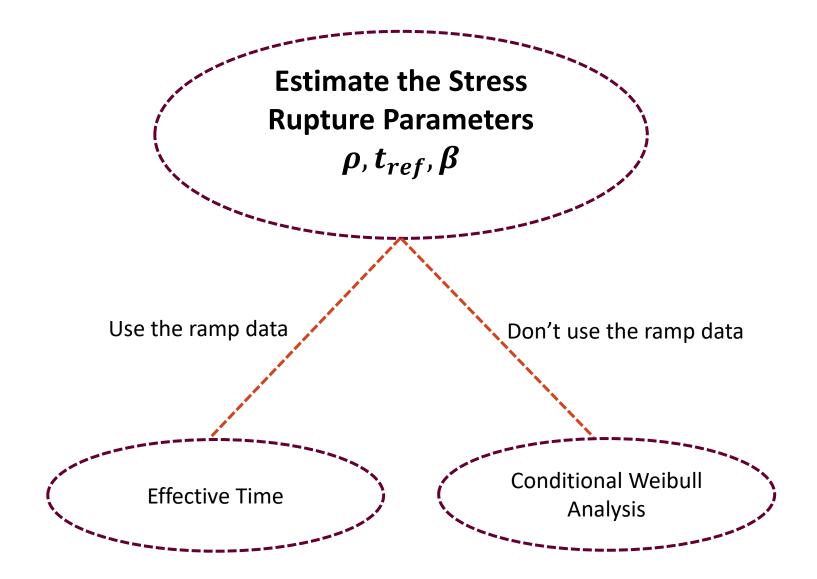
Weibull Regression: How do we fit this model?

Data Structure for the Ramp and Hold Phase B Data



Right Censored Data

Total Time on Test

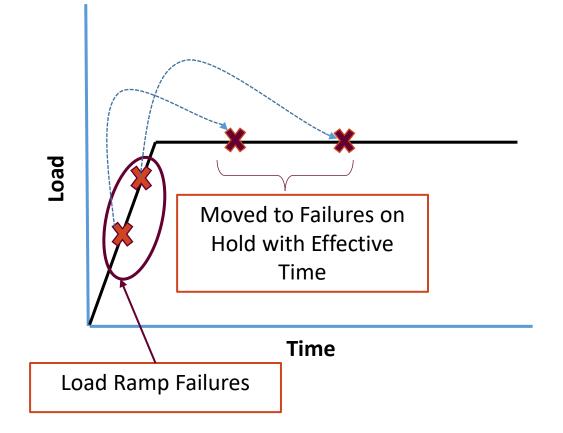


What is Effective Time?

- Basic Idea:
 - "Correct" the actually observed ramp time for what the time would have been at a specified target load
- Effective Time on Load

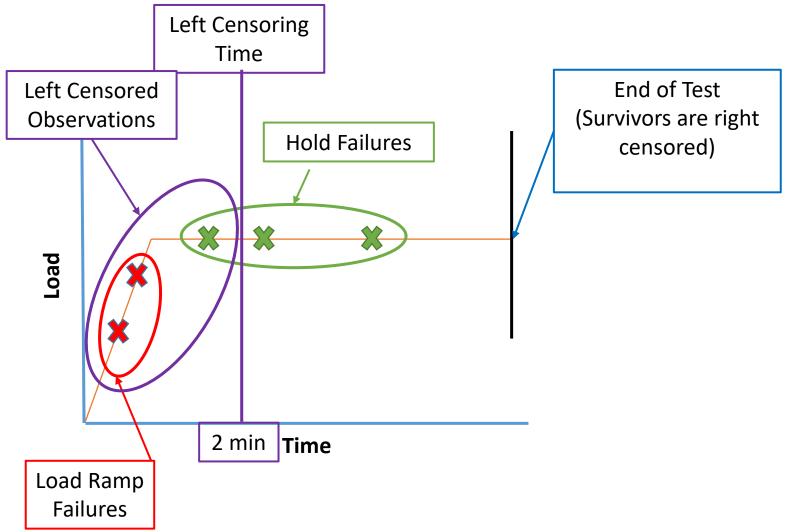
•
$$t_{eff} = \frac{t}{\rho+1}$$

- Yin and Sheng (1987)
 - Theoretical development of the concept
 - Parameters
 - $\beta_{ramp} = \beta(\rho + 1)$ • $\eta_{ramp} = \left[\frac{(\rho+1)}{R^{\rho+1}}\right]^{1/\rho+1}$
- Ramp behavior is a two-dimensional problem and stress rupture is really a three-dimensional problem



