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Abstract: Application of three-dimensional (3D) woven composites is growing as an alternative to 
the use of ply-based composite materials. However, the design, analysis, modeling, and optimiza-
tion of these materials is more challenging due to their complex and inherently multiscale geome-
tries. Herein, a multiscale modeling procedure, based on efficient, semi-analytical micromechanical 
theories rather than the traditional finite element approach, is presented and applied to a 3D woven 
carbon–epoxy composite. A crack-band progressive damage model was employed for the matrix 
constituent to capture the globally observed nonlinear response. Realistic microstructural dimen-
sions and tow-fiber volume fractions were determined from detailed X-ray computed tomography 
(CT) and scanning electron microscopy data. Pre-existing binder-tow disbonds and weft-tow wavi-
ness, observed in X-ray CT scans of the composite, were also included in the model. The results 
were compared with experimental data for the in-plane tensile and shear behavior of the composite. 
The tensile predictions exhibited good correlations with the test data. While the model was able to 
capture the less brittle nature of the in-plane shear response, quantitative measures were underpre-
dicted to some degree. 

Keywords: 3D woven composites; micromechanics; progressive failure; method of cells; homoge-
nization; multiscale modeling; X-ray CT 
 

1. Introduction 
Three-dimensional (3D) woven composites have emerged as attractive alternatives 

to traditional laminated composites by offering improved damage tolerance, customiza-
bility, and near net-shape manufacturing. This enabling technology allows structures 
with thick sections and/or complex geometries to be fabricated using a single preform that 
can then be infused with resin. Woven composites with new 3D architectures have pre-
dominantly been evaluated experimentally due to the significant challenges associated 
with modeling 3D woven geometries. Macromechanical modeling of these materials is 
particularly problematic because of their strong dependence on microstructure, coupled 
with their more general anisotropic behavior (compared to tape and 2D woven compo-
sites). As such, micromechanics and multiscale modeling are attractive for examination of 
these complex materials. 

Some models have been developed to investigate the effects of damage at the various 
length scales present in 3D woven composites [1–8]. However, when looking at the 
broader 3D woven-composite modeling literature, the trend is to use highly-refined finite 
element models of the woven architecture at a single scale [9–24], and multiscale models 
are generally not employed due to prohibitive computational costs. As a result of the high 
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computational demand for high-fidelity finite element models, particularly in the context 
of progressive failure analysis, it is currently challenging to perform sensitivity or optimi-
zation analyses for 3D woven composites based on this approach. Additionally, surrogate 
modeling may not be a reasonable solution, particularly when damage and failure are 
considered, due to the significant runtimes required to obtain the large numbers of train-
ing data. Finally, multiscale models offer access to the constituent (fiber/matrix) behaviors 
and responses, thus enabling consideration of processing-based virtual manufacturing 
simulations so that undesirable and non-optimal features can be eliminated. 

The current work focuses on the application and validation of a multiscale modeling 
strategy for progressive failure analysis of 3D woven-composite repeating unit cells 
(RUCs). The approach is based on Multiscale Recursive Micromechanics (MsRM) as im-
plemented within the NASA Multiscale Analysis Tool (NASMAT) software [25]. MsRM 
enables independent micromechanical methods to recursively call themselves to capture 
the material microstructural effects at lower and lower length scales. The approach is flex-
ible enough to allow any micromechanical theory to operate at any length scale, whether 
calling or being called by other theories. In this work, NASMAT’s MsRM capabilities were 
applied to simulate an IM7-6k/RTM6 3D woven composite comprised of multiple length 
scales (i.e., a weave pattern made up of tows (yarns), the microstructure within a tow 
consisting of fibers and matrix). Since the MsRM approach tracks the stress and strain 
fields at every length scale in the composite, damage and failure can be predicted based 
on the local constituent material fields. These effects at lower length scales are homoge-
nized to influence the material response at the higher length scales. Both the Generalized 
Method of Cells (GMC) and High-Fidelity Generalized Method of Cells micromechanical 
theories [26] were used at the various composite length scales. Additionally, a modified 
crack-band damage model based upon the work of refs. [27–29] was used to model the 
matrix both within and between the tows. 

