An Overview of NASA Sonic Boom Flight Research: What NASA is Doing to Fix the Sound Barrier

8-888-8888888 1888-8

October 2022

Larry J. Cliatt, II Sonic Boom Flight Research Technical Lead NASA Armstrong Flight Research Center

Topics of Discussion

- NASA's Motivation for Sonic Boom Flight Research
- Sonic Boom 101
- Measurement Techniques
 - Shock Structure Measurements
 - In-fight Shock Imagery
 - Effects of Turbulence
 - Focus Sonic Booms
 - Community Response
- Quesst Mission and X-59 Aircraft

NASA Centers and Facilities

NASA Armstrong Flight Research Center (AFRC)

Aeronautics Flight Research

- Named after Neil A. Armstrong, first man on the moon (Apollo 11)
- Over 70 years of flight research (NACA Muroc Flight Test Unit)
- Edwards Air Force Base (EAFB)
- Remote Location
- 350 Testable Days Per Year
- Extensive Range Airspace
- Supersonic Corridor

Why Are Quiet Sonic Booms Important?

- Current cruise speeds for jets are about 0.85 Mach, with high end business jets getting up to 0.9 Mach
- A commercial quiet supersonic jet could cruise at about 1.4 Mach
- Los Angeles to New York in 3 hours
- Los Angeles to Paris in 6 ¹/₂ hours
- This technology has the potential to one day more than double the speed of practical aviation travel

NASA and Lockheed Martin have partnered to design, build, and fly the X-59 Quiet Supersonic Transport (X-59, Quesst) low boom flight demonstrator

The vision for commercial supersonic flight

An emerging potential market has generated renewed interest in civil supersonic aircraft

• Evidenced by the appearance of several commercial programs despite lack of standards for en route noise or landing and takeoff noise, emissions

Overland Flight Restrictions based on unacceptable sonic boom noise are viewed as the main barrier to this vision

The vision of the Supersonics Community is a future where fast air travel is available for a broad spectrum of the traveling public.

• Future supersonic aircraft will not only be able to fly overland without creating an "unacceptable situation" but will also be environmentally responsible, affordable and sustainable

National Research and Policy agencies play a central role in developing the data needed for the regulation change that is essential to enabling this new market

Overcoming the barrier to overland flight

The Quiet Supersonic Mission is specifically planned to generate key data for success in NASA's Critical Commitment to support development of en route certification standards based on acceptable sound levels

- New Environmental Standards are needed to open the market to supersonic flight
- An En route Noise Standard is the biggest challenge
 - Requires proof of new design approaches
 - Must replace current prohibitions
 - No relevant data exists to define limits
 - Community data from large, diverse population is a requirement
 - Standard must be accepted internationally

Mach Number

- Sound comes off aircraft at a certain speed, a
- Speed of aircraft is v
- Ratio of these two: *v* /*a* = *M*, Mach number
- Shockwaves form if M > 1 (when aircraft is faster than the speed of sound), can be very loud

Water Wake Analogy

Supersonic Mach Cone

11

 Much as a motorboat makes a 2-D "V"- shaped wake on the water, a supersonic aircraft makes a 3-D cone-shaped shock wave pattern through the sky

Actual T-38

Sonic Boom Carpet

Shaped Sonic Booms

N-wave vs. Shaped wave: Strong, short $\triangle P$ causes loud noise

Sonic Boom Propagation

14

Shock Structure Measurements

Quiet Spike™ (Gulfstream Aerospace)

www.nasa.gov 🌖

16

Quiet Spike[™]

- The long nose boom breaks the bow shock into a series of weak shocks
- These weak shocks propagate parallel to the ground and transform the sharp crack of a sonic boom into a quiet rumble
- The transformed n-wave can be seen in this graph

Quiet Spike™ – Nearfield Shock Measurements

www.nasa.gov 🏷

18

Quiet Spike™ – Nearfield Shock Measurements Results

Quiet Spike™ – Nearfield Shock Measurements Results

In-flight Shock Imagery

Shockwave Imagery – Airborne Schlieren

Background Oriented Schlieren (BOS) Concept

Visualizes light ray deflections by calculating movement of features in a background