Effective Time \rightarrow Left Censored

- Left Censors specimen that fail on load and those that fail within the first two minutes of stress rupture testing
- Left censoring assumes the data from the ramp can be modeled by the same model parameters as the hold data

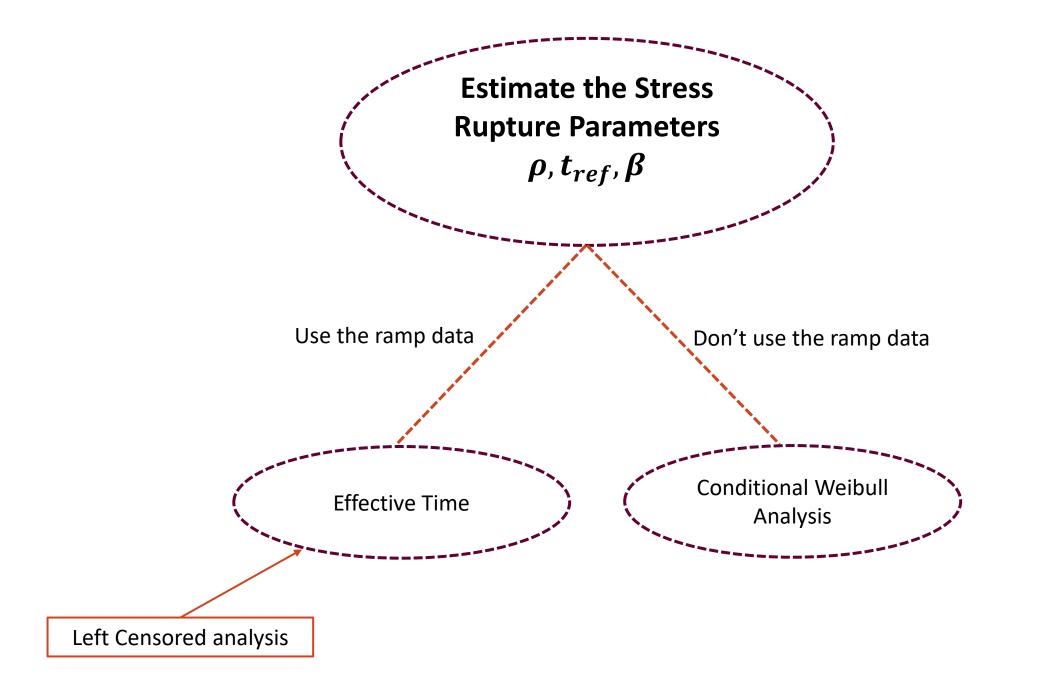


Deeper Dive into Left Censoring

- Left censor when failure times are missing
 - Only have information that specimen failed before a specified time
- It is not appropriate to left censor outliers
- Left censoring assumes that the failure time is missing at random
 - Left censoring ramp failures and failures within a certain window of time violates this assumption
- Left censoring assumes the missing failure times follow the exactly same distribution as the other data being estimated
 - Does this make sense for the ramp and hold

"Left-censored observations occur in life test applications when a unit has failed at the time of its first inspection; all that is known is that the unit failed before the inspection time. In other situations, leftcensored observations arise when the exact value of a response has not been observed and we have, instead, an upper bound on that response.."

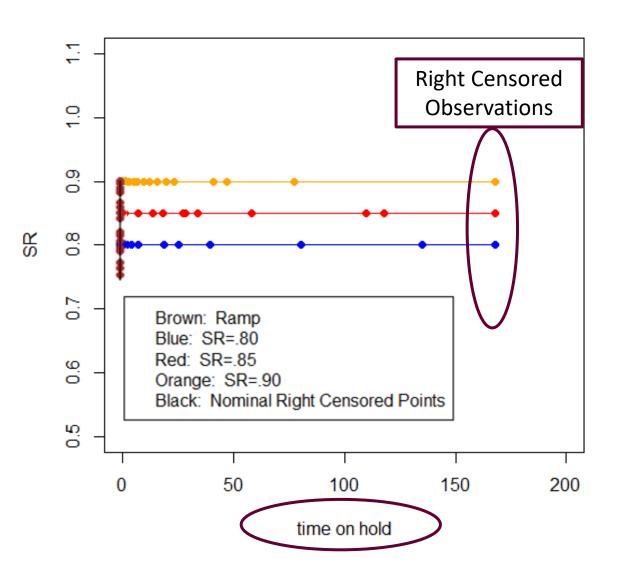
- Meeker and Escobar (p.38)