Realistic model geometry parameters and local fiber volume fractions were deter-
mined from detailed X-ray computed tomography (CT) scans and scanning electron mi-
croscopy (SEM) images, respectively, of the 3D woven composite. Further, imperfections 
evident in the X-ray CT images of the as-manufactured composite were captured in the 
models. These imperfections included pre-existing disbond cracks adjacent to the 
through-thickness binder tows, along with in-plane fiber waviness of the weft-direction 
tows. Results from the pristine geometry and models that accounted for binder-tow dis-
bonds and weft-tow waviness were obtained. Uniaxial stress–strain curves of the compo-
site for applied normal and shear strain components were compared with available me-
chanical test data for the composite. These results demonstrated that the MsRM can be 
used to readily capture nonlinear progressive failure response for 3D woven-composite-
material systems. 

2. Materials and Methods 
2.1. Materials 

In this study, an IM7-6k carbon fiber/RTM6 epoxy 3D orthogonal woven composite 
was considered. The woven preform was manufactured by Bally Ribbon Mills (Bally, PA, 
U.S.A.) and was resin-infused by North Coast Composites (Cleveland, OH, U.S.A.) using 
a resin-transfer molding process. An RUC representing the idealized woven reinforce-
ment geometry is shown in Figure 1. Note that the geometry is periodic in the warp and 
weft directions and that one of the binder tows is split across the weft-direction RUC 
boundary. The idealized RUC size is 8.23 mm × 4.80 mm × 3.18 mm in the warp, weft, and 
through-thickness (TT) directions, respectively. The RUC is comprised of 24 warp tows (8 
layers, 3 columns), 54 weft tows (9 layers, 6 columns), and 3 binder tows, where each 
binder tow is located between adjacent columns of warp tows. Both warp and weft tows 
are predominantly aligned in their respective directions, while the binder tows are aligned 
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in the warp direction at the top and bottom of the RUC but periodically traverse through 
the thickness of the composite. 

 
Figure 1. Geometry of the ideal IM7/RTM6 3D woven-composite RUC (excluding the matrix). 

2.2. Material Characterization 
2.2.1. Geometric Characterization Based on X-ray CT and SEM 

For the IM7/RTM6 3D woven composite considered in this investigation, X-ray CT 
images (13.4 µm resolution) were previously generated for individual pristine specimens 
[30]. These data are from panel “1Z” in ref. [30], and readers are referred to that reference 
for more details regarding data generation and observed features. Note that the coupons 
whose test data are presented herein came from this same panel. In this work, the X-ray 
CT data were re-analyzed to identify and quantitatively measure various features of in-
terest. 

Based on features observed in the X-ray CT data, a number of key dimensions were 
identified and measured for use in the model RUC. Representative images are shown in 
Figure 2. The measured dimensions include the warp-tow width (WaW) and height 
(WaH) and the weft-tow width (WeW) and height (WeH). For sections of the binder tow 
aligned in the warp direction, the elliptical binder-tow shape is similar to the shapes of 
the warp- and weft-fiber tows. As the binder-tow transitions through the thickness, its 
width narrows and its height increases. To approximate this behavior, two sets of binder-
tow dimensions were measured: the width and height in the flat warp-aligned regions 
(BWf and BHf, respectively) and near the mid-thickness (BWz and BHz, respectively). 
Statistical distributions of these eight dimensions were determined by repeatedly extract-
ing dimensions from different locations near the appropriate tow centerline and from dif-
ferent cross-sectional planes if possible. For example, the warp-tow width, WaW, can be 
found by measuring warp tows from images normal to the warp direction or normal to 
the thickness direction. The mean values of the identified key dimensions were used in 
the construction of the 3D woven RUC for the model described in Section 2.3.3. In the 
future, automated techniques, such as those described in refs. [31–35], could be utilized to 
speed up the geometry-characterization process. 
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Figure 2. Example X-ray CT images of the IM7/RTM6 3D woven composite with dimensions meas-
ured for use in the identified multiscale RUC. 