BOSCO Concept

Background Oriented Schlieren using Celestial Objects (BOSCO)

- Uses narrow band optical filters to give the sun a textured appearance. The texture allows for the Background Oriented Schlieren method
- Ability to image from below and to the side of the target aircraft

BOSCO – Processing

- Optical Flow
 - Developed for computer vision applications in the 1970's/80's
 - Uses the "brightness constancy criterion" brightness is constant between 2 image pairs, differences in brightness correspond to motion
 - Outputs "flow" vectors, 2D solutions of pixel displacement

BOSCO – Image Processing

Optical Flow is performed on the image pair resulting in a magnitude of pixel displacements

This is repeated for all frames in the eclipse. The median of all the results of all the frames is taken, resulting in the final de-noised schlieren image

BOS using Celestial Objects – Raw Data

Effects of Turbulence

Atmospheric Instrumentation

NASA

- Sonic Anemometer
 - 10m (32.8 ft) tower
 - 44m (144 ft) tower
 - Amb. temperature, 30 sample/s
 - 3 component winds, 30 sample/s
 - Ct² and Cv²
- SODAR
 - Model 4000 Mini-SODAR (250m=820 ft)
 - Model 2000 Large SODAR (700m=2296 ft)
 - 3 component winds
 - Ct² and Cv²
- GPSsonde
 - One for each takeoff time to 12km (40K ft)
 - EAFB or local launch
- 3m (10 ft) weather tower
 - Temp., Press., Humidity, Wind Speed & Dir
 - One at each array

Research Flight Profile/Plan

• Primary test point: F-18 On-track, Hp=32,000 ft, Mach 1.40, 245-deg true course

- CT^2: solar heating, e.g. 0.02, 0.10, 0.13
- CV^2: winds, e.g. 0.04, 0.10, 0.13
- Boundary layer height: 2,000 13,000 ft range

Sonic Boom Propagation – Effects of Turbulence

High Turbulence , CT^2=0.13, CV^2=0.13

Focus Sonic Booms

Acceleration Focus

35

Pushover Focus

www.nasa.gov

36
Focus Sonic Boom Carpet

www.nasa.gov

Superboom Caustic Analysis and Measurements Project (SCAMP) Project Overview

- Flight test to collect high quality focus boom data: May 2011
- **CFD** for precise F-18 source characteristics
- Develop & Validate Three models for focus boom prediction using full signatures
- Apply to low-boom aircraft designs
- Profile Exploration: Initial strategies to mitigate focus boom impact

- F-18 Generated Focused Booms with a Range of Caustic Curvatures
- Extensive Flight Database: 13 flights, 70 supersonic runs, 81 ground mikes (10,000 ft array, 125 ft apart), 3 airborne mikes (sailplane & blimp), weather sensors, seismometers, cameras
- CFD for as-flown F-18 test points
- Developed alpha codes, analyzed SCAMP data and low boom configurations

Typical SCAMP Measured Focus

Regular progression from evanescent => U => N-u

Sonic Boom Community Response

EXAMPLE HUMAN RESPONSE RESULTS

- 14 sonic booms
- Perceived Loudness Decibels ranging from 75–95 PL (dB)

Low Boom Dive

Low Boom Dive Maneuver – Propagation Distance

Low Boom Dive

Human Response Subject Surveys

- Web-based surveys
 - Instruction via emails and phone calls
- Paper/Pencil surveys
 - Instructions and materials mailed via postal service
 - Smartphone application surveys
 - Door-to-door installations for Apple® iOS application on subject-owned devices
 - Centralized meetings for distribution of Android[™] phones with application pre-installed (to be returned after the project)

Source: Hodgdon, K. K., and Page, J. A., "Low Amplitude Sonic Boom Noise Exposure and Social Survey Design," Proceedings of Meetings on Acoustics, Vol. 19, ICA Montreal, Canada, 2013, pp. 1-6.