Fit-to-Hold Analysis

- Focus on Time on Hold not Time on Test.
- Fit the Classic Weibull Model using Maximum Likelihood Estimation with Right Censoring.
- Failures on load are not used because they have no time on hold!

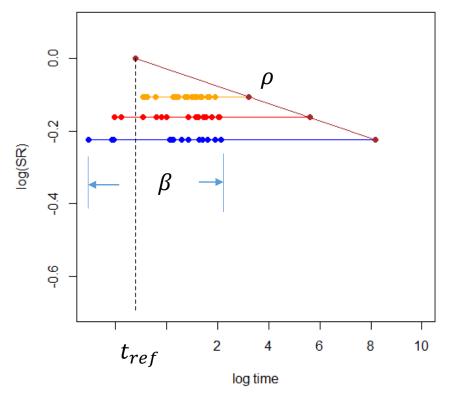
Stress Ratio versus Time on Hold



True Structure of the Stress Rupture Model

 $\mu = \log(\eta) = \theta - \rho \ln(SR)$

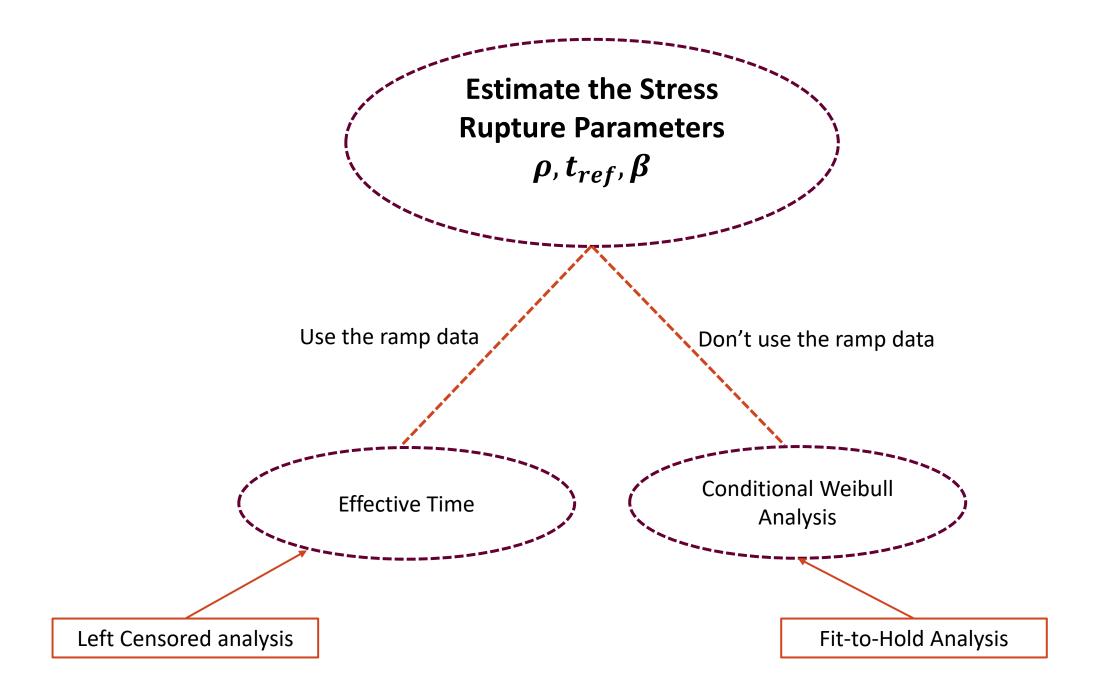
- ρ: controls the relationship between the failure time and stress ratio (SR)
- β: Shape parameter for time to Failure
- *t_{ref}*: Reference time to Failure



Log Stress Ratio versus Log Time

Stress Rupture model explains the behavior of the items *on hold*.