Two additional features observed in the imaging of the 3D woven composite were 
considered in the multiscale model: disbonding of the binder tows from the surrounding 
matrix and waviness in the weft tows. These are depicted in Figure 3, which shows X-ray 
CT images of the 3D woven composite. Figure 3a is taken from a through-thickness cross-
section that passes through the weft tows, and the weft-tow waviness induced by the 
through-thickness binder tows is evident. Figure 3b is a detail from Figure 3a, in which 
the disbonding of the binder tows is shown. Figure 3c is a weft cross-section showing how 
these binder-tow disbonds progress through the thickness of the 3D woven composite. 
The disbonds appear on both sides of the binder tows in the warp direction and tend to 
run part way through thickness from the inner radius of the binder tow as it turns from 
the surface of the composite to the through-thickness direction. Note that measurements 
of the average fiber waviness angle were taken, but it was difficult to obtain highly accu-
rate measurements from the X-ray CT images, as the angles were quite variable, even 
through the width of each weft tow. Based on these measurements, the average weft-tow 
waviness angle was approximated to be 1.5°, to the nearest 0.5°. Note that the warp tows 
were far less wavy than the weft tows. Both the weft-tow waviness and the binder-tow 
disbonds were included in the multiscale model of the 3D woven composite, as described 
in Section 2.3.3, below. 
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(a) 

 
(b) 

 
(c) 

Figure 3. X-ray CT images showing waviness of the weft tows and disbonding of the binder tows 
from the surrounding matrix. (a) Through-thickness cross-section through the weft tows. (b) De-
tail from part (a). (c) Weft cross-section through a binder tow. 

The fiber volume fraction within the 3D woven-composite tows was characterized 
via analysis of multiple SEM images from both the warp and weft tows. The images were 
segmented to separate individual fibers and matrixes using standard MATLAB-based im-
age-processing techniques (gray-scaling and thresholding). 
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2.2.2. Acid-Digestion Tests 
Acid-digestion testing based on ASTM D3171 Procedure B [36] was used to charac-

terize the overall fiber volume fraction and void volume fraction. A total of nine speci-
mens were tested. 

2.2.3. Warp and Weft Tensile and In-Plane Shear Tests 
In-plane tensile and shear tests were conducted on the woven composite at the Na-

tional Institute for Aviation Research (NIAR) [37]. Uniaxial tensile tests were conducted 
with loading in the warp and weft directions based on ASTM Standard D3039 [38], while 
V-notched rail shear tests were performed according to ASTM Standard D7078 [39]. Five 
tensile tests (per loading direction) were performed using untabbed, 254 mm × 25.4 mm 
rectangular specimens. Four in-plane shear tests were performed using 55.9 mm (warp 
direction) × 76.2 mm (weft direction) rectangular specimens with two 90°, 12.7 mm deep 
notches aligned in the warp direction to give a 30.5 mm width between the notch tips. 
Strains were measured using a strain gauge and digital image correlation (DIC). 

2.3. Multiscale Modeling Procedure 
2.3.1. Multiscale Recursive Micromechanics 

The MsRM approach [6,7,25] can be used to simulate materials with multiscale mi-
crostructures. Recursive procedures, subroutines, and data structures are extensively 
used in the NASMAT software. This permits an arbitrary number of scales to be defined, 
and data can be seamlessly transferred among the scales. Additionally, any micromechan-
ical method can be utilized at any scale. Through a series of localization operations, suc-
cessively lower levels are called until, ultimately, the individual constituents are reached. 
Once a subvolume at any level contains a constituent material, no further localizations can 
occur. After all localizations have occurred at a given level, properties are homogenized 
and passed up to the previous level. The highest level in the model, Level 0, represents 
the entry point for a NASMAT analysis and is where most data of interest are generated, 
such as the effective composite moduli and effective stress–strain response. Currently, 
Level 0 calculations are performed using any of the available micromechanical theories, 
and periodicity is assumed. To relax the assumption of global periodicity, NASMAT can 
be called from a third-party tool (e.g., a finite element program) where the desired bound-
ary conditions can be applied. Each subvolume within the Level 0 RUC can call an inde-
pendent Level 1 unit cell utilizing a given micromechanical theory. This process can con-
tinue up to an arbitrary k number of levels and is schematically shown in Figure 4. 