		Daile	C	non-	Joor		one				×	
A1	Date: /	Dally	sum	nary i	kespo	nse r	-onn			D:		
	MM DD											
A2 Which parts of the day were you at home for at least one hour? (select all the												
	2 Afternoon (Noon to 5:00	PM)	3] N	otath	ome to	oday (end su	rvey)			
43	During the time you were at hom	e today,	how r	nany s	onic b	oomso	tid you	ı hear	? (ente	r numb	er belo	w)
	# of sonic booms heard tod	ay (If O	<i>boor</i> л	is hear	d toda	y, go t	o A10,)				
For the next questions, please think about the sonic booms you heard today while at home.												
	(select one)	Not at all	1	2	3	4	5	6	7	8	9	extremely 10
۸4	How much did the sonic booms bother, disturb, or annoy you?	D	1	2	3	•	5	8	7	8	9	10
				1	Not a	tall						
A5	Which of the following categories be how much the sonic booms bothere	st describ d. disturi	es xed.	2 🗌 3 🗌	Slight Mode	iy rately						
	or annoyed you? (select one)				Very Extremely							
	(select one for each)	Not at a 0	ll 1	2	3	4	5	6	7	8	9 E:	xtremely 10
A6	How loud were the sonic booms?	Ð	1	2	3	4	5	8	7	8	9	1D
A7	How much did the sonic booms interfere with your activities?	D	1	2	3	4	5	8	7	8	9	1D
		None									A g	reat deal
	(select one for each)	0	1	2	3	4	5	6	7	8	9	10
	Vibration is a motion. The motion may be seen or felt. How much	. 🗆				-□	-	-	-		. 🗆	
710	vibration from the sonic booms did you see or feel in your home today?	U	<u>ا</u>	2	a	•	9		<u>ر</u> _	•	9	
	Rattle is a type of noise that can											
A9	occur when objects move due to a vibration. How much rattle from the	D	1	2	3	4	5	8	7	8	9	1D
	sonic booms did you experience in your home today?											
A 10	During the time you were at hom	e today,	were	your w	indow	s close	dmos	tofth	e time	or wei	e they	open
	most of the time? (select one)		_	_								
	1 Closed most of the time		2] 0	pen m	ost of	the tin	ie				
A11	Did you hear any noises today th	nat might	have	been s	sonic b	ooms	but yo	u are r	not sui	e? (se	lect on	e)
	1∐ Yes — A12 Please des 2∐ No	cnibe wh	at Ihai	Inoise	sound	ied like						
	Please enter any additional comments											

Citizen Scientist Activity

- Available to the general public via web page at nasa.gov
- Provided way for non-official respondents in the entire QSF affected area to comment
- Promoted via social media (Aero centers, JSC, Galveston City)
- Data was exported to researchers at end of flight campaign

CLEOPATRA - Community Low-boom Exposure, Operations, Piloting And Trimming Analyzer

50

- CLEOPATRA is a flight path planning tool developed for planning Quesst
 Phase 3 community overflights
 - Optimizes flight conditions and aircraft trajectory to meet a desired mean PLdB value placed over the test community
- CLEOPATRA relies on external, in-line execution of NASA PCBoom for sonic boom propagation
- Gaussian process surrogate model, trained with X-59 CFD data, queried during optimization to provide appropriate nearfield pressure field for sonic boom propagation
 - Surrogate model input are flight conditions (e.g., Mach, angle-of-attack, etc.) and trimmed control surface positions
- CLEOPATRA also capable of:
 - Training the nearfield surrogate model using CFD data
 - Determining "trimmed" values of angle-of-attack, engine throttle setting, and control surface positions needed as input to surrogate model
 - Applying empirical turbulence corrections to the desired PLdB
 - Performing post-flight analysis of as-flown trajectories
 - Performing simplified flight path planning without PLdB objective
- Programming Language: Python 3.8+

www.nasa.gov

CLEOPATRA Software Architecture

Software split into four operating modes: Train, Lite, Prime, and Post-flight:

