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Supplementary Note 1: Emissions 

 

Supplementary Figures 1 and 2 present total emissions of greenhouse gases and selected 

(important from the perspective of radiative forcing) air pollutants for Arctic Council member 

countries (Canada and United States, Kingdom of Denmark, Finland, Iceland, Norway, the 

Russian Federation, and Sweden) and Arctic Council Asian Observers (Japan, People’s Republic 

of China, Republic of India, Republic of Korea, Republic of Singapore). Emissions are shown 

for the key CMIP6 scenarios, including historical estimates from the CEDS dataset1,2, and the 

data and scenario set used in this work developed with the GAINS3,4,5 model and referred to as 

AMAP (Arctic Monitoring and Assessment Programme) or ECLIPSE V6b; for a description of 

scenarios see the main text.  

 

While for CO2, the GAINS model historical data and projections (relying on the 

International Energy Agency statistics and the World Energy Outlook scenarios6) are consistent 

with CEDS and two CMIP6 SSP scenarios (SSP2-4.5 for CLE, MFR, and CFM; and SSP1-1.9 

for MFR_SDS). There are noticeable differences for methane (Supplementary Figure 1A and 

Supplementary Figure 2A). For Arctic Council countries, a strong decline in CH4 in the 1990-

2000 decade is associated with the collapse of the Soviet Union and both CEDS and GAINS 

show this, however, GAINS estimates are higher due higher losses from venting. The growth 

towards 2015 is driven primarily by increasing production of gas, including unconventional gas 

sources in North America. For the Arctic Council Asian Observer countries, CEDS and GAINS 

align well until about 2000 but then CEDS emissions grow much stronger than GAINS, 

primarily due to difference in estimates for coal mining in China. It appears that CEDS assumes 

constant emission factors for China post 2005 and is similar to earlier estimates of EDGAR 

inventory, while GAINS is similar to recent EDGAR (not shown). Inverse modelling studies7,8 

indicate lower coal mining emissions in China than CEDS and even slightly lower than GAINS. 

At the global level, GAINS model CH4 trajectory shows good alignment with inverse modelling 

study for the post 2000 period9,10. Overall mitigation potential, relative to baseline, is similar for 

SSP and GAINS scenarios, with SSP1-2.6 and MFR_SDS (sustainable development) aligning 

closer also in absolute terms.  

 

Globally, CEDS emissions of aerosol species (sulfur, BC, and OC) are consistently 

higher than GAINS emissions11 (Fig. 1), both in totals but also on a sectoral basis, with major 

differences over southeast Asia. On the other hand, the GAINS emission decline more rapidly 

from 2015 to 2030, compared to the SSP emissions. Emissions in the SSP1-2.6 scenario and the 

MFR scenario are similar in 2050. 

 

Sulfur emissions trajectories for the Arctic Council are similar for the past (CEDS and 

GAINS) and follow comparable trends in the future (SSP vs GAINS, Supplementary Figure 1B). 

For the Asian Observers (Supplementary Figure 2B), however, there are some notable 

differences that appear from about 2005, with much stronger and continued increase in CEDS 

while GAINS growth is slower and a decline from about 2007 is estimated, resulting in a much 

lower value for 2015 that is a starting point for projections. Key reasons are linked to 

assumptions about the effectiveness of policies in China where GAINS relies on more recent 

studies for China10 - not available at the time of CEDS development - showing a strong decline 

of sulfur emissions. This has important implications for the projections, while having somehow 
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similar trends, show different absolute emission levels especially for 2030 and the SSP2-4.5 

(comparable in terms of energy consumption to CLE); by 2050 the deep mitigation cases are 

rather similar. Notably, recent updates of the CEDS database that also include extension towards 

2017, confirm the historical trends estimated for China in the GAINS model12.  