 
Figure 4. Schematic detailing of the Multiscale Recursive Micromechanics (MsRM) approach, 
whereby separate micromechanical models can be embedded within each other to capture structural 
features of interest across any number of length scales. 
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For clarity, the mathematical details of the MsRM approach are briefly discussed. 
Consider any micromechanical theory utilized at a given Level, i. A strain concentration 
tensor, 𝑨𝑨𝑖𝑖

(𝛼𝛼𝑖𝑖), can be defined that relates the local strains, 𝜺𝜺𝑖𝑖
(𝛼𝛼𝑖𝑖) (i.e., within a material’s 

subvolume), to the average (global) strains, 𝜺𝜺𝑖𝑖 . Here, 𝛼𝛼𝑖𝑖  denotes an individual sub-
volume out of the 𝑁𝑁𝛼𝛼𝑖𝑖 total number of subvolumes. The relation between the local and 
average global strains is given by: 

𝜺𝜺𝑖𝑖
(𝛼𝛼𝑖𝑖) = 𝑨𝑨𝑖𝑖

(𝛼𝛼𝑖𝑖)𝜺𝜺𝑖𝑖, (1) 

The local material’s constitutive equation (assuming no inelastic or thermal effects) can be 
defined by: 

𝝈𝝈𝑖𝑖
(𝛼𝛼𝑖𝑖) = 𝑪𝑪𝑖𝑖

(𝛼𝛼𝑖𝑖)𝜺𝜺𝑖𝑖
(𝛼𝛼𝑖𝑖), (2) 

where 𝝈𝝈𝑖𝑖
(𝛼𝛼𝑖𝑖)  and 𝑪𝑪𝑖𝑖

(𝛼𝛼𝑖𝑖)  are the subvolume’s stress and stiffness tensors, respectively. 
𝝈𝝈𝑖𝑖

(𝛼𝛼𝑖𝑖) can be expressed in terms of 𝜺𝜺𝑖𝑖 by substituting Equation (1) into Equation (2): 

𝝈𝝈𝑖𝑖
(𝛼𝛼𝑖𝑖) = 𝑪𝑪𝑖𝑖

(𝛼𝛼𝑖𝑖)𝑨𝑨𝑖𝑖
(𝛼𝛼𝑖𝑖)𝜺𝜺𝑖𝑖, (3) 

The average (global) stress tensor, 𝝈𝝈𝑖𝑖, is given by: 

𝝈𝝈𝑖𝑖 = ∑ 𝑣𝑣𝛼𝛼𝑖𝑖
𝑁𝑁𝛼𝛼𝑖𝑖
𝛼𝛼𝑖𝑖=1

𝝈𝝈𝑖𝑖
(𝛼𝛼𝑖𝑖), (4) 

where 𝑣𝑣𝛼𝛼𝑖𝑖 
is the volume fraction for subvolume αi. Substituting Equation (3) into Equa-

tion (4) allows 𝝈𝝈𝑖𝑖 to be expressed in terms of 𝜺𝜺𝑖𝑖: 

𝝈𝝈𝑖𝑖 = ∑ 𝑣𝑣𝛼𝛼𝑖𝑖
𝑁𝑁𝛼𝛼𝑖𝑖
𝛼𝛼𝑖𝑖=1

𝑪𝑪𝑖𝑖
(𝛼𝛼𝑖𝑖)𝑨𝑨𝑖𝑖

(𝛼𝛼𝑖𝑖)𝜺𝜺𝑖𝑖, (5) 