• Weibull regression gives us estimates for ρ , β and t_{ref}

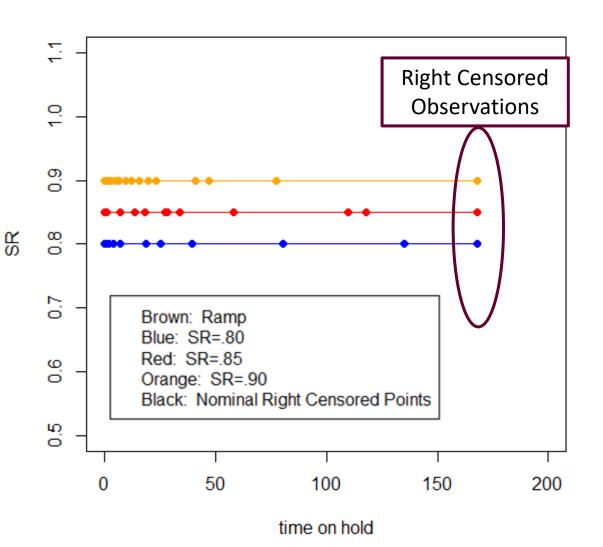


Weibull Regression: Model Building

Full Model

- Separate individual models to each stress ratio
 - Two parameters for the SR=1 data: $\eta_{.80}$ and $\alpha_{.80}$
 - Two parameters for the SR=2 data: $\eta_{.85}$ and $\alpha_{.85}$
 - Two parameters for the SR=3 data: $\eta_{.90}$ and $\alpha_{.90}$
- Largest possible Weibull model for the data
 - Has the largest log-likelihood
- Will compare to the Full Model to subset models to determine whether the improvement in log-likelihood justifies the extra parameters

Stress Ratio versus Time on Hold



Fit-to-Hold (subset model)

- Model the data that have achieved the target load as defined by the experimental protocol (no ramp data)
- Defines that the time at the sustained constant load begins the moment the test item achieves the target load
- Assumes a Weibull distribution to describe the time to failure under the sustained constant load
- Experimental protocol uses right-censoring at a nominal time

Fit-to-Hold (subset model)

- Ramp and Hold data are modeled separately
 - Three parameters to explain the hold data: ρ , β , and $\theta = \log t_{ref}$
- Model assumes

$$\alpha_{.80} = \alpha_{.85} = \alpha_{.90} = \beta$$

Comparisons

Model:	Fit-to-Hold	Full Model
Number of Observations:	708	708
True Log-Likelihood: Log-Likelihood Statistic: <i>AIC</i> :	-306.411 612.822 618.822	-305.900 611.800 623.800

- The p-value associated with the χ^2 based on the difference in the log-likelihood statistics is 0.7959
 - The three extra parameters in the full model are not significant
- Smallest AIC value for Fit-to-Hold (adjustment for parameters)

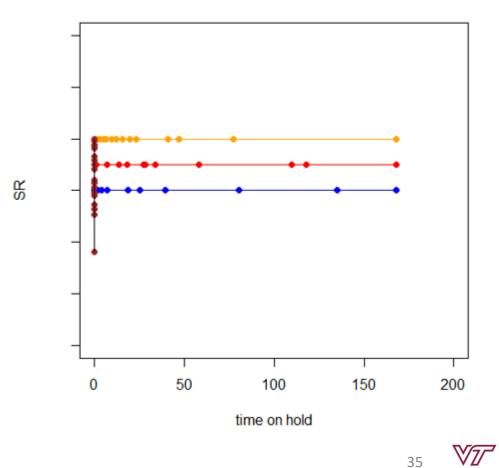
Weibull Regression: Including Ramp Fit-to-Hold versus Effective Time

Adaptations to Include Ramp Failures

• Rigorous Approach

- Add two additional parameters for a Weibull Distribution fit to only the ramp data along with the Fit-to-Hold Analysis
 - Two parameters for the ramp data: η and α
 - Three parameters to explain the hold data: ρ , β , and $\theta = \log t_{ref}$
- Left Censored Analysis
 - Assume that ALL data follow the same failure mechanism
 - Left censor all ramp failures and some early stress rupture failures
 - Three parameters to explain the ramp and hold data: ρ , β , and $\theta = \log t_{ref}$