 

     For carbonaceous particles (BC and OC), the CEDS, GAINS, and SSPs are very 

similar for the Arctic Council (Supplementary Figure 1B). Only for BC, historical GAINS 

numbers are somewhat higher than CEDS owing to differences in emissions from oil and gas 

flaring in Russia and generally larger estimates for agricultural residue burning using bottom up 

data rather than remote sensing products. For Asian Observers, however, the differences are 

much larger (Supplementary Figure 2B). Historical values deviate strongly from 2000, with 

CEDS showing very strong growth while GAINS is stable with a decline in later years. The key 

reasons include higher CEDS BC emissions from industrial use of coal and coke production in 

China, open burning of municipal waste in India (affecting mostly OC) as well as moderate 

change in emissions from diesel vehicles. GAINS has assumed lower emission factors for coal 

use in industry, transformation in coke sector in China towards larger integrated plants, decline 

in BC emission factor from diesel trucks and cars, and own estimates of municipal solid waste 

generation and rates of open burning (the latter lower than the study CEDS relied on13). Two 

recently published studies evaluating BC emissions in the last decade in China confirm the trends 

estimated with GAINS14,15 and the recent update of the CEDS emission dataset shows very 

similar trajectories to GAINS as well12. The trends and overall mitigation potential in respective 

SSP and GAINS scenarios for BC and OC is similar, however, in absolute terms GAINS attains 

much lower BC and OC emissions for the Arctic Observer countries by 2050 - among major 

reason for additional potential in GAINS is assumption about successful transformation in the 

waste sector virtually eliminating open burning of trash.   

 

Supplementary Note 2: Climate and air quality models 

 

Participating in this study were 8 Chemical Transport Models (CTMs), 2 Chemistry Climate 

Models (CCMs), 3 global climate models (GCMs), and 5 Earth System Models (ESMs) for a 

total of 18 models. A list of these models is provided (Supplementary Data 1), along with some 

details about meteorology, emissions and primary references. For individual model descriptions, 

we refer the reader to the 2021 AMAP Short-Lived Climate Forcers (SLCF) assessment report 

and Whaley et al.16. 

 

All models used forest fire emissions from the Coupled Model Intercomparison Project 

Phase 6 (CMIP6), except for DEHM, which used GFAS; EMEP MSC-W, which used FINN; 

GEM-MACH, which used CFFEPS; and GEOS-Chem, OsloCTM, and WRF-Chem, which all 

used GFEDv42. All models used AMAP emissions for the agricultural waste burning, except for 

GEM-MACH, which used Canadian and U.S. inventories for North America, and AMAP 

emissions everywhere else; and UKESM1, which used CMIP6 for the historical time period, 

though AMAP emissions5 for future time periods. 

 

The 18 models have highly varying horizontal and vertical resolution, as well as vertical 

extent. For example, 8 models (DEHM, EMEP MSC-W, FLEXPART, GEM-MACH, GEOS-

CHEM, MATCH, Oslo-CTM, WRF-Chem) have an air quality focus, usually with relatively 
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high horizontal resolution, a lower atmospheric lid (top modelled level), focused on the 

troposphere, and with many trace gas and aerosol species, and chemical reactions. Two models 

(CMAM and MATCH-SALSA are chemistry climate models (CCMs), meaning they are focused 

on climate, with a lower horizontal resolution, higher atmospheric lid (including the 

stratosphere), and a considerable amount of atmospheric chemistry - particularly in the 

stratosphere. The remaining 3 atmospheric models (CanAM5-PAM, CIESM-MAM7, and 

ECHAM-SALSA) have a tropospheric climate focus. They have fewer chemical reactions, thus, 

can be run for long periods of time, and simulate important atmospheric processes for climate. 

Five of the participating models (CESM, GISS-E2.1, MRI-ESM2, NorESM, and UKESM1) are 

ESMs, simulating the atmosphere in a similar way to the climate models mentioned above, but 

also including interactive land surface and ocean. In addition to atmospheric processes, the 

ESMs can simulate changes to ocean temperatures and salinity, sea ice thickness and extent, and 

land-air exchange in an interactive way, whereas these are prescribed in the 13 atmospheric 

models mentioned above.  

 

The ESM future simulations were done with 3 to 5 ensemble members to provide a range 

of future climate conditions given the internal variability. 

 

Supplementary Note 3: Model Evaluation 

 

Models used to provide results in the main manuscript were evaluated by comparing their SLCF 

output to ground, aircraft, ship, and satellite-based measurements. Most of that evaluation is 

available in the 2021 AMAP SLCF Assessment Report and further documented by Whaley et 

al.16. 