"Train" Mode

Construct surrogate model from provided CFD database

INTO

EEDS

"Lite" Mode

> Used for pre-flight planning ✓ Quesst Phase II specific (and beyond)

> Determines "optimal" trajectory placement needed to meet mission objective

- ✓ Example objective: place undertrack boom at (x, y)
- ✓ Only modifies a trajectory's initial point and heading angle
- Can be used without CFD surrogate model

"Where to fly"

"Prime" Mode

- Used for pre-flight planning ✓ Quesst Phase III specific
- Determines "optimal" cruise conditions (Mach, altitude, heading) to achieve desired **loudness objective**
 - ✓ Surrogate modeling used to approximate CFD solution of trimmed aircraft nearfield cylinder for boom propagation

INTO

EEDS

✓ Atmospheric turbulence can be accounted for

"Where and how to fly"

"Post-flight" Mode

- Used for post-flight analyses
- Utilizes measured data (e.g., trajectory, control surface positions, weather) to provide best prediction of conditions experienced
 - ✓ CFD Surrogate model employed in a point-wise manner along trajectory to approximate "as-flown" nearfield conditions

"How loud do we think we were?"

Quesst Mission & X-59 Aircraft

Quiet Supersonic Mission Overview – Phase 1

- Phase 1 Aircraft Development In progress (FY18-23)
 - Detailed design
 - •Fabrication, integration, ground test
 - •Checkout flights
 - Subsonic envelope expansion
 - Supersonic envelope expansion

Phase 2 – Acoustic Validation – *Preparation in progress (FY18-23) & Execution FY23-24*

- Aircraft operations & support, range Ops, support aircraft
- In-flight measurement capabilities
- Ground measurement capabilities
- Validation of X-59 boom signature and prediction tools
- Development of acoustic prediction tools for Phase 3

LBFD - Low Boom Flight Demonstrator Project Integrated Aviation Systems Program

- FDC Flight Demonstrations & Capabilities Project Integrated Aviation System Program
- CST Commercial Supersonic Technology Project Advanced Air Vehicles Program

Phase 3 – Community Response Testing

Preparation in progress (FY19-24), Execution FY24-26

- Aircraft operations & support, deployment logistics
- Ground measurement capabilities
- Ground crew operations
- Noise exposure design
- Community response surveys
- Data analysis and database delivery

C608.1 General Arrangement

Walkaround – Aircraft Configuration: C608.1

www.nasa.gov

Walkaround (cont'd) – Aircraft Configuration: C608.1

www.nasa.gov

X-59: Key boom details

www.nasa.gov

Quiet Supersonic Mission Overview – Phase 2

- Phase 1 Aircraft Development In progress (FY18-23)
 - Detailed design
 - Fabrication, integration, ground test
 - •Checkout flights
 - Subsonic envelope expansion
 - Supersonic envelope expansion

Phase 2 – Acoustic Validation – *Preparation in progress (FY18-23) & Execution FY23-24*

- Aircraft operations & support, range Ops, support aircraft
- In-flight measurement capabilities
- Ground measurement capabilities
- Validation of X-59 boom signature and prediction tools
- Development of acoustic prediction tools for Phase 3

LBFD - Low Boom Flight Demonstrator Project Integrated Aviation Systems Program

- FDC Flight Demonstrations & Capabilities Project Integrated Aviation System Program
- CST Commercial Supersonic Technology Project Advanced Air Vehicles Program

Phase 3 – Community Response Testing

Preparation in progress (FY19-24), Execution FY24-26

- Aircraft operations & support, deployment logistics
- · Ground measurement capabilities
- Ground crew operations
- Noise exposure design
- Community response surveys
- Data analysis and database delivery