Stress Ratio versus Time on Hold



Comparisons

	Rigorous	Left-Censored	Full Model
Overall log £:	-251.103	-390.779	-250.592
Log-Like Stat:	502.206	781.558	501.184
AIC:	512.206	789.558	517.184
Ramp log £:	55.308		55.308
Hold log £:	306.4114		305.900

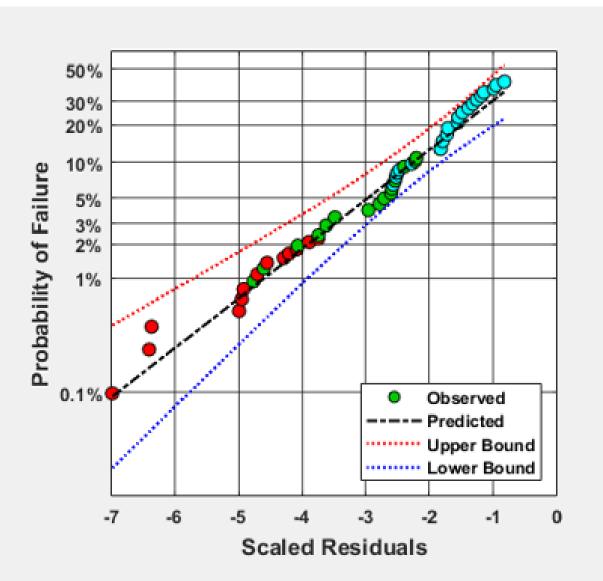
- All fit statistics indicate that the rigorous model is the superior fit to the data compared to the Left-Censored approach
 - Smallest AIC value (512.206) and log-likelihood statistic (502.206) and the largest overall loglikelihood value (-251.103)The three extra parameters in the full model are not significant
- The probability that the left censored analysis explains the data at least as well as the rigorous model is 1.03946 E-62
- Counter-intuitive to penalize the maximum likelihood fit to the data with left censoring especially when we know the precise time these items failed on the ramp

Weibull Regression: Residuals

Proper Basis for Constructing Probability Plots

- Estimate the Model
- Construct the Scaled Residuals
- Calculate the Median Ranks for these Residuals (Overall not by SR!)
- Plot $\ln[-\ln(1 mr_i)]$ versus the βe_i
- Method Extends Easily to More Complicated Models

Weibull Probability Plot

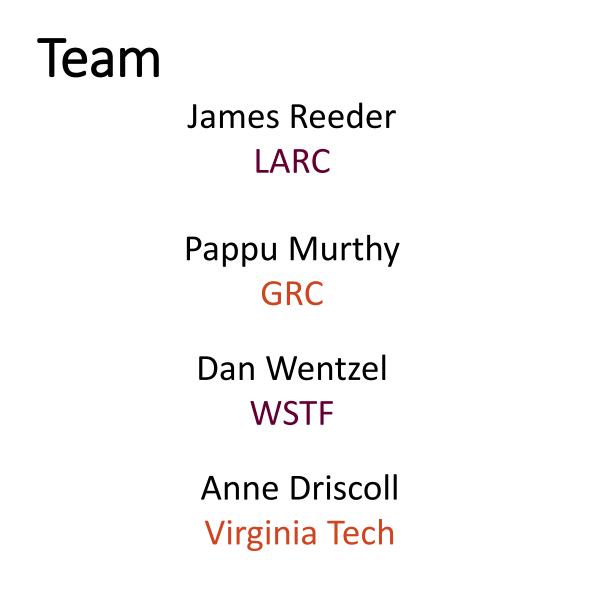


Team Dynamic Discussion Questions

- Have you ever been part of a team where members have very strong feelings for very different analyses?
- Best practices for being a trail blazer?
- How do you make people focus on the data, not their preconceived beliefs?

Where to Next...

- Working on Tutorials that cover best practices for analyzing Stress Rupture Data
- Advocating for the Use of the Fit-to-Hold Method for analysis
 - Model Building
 - Residual Analysis



Lorie Grimes-Ledesma JPL

> Sara Wilson NESC

Geoff Vining Virginia Tech