 

Generally, the multi-model mean provided the best results for most of the SLCF species 

compared to any one particular model (e.g. Supplementary Figure 3), and it is the multi-model 

mean that the climate and health impacts in the main paper are based on. This is optimal use of 

these model datasets. 

  

Evaluation of simulated methane, black carbon, sulfate, ozone, and fine particulate matter 

 

The annual, multi-model mean biases for each SLCF species in the historical model 

simulations (2008-9 and 2014-15 evaluation periods) are described below, including their 

implications for climate and health impacts: 

● Annual mean, simulated surface-level Arctic (>60oN) and global methane is biased 

slightly high (+1.3% in the Arctic) compared to measurements and biased slightly low in 

the free troposphere (e.g., -0.7% at 600 hPa), which means that confidence in the 

warming from methane shown in the main paper is high.  

● Annual mean, surface-level Arctic black carbon is biased low compared to measurements 

(-17%), but there is up to a factor of 2 uncertainty in BC measurements from different 

techniques. The warming from black carbon is due to its concentrations – not just at the 

surface – but throughout the atmospheric column. There is good agreement between 

models and observations over black carbon source regions, but simulated concentrations 

are underestimated at higher altitudes in the troposphere and generally increase with 
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altitude and proximity to the Arctic according to comparisons with aircraft measurements 

(e.g., -80% at 6 km in altitude for the Arctic region). This means that the warming due to 

black carbon shown in the main paper may be underestimated.  

● Annual mean Arctic sulfate was biased low compared to measurements (-21%) but that 

bias is close to the 20% uncertainty on sulfate measurements. Vertical profiles of sulfate 

and radiative forcings were not evaluated in this project so modelled temperature impacts 

are uncertain. 

● Globally, and in the Arctic, modelled surface-level O3 is biased high (e.g., +6% in the 

Arctic). This means that the detrimental health impacts of ozone may be overestimated. 

● Higher in the atmosphere (in the free troposphere) ozone is an effective greenhouse gas, 

and there it is slightly underestimated by models (-10 to -20% compared to satellite 

measurements, which have ~15% uncertainty range). This means that the modelled 

warming impact from O3 may be slightly underestimated. 

● Annual mean PM2.5 was biased low globally (-26%), which means that the health impacts 

due to PM2.5 exposure may be underestimated. 

● Annual mean aerosol optical depth – giving an indication of the aerosol load in the 

atmosphere –  was biased low (-23.2% in Arctic and -25% globally) suggesting that the 

overall impacts of aerosols on climate and human health may be underestimated. 

● The differences and uncertainties in both the satellite-based observations and model 

simulations of cloud properties were high over the Arctic, especially over the regions 

covered by multiyear sea ice and during the polar winter months. This implies that the 

poor representation of the processes relevant to the interactions among aerosol-precursor 

gases, aerosols and clouds could be a major source of uncertainties in the climate impacts 

in this assessment. 

 

There were seasonal differences in the model biases, which complicates the health and 

climate impact uncertainties. For example, the seasonal cycle of ozone has health implications, 

since ozone only mainly exceeds health thresholds in the summertime (photochemical smog) and 

PM2.5 exceeds health thresholds mainly in the wintertime (haze). At mid-latitudes, where human 

populations are much higher, the models simulated the seasonal cycles well – thus the modelled 

health impacts should be fairly accurate as far as the seasonal cycles are concerned. However, 

the differences in simulated seasonal cycles of ozone, black carbon, and sulfate are particularly 

large in the Arctic. The coarse resolution models cannot simulate the local Arctic smog well, and 

due to large uncertainties in fire parameterizations, the summertime aerosol concentrations are 

often overestimated by models. 

  

There were regional differences in model biases as well. For example, surface-level 

ozone had a much smaller positive bias in North America and Europe than in Asia, and modelled 

PM2.5 was biased high in North America, but low in Asia. These, too, further complicate the 

interpretation of the health and climate impacts. 

 

Supplementary Figure 3 shows the annual mean model biases for each model and the 
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multi-model mean (mmm) for O3 and PM2.5, globally (at all measurement locations), and in the 

Arctic (only measurement locations with latitude > 60oN). Positive and negative model biases 

tend to cancel out in the multi-model mean, except for global O3 comparisons, where almost all 

models are biased high (mainly due to the high bias at mid-latitudes where most of the 

measurements occur).  