LBFD Phase 2 Combined Concept of Operations

Phase 2A: Near/Mid-Field Probing Flights

www.nasa.gov

- X-59 flies at low-boom design cruise conditions
- F-15 flies relative to X-59 forward and aft for multiple passes
 - 25 test points 300-500 feet below X-59 (±50° lateral offset below)
 - Six test points 300-1,000 feet above X-59
 - Six test points 20,000 feet below X-59 (±20° mid-field)
- Research Support Aircraft (F-15)
 - Shockwave Sensing Probe and Modified Life Support System

Phase 2B: Far-Field and Ground Measurement Flights

www.nasa.gov

Phase 2B: Far-Field and Ground Measurement Flights

 $\mathbf{N}\mathbf{M}$

- X-59 flies at low-boom design conditions
 - Flies a precise position based on weather data for the boom carpet to hit the microphone array
 - TG-14 above the turbulent layer in-line with microphones
- Large microphone array required
- Area Chase Aircraft (F-15 or F-18)
 - Used for departure, recovery and emergency support
 - Positioned away from X-59 during boom recording

Edwards AFB

Microphone Locations

Source: CST Project (SonicBAT2)

Phase 2B Far-Field: Flight Profile and Airspace

- Longitudinal Measurements
 - Turbulence
 - Accel Boom Measurement
 - 2 passes per flight
- Carpet Width Measurements
 - Boom carpet < 50 nm 90% of time
 - 30 nm microphone array
 - Requires 2 passes

Carpet Width Measurements

Phase 2C: Shockwave Imaging Flights

www.nasa.gov

Phase 2C: Shockwave Imaging – BOSCO for X-59

Quiet Supersonic Mission Overview – Phase 3

- Phase 1 Aircraft Development In progress (FY18-23)
 - Detailed design
 - Fabrication, integration, ground test
 - •Checkout flights
 - Subsonic envelope expansion
 - Supersonic envelope expansion

Phase 2 – Acoustic Validation – *Preparation in progress (FY18-23) & Execution FY23-24*

FDC -

CST -

- •Aircraft operations & support, range Ops, support aircraft
- In-flight measurement capabilities
- Ground measurement capabilities
- •Validation of X-59 boom signature and prediction tools
- Development of acoustic prediction tools for Phase 3

Phase 3 – Community Response Testing

Preparation in progress (FY19-24), Execution FY24-26

LBFD - Low Boom Flight Demonstrator Project

Advanced Air Vehicles Program

Integrated Aviation Systems Program

Integrated Aviation System Program

Flight Demonstrations & Capabilities Project

Commercial Supersonic Technology Project

- Aircraft operations & support, deployment logistics
- Ground measurement capabilities
- Ground crew operations
- Noise exposure design
- Community response surveys
- Data analysis and database delivery

120

130

140

69

FOCUS: Provide data to support noise certification standards development

- 4-6 community tests over multiple sites, w/ variations in:
 - Climate zones
 - Population demographics
 - Urbanization levels
- Scope
 - Daytime/waking hours
 - Range of exposure levels, single-event and cumulative Cardoor slam 100 ft. away
 - Community response representative of general population

80

90

Basketball bounce

100

Nearby thunder

110

Balloon pop

60

(dB)

Dose – Response Characterization

	WSPR 2011	WSPRRR 2017	QSF18 2018	X-59 2024-26
Research Goal	Pilot Study	Risk Reduction	Risk Reduction	Data for Regulators
Aircraft	F-18	F-18	F-18	X-59 Quesst
Location	AFRC/EAFB	AFRC/EAFB	Non-NASA	Non-NASA (multiple)
Acoustic Data Coverage (sq mi)	1	12	60	~2500
Number of survey participants	100	61	500	~10K
Number of flight days	10	3	9	20-30

- Non-NASA locations
 - X-59 operations infrastructure
 - Expanded public outreach
 - Flight planning / airspace coordination
- Survey design/management
 - Multi-thousands of participants
 - Aggregation/geolocation of responses
 - Automation of data processing
- Acoustic measurements
 - Land use / approvals
 - Hardware robustness and security
 - Remote operation/data transmission
 - Communications connectivity/reliability
 - Automation of data processing