   

Modelled and measured trends of Arctic O3, CH4, BC, and SO4 

 

         The simulated historical trends for the time period 1990(5) to 2015 were compared to 

measured trends for O3, BC, and SO4. Their annual mean results are shown in Supplementary 

Figures 4 to 6, respectively. In addition, modelled and measured trend values for different 

seasons are included in the AMAP 2021 SLCF assessment report for O3, BC, and SO4. 

 

         Arctic O3 trends are negligible at most Arctic locations from both models and 

measurements (Supplementary Figure 4), though when analyzed seasonally, there are some small 

(<1%) significant trends that the models do not capture. The relatively steady annual mean 

Arctic O3 in observations and simulations are likely due to competing changes in O3 precursors 

(e.g., decreasing or increasing NOx depending on region, increasing CH4 globally, but 

decreasing CO).   

  

         Only three models simulated methane over the longer time period, and they capture the 

increasing Arctic CH4 trend (not shown) when compared to observations at Alert, Canada. 

  

         Black carbon (Supplementary Figure 5) and sulfate (Supplementary Figure 6) 

concentrations show similar changes over the long time series. At most Arctic locations (e.g., 

shown clearly at Alert, NV), the BC and SO4 trends are decreasing in the 1990s, then level off in 

the 2000s, consistent with slowing BC emission reductions in Europe, North America, and 

globally). The models capture these changes over time quite well. The similarity in model biases 

between black carbon and sulfate for individual models indicates a common source of error (e.g., 

aerosol wet deposition17). 

 

Modelled and measured trends of aerosol optical depth 

 

Aerosol optical depth (AOD), a proxy for aerosol concentrations in the atmosphere, was 

used to investigate recent trends in atmospheric concentrations of aerosols in observations and 

model simulations. 5 models simulated AOD over the period 1995-2015 and their trends were 

assessed. Supplementary Figure 7 compares AOD from 22 AErosol RObotic NETwork 

(AERONET18) stations selected based on their temporal coverage during 1995-2015. The 

stations for which the monthly mean values were available for at least 60% of this evaluation 

period were used. The results show that for most of the station locations in the US, Canada and 

Europe the observed aerosol concentrations are declining during this period, which is consistent 

with the reductions in emissions. These trends were well captured by all models although some 

models tend to overestimate the observed seasonal variations especially during summer. 

Similarly, the models were also able to capture the increasing AOD trend in Kanpur, India, 

suggesting that the models simulated well the aerosol concentrations in regions becoming more 

important for anthropogenic pollution in recent decades. However, over highly clean locations 
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such as at Mauna Loa the AOD is overestimated by all models. This is likely related to the 

difficulty in modelling very small background aerosol concentrations using coarse model grids. 

 

The spatial features of simulated AOD trends are evaluated in Supplementary Figure 8 

where they are compared to the Advanced Very High Resolution Radiometer (AVHRR) based 

estimation19,20. The modeled and AVHRR AOD data sets were remapped to a uniform 1° ✕ 1° 

spatial grid before performing the trend analysis. Supplementary Figure 8 shows that, similar to 

the trends discussed above, the dominant features include decreasing AOD trends along eastern 

coasts of North America, the Atlantic coast of Europe and in the Mediterranean region, which is 

consistent with decreasing aerosol emissions. Over the Arabian Sea, Bay of Bengal, southwest 

coasts of Africa and Eastern coast of China the AVHRR AOD showed an increasing trend. The 

models are also able to capture these significantly negative trends along Eastern coast of the US, 

western coast of Europe and in the Mediterranean region and also the increasing trends in 

Arabian sea, Bay of Bengal and southwest coasts of Africa. However, the models differ in 

magnitudes and sign at some locations. For further discussions on uncertainties in observed AOD 

please see the AMAP SLCF Assessment Report. 

 

Supplementary Note 4: Projections of future climate in the climate models 

 

Five fully-coupled Earth system models with interactive ocean and sea ice components were 

used to determine the full climate impacts of the future AMAP emission scenarios in Fig. 2, 

including temperature, precipitation, and sea ice changes: NorESM-happi (3 ensemble 

members), CESM2 (4 ensemble members), MRI-ESM2 (5 ensemble members), GISS-E2.1 (3 

ensemble members), and UKESM1 (3 ensemble members). The models were initialized from 

CMIP6 historical simulations, with the simulations for 4 models (CESM2, MRI-ESM2, GISS-

E2.1, and UKESM1) branched off from the year 2000 and NorESM-happi branched off from 

2011. Between branch off time and the year 2020, all simulations follow the CLE emission 

scenario, while the CLE, MFR, and CFM scenarios were used after that. Fig. 2 shows the multi-

model median temperatures for 2046 - 2055 for these models, after averaging results from the 

ensemble members for each model, with 5-95% confidence intervals (± 1.64 σ), relative to 1995 

– 2014. To calculate global and Arctic temperatures relative to 1880 - 1920, we added 

temperature offsets that were obtained from the GISS Surface Temperature Analysis, GISTEMP 

v421,22. 

 

In addition to the simulations for AMAP scenarios, we use results from archived 

simulations with CMIP6 global ESMs for the SSP scenarios in Fig. 2. All results for the first 

available ensemble member were used to calculate multi-model median temperatures and their 

confidence ranges, without screening, from between 29 (SSP3-7.0) and 35 (SSP2-4.5 and SSP5-

8.5) CMIP6 models (Supplementary Data 2). 

 

Supplementary Note 5: Projections of future air pollutants in the models 

 

Future air quality will be primarily driven by changes in emissions but will be impacted by 

changes in climate, which go beyond changes in air pollutant sources23,24. The combined 3D air 

quality and climate multi-model ensemble used here provides a harmonized approach for the 

analysis of air quality changes and climate-related processes, caused by changes in key fossil 
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fuel air pollutants. 

 

We find that model biases for historical conditions can be substantial, largely consistent 

with a separate analysis of CMIP6 models. These biases are likely to affect future projections of 

air quality. In particular, PM2.5 concentrations tend to be underestimated in many models (see 

sections above). Although there are differences in key model features, air quality and climate 

models share common biases, which provides evidence that parameterizations of air pollutant 

processes are often at the root of model biases rather than differences in meteorological 

processes and model resolution, for instance. Specifically, seasonally varying concentration 

biases in many of the models are likely related to the representation of wildfires and mineral dust 

aerosol. Similarities in model biases and the persistence of known model biases over many years 

of model development by the modelling community highlight the need for future improvements 

of parameterizations of air pollutant processes and emissions from the terrestrial and oceanic 

biosphere. 

 

Changes in biospheric emissions may lead to important climate and air quality 

feedbacks24, which will need to be addressed for future assessments of SLCF emission impacts 

on human health. The models used here specify wildfire emissions according to the SSP2-4.5 

scenario, for all the simulated AMAP scenarios. Some models simulate changes in emissions 

from the ocean, sea salt, or mineral dust. None of the models simulates changing emissions from 

permafrost thaw. Given these limitations, an analysis of the different approaches for naturally 

emitted air pollutants and their impacts on future climate and human health is beyond the scope 

of this study. 

 

Regardless of different air quality and climate model biases, simulated multi-model mean 

air pollutant concentrations from anthropogenic sources agree reasonably well with observations, 

often within the accuracy of the observational data sets. Additionally, air pollution trends agree 

well across the global models that simulated future changes in air quality, despite considerable 

differences in simulated chemical processes and emissions from natural sources (climate models: 

CanAM5-PAM, CESM2.1, GISS-E2.1, MRI-ESM2, UKESM1; air quality model: EMEP MSC-

W; Supplementary Data 1). For instance, for Asian Observers, the difference in mean PM2.5 

concentration in 2050 between the MFR and CLE scenarios amounts to about 45% of the 

anthropogenic PM2.5 concentrations in 2015 in this region (or about 6 μg m-3), with a model 

range from -53.4% to -43.4%. 