- Primary Goals
 - Develop an accurate nationwide estimate of the **single-event** dose-response relationship between the proportion of the population annoyed (to varying degrees) by supersonic overflights and acoustical data (measured and modeled) that characterize single-event noise exposure.
 - Develop an accurate nationwide estimate of the **cumulative** dose-response relationship between the proportion of the population annoyed (to varying degrees) by supersonic overflights and acoustical data (measured and modeled) that characterize cumulative noise exposure.
- Secondary Goals
 - Assess the effect of indoor noise-induced rattle sounds and vibration on dose-response relationships
 - Assess the effect of **location** (home vs. work. vs. somewhere else, indoor vs. outdoor, and indoor with windows open vs. closed) on dose-response relationships.
 - Assess the effect of **time-of-day** on sonic thump perceptions (daytime vs. evening).
 - Assess the prevalence of "startle" in sonic thump perceptions.

73

- Range of doses
 - Both single-event and daily dose are being considered
 - Limited by X-59 operational constraints
 - Single-event exposure design will target 15-20 dB range around X-59 cruise design point of PL = 75 dB
 - PL ~ 70-87 dB
 - Resulting cumulative dose range (1-6 thumps per day)
 - PLDNL ~ 20-45 dB
- Dose distribution and scheduling
 - Design allows for varying levels and number of events to achieve desired range and distribution
 - Times of day and weekdays/weekends will also be randomized
 - Spacing of at least 20 minutes
 - 80-90 thumps per community test
- Test length
 - ~20 flight days over one month

QUESTIONS?

75

Phase 2 Test Approach

• Near-Field shock measurements

- \approx 65 Total test points (two measurements each)
- \approx 12 measurements per flight
- Conditions:
 - Design cruise
 - Control surface/CG/trim optimization
 - Off-condition, varying Mach
 - New optimal boom condition (if found)
- Primary points are 3 BL separation, 0- and 20-deg phi
- One flight over the microphone array, per flight
- Sonic boom carpet characterization
 - ≈ 24 measurements, 2 measurements per flight
 - Mostly design cruise
 - High PLdB points (Mach 1.3, 43 kft & Mach 1.4, 46 kft.)

 Phase 1 - Aircraft Development Before Flight – System Checkouts Functional Checkout (PMD) Envelope Expansion (AFRC) 	# Flights 5-10 <u>35-50</u> 40-60
Phase 2 – Acoustic Validation	
2A Near/Mid-Field Probing	20
2B Far-Field & Ground	30
Measurements	<u>10</u>
2C Schlieren Shockwave Imaging	60
Phase 3 – Community Response	
3A Community Response (AFRC)	30
3B Community Response (deployed)	<u>30 each</u>
	300*

Planned Mission Flights

- Mid-field shock measurements
 - ~ ≈ 8 measurements, 2 measurements per flight (could improve with updated ALIGNS)
 - Design cruise
 - 20 kft separation, 0- and 25-deg phi
- Focus measurements
 - ≈ 12 measurements, 2 measurements per flight
 - Repeatable transition focus (could include push-over focus)
- Turbulence measurements
 - ≈ 12 measurements, 2 measurements per flight
 - Design cruise, varying turbulence levels
- Shockwave imaging (schlieren)
 - ≈ 8 measurements, 2 measurements per flight
 - Design cruise

www.nasa.gov

Phase 1 - Aircraft Development Before Flight – System Checkouts	# Flights
 Functional Checkout (PMD) 	5-10
 Envelope Expansion (AFRC) 	<u>35-50</u>
	40-60
Phase 2 – Acoustic Validation	
2A Near/Mid-Field Probing	20
2B Far-Field & Ground	30
Measurements	<u>10</u>
2C Schlieren Shockwave Imaging	60
Phase 3 – Community Response	
3A Community Response (AFRC)	30
3B Community Response (deployed)	<u>30 each</u>
	300*

Planned Mission Flights