 

For the analysis of simulated PM2.5 concentrations in this assessment, we only consider 

three key aerosol chemical species, which are strongly affected by fossil fuel emissions and are 

simulated in all models: BC, OC, and sulfate. Although ammonium and nitrate are predicted by 

some of the models, these aerosol species are not explicitly included in the analysis of PM2.5 

concentrations, given the limited amount of data from the multi-model ensemble and model 

validation options. Instead, we approximate PM2.5 concentrations by assuming that sulfate is 

fully neutralized by ammonium, the usual approach in models without interactive ammonium 

and nitrate processes. 

 

Multi-model mean population-weighted anthropogenic PM2.5 concentrations in 2015 (Fig. 

4) are based on simulations with the following global models: CanAM5-PAM, CESM2.1, 
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CIESM-MAM7, ECHAM6-SALSA, EMEP MSC-W, GEOS-Chem, GISS-E2.1, MRI-ESM2, 

Oslo CTM, and UKESM1. Future multi-model mean concentrations in years 2030 and 2050 are 

based on a subset of these models that were available (CanAM5-PAM, CESM2.1, EMEP MSC-

W, GISS-E2.1, MRI-ESM2, and UKESM1). 

 

Projected future changes in speciated population-weighted anthropogenic PM2.5 

concentrations in emulator simulations (Fig. 4) are driven by changes in emissions of sulfur, OC, 

and BC from upstream oil and gas production sources, combined fossil and bio fuel sources 

related to energy consumption, and marine shipping. The emulator projections do not account for 

changes in natural emission sources, particularly including wildfires. Furthermore, we do not 

consider changes in sea salt and mineral dust PM2.5 species, or changes in oxidant 

concentrations. However, anthropogenic PM2.5 concentrations in 2015, i.e. the base year for the 

emulator simulations, are derived from combined emulator and downscaled 3D multi-model 

PM2.5 concentrations, which are available for sulfate, OC, and BC in 2015. Therefore, natural 

sources of these species are implicitly included in the emulator baseline concentrations. 

 

We compared the simulated PM2.5 concentrations to observation-based estimates of PM2.5 

concentrations in different regions (Fig. 4), based on satellite retrievals25. This estimate does not 

include contributions of sea salt and mineral dust to total PM2.5. Although uncertainties are 

substantial, this estimate agrees reasonably well with in-situ observations, which also tend to 

produce higher concentrations than the multi-model mean. 

 

Simulations of ozone were conducted by a subset of the available air quality and climate 

models. Multi-model mean results for 2015 (Fig. 5) are based on 3-hourly concentrations from 

simulations with CESM2.1, EMEP MSC-W, MRI-ESM2, and UKESM1, which are all global 

models. There are no emulator results available for ozone concentrations and impacts of 

emission changes on regional ozone concentrations were analyzed using the parameterization by 

Turnock et al.26 by AMAP. 

 

Supplementary Note 6: Health impacts 

 

PM2.5- and ozone-attributable mortality are calculated using the TM5-FASST tool27. 

Methods generally follow those used for the Global Burden of Disease (GBD) 2017 Study. For 

PM2.5, we include mortality from ischemic heart disease, stroke, chronic obstructive pulmonary 

disease, lung cancer, lower respiratory infection, and diabetes mellitus type 2. For ozone, we 

include only chronic obstructive pulmonary disease.  

 

TM5-FASST provides pollution-attributable mortality estimates using the common 

population-attributable fraction approach, described in Equation S1: 

 

Equation S1: AMa,h = Pop * Mc,h * (RRa,h-1)/RRa,h 

 

Where AM is pollution-attributable mortality for each age group a and health endpoint h, 

Pop is population, M is the baseline mortality rate for each country c and health endpoint h, RR 

is relative risk estimates for each age group a and health endpoint h from the GBD 2017 Study. 

Equation X is applied in each grid cell and then summed across grid cells to national boundaries. 
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For PM2.5, RR estimates for each health endpoint (and, for the cardiovascular health endpoints, 

each 5-year age band) are computed from fitted functions representing the median exposure-

response curve (and 95% confidence intervals) from GBD 201728 (A. Cohen 2019, personal 

communication) giving RR estimates for each annual PM2.5 concentration value. For ozone, RR 

is calculated using Equation S2: 

 

Equation S2: RR = exp (beta * dO3) 

 

Where beta is the concentration-response factor calculated from RR = 1.06 (95% CI 1.02, 

1.10) per 10 ppb change in the 6-month average of the 1-hour daily maximum ozone 

concentration, and dO3 is the change in the maximum 6-month average of the 1-hour daily 

maximum ozone concentration simulated for these emission scenarios. We use theoretical 

minimum risk exposure levels below which no health impacts are calculated of 29.1 ppbV  for 

ozone, consistent with the GBD 2019 Study. For PM2.5, the minimum risk threshold depends on 

the health endpoint and age group, and ranges between 3.7 and 4.3 µg/m³ for the median 

exposure-response function. 

 

Country-specific baseline mortality rates for 2015 are from the GBD 2017 Study and 

rates for future years are projected by applying ratios of future estimated rates from the GBD 

2016 foresight study (https://vizhub.healthdata.org/gbd-foresight/) to 2015 rates. We assume the 

year 2050 base mortality rates to be equal to the 2040 values, the last available year in the 

GBD2016 foresight data. Present and projected gridded population estimates are from Jones and 

O’Neill29, while country-specific age structures are from the UN 2017 revision World Population 

Prospects.  

 

We estimate 95% confidence intervals for estimated PM2.5- and ozone-attributable 

mortality using error in the relative risk estimate only, though additional uncertainties arise from 

all other inputs to the health impact function, including concentrations, population, and mortality 

rates. We have attempted to bound our understanding of the simulated concentration changes for 

each scenario using a multi-model ensemble. All other sources of uncertainty are likely 

consistent across scenarios and therefore would not affect our results or conclusions about how 

air pollution-related mortality compares across emission scenarios. The exception may be for 

baseline mortality rates projected to future years: If our projection approach overestimates future 

mortality rates from the causes of death included in our study, we may overestimate the change 

in pollution-attributable mortality from emission changes, leading to exaggerated differences 

between scenarios. The opposite would be true if our projection approach underestimates 

mortality rates - the difference in air pollution-attributable mortality between emission scenarios 

would be muted.  

 

Estimated air pollution-attributable health impacts may be underestimated because we 

only included PM2.5 and ozone, though other air pollutants are affected by these emission 

scenarios and are linked with health outcomes30,31 (e.g. NO2 and pediatric asthma incidence). In 

addition, we only included several causes of mortality, and were not able to include a large range 

of morbidity endpoints that have been linked with air pollution in recent years, including 

dementia32, chronic kidney disease33, and adverse birth outcomes34. 

 

https://vizhub.healthdata.org/gbd-foresight/
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Supplementary Figure 1: Arctic Council countries annual mean greenhouse gas and 

particulate matter component emissions. a Historical carbon dioxide and methane emissions 

in two inventories (as indicated in the legend; thin black line: CEDS, thick black line: AMAP) 

and 8 future scenarios for 2015 to 2050 (colored lines and acronyms in legend; similar to Fig. 1). 

b Corresponding emissions of sulfur, black carbon (BC), and organic carbon (OC). Note that 

some of the scenarios are overlapping for some emitted species. The inter-annual variability in 

CH4, BC, and OC emissions is largely due to wildfires.  
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Supplementary Figure 2: Arctic Council Asian Observer countries annual mean 

greenhouse gas and particulate matter component emissions. See Supplementary Figure 1 for 

details. 
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Supplementary Figure 3: Global and Arctic O3 and PM2.5 model relative biases and the 

multi-model mean (mmm) biases. 
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Supplementary Figure 4: Measured and modelled annual mean time series of surface-level 

O3 at 11 Arctic ground stations. 

  



16 

 

Supplementary Figure 5: Measured and modelled annual mean time series of surface-level 

BC at 11 Arctic ground stations. 
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Supplementary Figure 6: Measured and modelled annual mean time series of surface-level 

SO4 at 13 Arctic locations. 



18 

 

 
Supplementary Figure 7: Monthly mean AOD comparison between AERONET 

observations and model simulations. These AERONET stations were selected based on the 

availability of monthly mean data covering at least 60% of the total time-period, not necessarily 

consecutive months, between 1995 and 2015. MMM represents multi-model mean results. Note 

the different y-axis scale used for each station's results. 
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Supplementary Figure 8: The 1995 to 2015 AOD trend. Data from AVHRR (top left) and 

model simulations (rest of panels) are multiplied by a factor 10. Stippling represents regions 

where trends are statistically significant for 95% confidence level based on Student’s t-test. 
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Supplementary Figure 9: Projected global and Arctic mean temperature changes in 2030. a 
and b are for Arctic Monitoring and Assessment Programme (AMAP) air pollution mitigation 

scenarios and c and d for Shared Socioeconomic Pathways (SSP) climate scenarios. Black 

diamonds refer to the multi-model median temperatures in Earth System Models (ESMs) for 

2026 - 2035, relative to 1995 – 2014 (black font), where available. Warming relative to 

preindustrial conditions is also indicated (grey font, with 1.5 and 2 °C thresholds indicated by 

dashed lines in a and c). Color bars refer to the contributions from the individual changes in air 

pollutant and greenhouse gas emissions to forced temperature changes, based on emulator 

simulations (legend). Black bullets refer to the corresponding net changes. Results from the 

MRI-ESM2 are shown, the only ESM that ran the CFM scenario (triangles in a and b). 

Contributions from tropospheric ozone (O3, less than 0.03 °C) and OC (less than 0.09 °C) are 

barely discernible but are included for the sake of completeness (AMAP scenarios only). 5-95% 

confidence intervals (± 1.64 σ), resulting from uncertainties in all simulated processes, are 

indicated by black vertical lines (error bars). Confidence ranges due to radiative forcing 

uncertainty in the emulator are indicated by transparent rectangles. The emulator does not 

account for unforced natural variability and so confidence ranges are typically smaller than ESM 

confidence ranges. 
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Supplementary Figure 10: Impacts of changes in air pollution on future global climate. 

Differences in forced global temperatures in 2050 are shown between Maximum Feasible 

Reduction (a), Climate Forcing Mitigation (b), Sustainable Development activity (c) scenarios 

and the Current LEgislation scenario. The differences are broken down into contributions of 

global and regional emissions of chemically reactive species and the radiative forcing processes 

that are associated with these emissions. 3 different radiative forcing processes are considered, 

indicated by wide bars (hatched, black, and white; for interactions of air pollutants and CH4 with 

radiation, surface albedo, and clouds, respectively, see legend). Narrow colored bars refer to 

emissions of 7 reactive species (see legend) from global sources and two regions (Arctic 

Council, and Asian Arctic Council Observer countries: Japan, People’s Republic of China, 

Republic of India, Republic of Korea, Republic of Singapore). Black bullets refer to the net 

temperature changes associated with global and regional emissions.  
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Supplementary Figure 11: Projected global and Arctic mean temperature changes in 2050. 
a and b are for AMAP air pollution mitigation scenarios and c and d for Shared Socioeconomic 

Pathways (SSP) climate scenarios, using an ECS of 3 °C in the emulator and removing data from 

all ESMs that have an equilibrium climate sensitivity outside of the range from 2.5 to 4 °C. In 

comparison, the ECS for emulator simulation results in Fig. 2 is 3.7 °C and the ECS in the ESMs 

ranges from 1.8 to 5.6 °C. Black diamonds refer to the multi-model median temperatures in 

Earth System Models (ESMs) for 2046 - 2055, relative to 1995 – 2014 (black font), where 

available. Warming relative to preindustrial conditions is also indicated (grey font, with 1.5 and 

2 °C thresholds indicated by dashed lines in a and c). Color bars refer to the contributions from 

the individual changes in air pollutant and greenhouse gas emissions to forced temperature 

changes, based on emulator simulations (legend). Black bullets refer to the corresponding net 

changes. Results from the MRI-ESM2 are shown, the only ESM that ran the CFM scenario 

(triangles in a and b). Contributions from tropospheric ozone (O3, less than 0.03 °C) and OC 

(less than 0.09 °C) are barely discernible but are included for the sake of completeness (AMAP 

scenarios only). 5-95% confidence intervals (± 1.64 σ), resulting from uncertainties in all 

simulated processes, are indicated by black vertical lines (error bars). Confidence ranges due to 

radiative forcing uncertainty in the emulator are indicated by transparent rectangles. The 
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emulator does not account for unforced natural variability and so confidence ranges are typically 

smaller than ESM confidence ranges. 
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