The effective elastic constitutive equation at Level i is given by: 
𝝈𝝈𝑖𝑖 = 𝑪𝑪𝑖𝑖∗𝜺𝜺𝑖𝑖, (6) 

where 𝑪𝑪𝑖𝑖∗ is the effective stiffness tensor at Level i. By comparing Equations (5) and (6), 
𝑪𝑪𝑖𝑖∗ is given by: 

𝑪𝑪𝑖𝑖∗ = ∑ 𝑣𝑣𝛼𝛼𝑖𝑖
𝑁𝑁𝛼𝛼𝑖𝑖
𝛼𝛼𝑖𝑖=1

𝑪𝑪𝑖𝑖
(𝛼𝛼𝑖𝑖)𝑨𝑨𝑖𝑖

(𝛼𝛼𝑖𝑖), (7) 

In MsRM, the scales are linked by equilibrating the homogenized average stress, 
strain, and stiffness tensors at Level i to the local stress, strain, and stiffness tensors of a 
given subvolume at Level i−1 (with appropriate transformation to account for the poten-
tial coordinate system change from scale to scale). That is: 

𝜺𝜺𝑖𝑖 = 𝑻𝑻2𝑖𝑖 𝜺𝜺𝑖𝑖−1
(𝛼𝛼𝑖𝑖−1), 𝝈𝝈𝑖𝑖 = 𝑻𝑻2𝑖𝑖 𝝈𝝈𝑖𝑖−1

(𝛼𝛼𝑖𝑖−1), 𝑪𝑪𝑖𝑖∗ = 𝑻𝑻4𝑖𝑖 𝑪𝑪𝑖𝑖−1
(𝛼𝛼𝑖𝑖−1), 𝑖𝑖 = 1, … ,𝑘𝑘, (8) 

where 𝑻𝑻2𝑖𝑖  and 𝑻𝑻4𝑖𝑖  are the appropriate second- and fourth-order coordinate transfor-
mation tensors, respectively. Hence, it is clear that starting with the lowest-scale (k) mi-
crostructure (see Figure 4), whose subvolumes contain only monolithic materials, the ef-
fective stiffness tensor can be calculated using any standard micromechanical theory. This 
stiffness tensor (after appropriate coordinate transformation) then represents the homog-
enized material occupying one of the subvolumes within a composite material at the next 
higher length scale. Given the transformed effective stiffness tensors of all subvolumes at 
this next higher length scale, the effective stiffness tensor of the composite at this level can 
be determined. This stiffness tensor can then be transformed and passed along to the next 
higher length scale and the process repeated until the highest length scale considered (0) 
is reached. 

As an example, for an MsRM analysis considering three length scales (0, 1, and 2), 
the overall effective stiffness tensor can be written using Equations (7) and (8) as: 

𝑪𝑪0∗ = ∑ 𝑣𝑣𝛼𝛼0𝛼𝛼0 �(𝑻𝑻41)−1 ∑ 𝑣𝑣𝛼𝛼1𝛼𝛼1 �(𝑻𝑻42)−1 ∑ 𝑣𝑣𝛼𝛼2𝑪𝑪2
(𝛼𝛼2)𝑨𝑨2

(𝛼𝛼2)
𝛼𝛼2 �

(𝛼𝛼1)
𝑨𝑨1

(𝛼𝛼1)�
(𝛼𝛼0)

𝑨𝑨0
(𝛼𝛼0), (9) 
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Superscripts on the bracketed terms are used to indicate that all variables within the 
brackets are functions of the subvolume indices from the next higher length scale. This 
includes lower scale volume fractions and subvolume indices. This notation is adopted to 
fully define the subvolume at a given scale as a function of its lower length-scale contri-
butions. For example, the Level 2 effective stiffness tensor, from Equation (8), can be writ-
ten as: 

�[𝑪𝑪2∗ ](𝛼𝛼1)�(𝛼𝛼0) = �[𝑻𝑻42](𝛼𝛼1)�(𝛼𝛼0)�𝑪𝑪1
(𝛼𝛼1)�

(𝛼𝛼0)
, (10) 

where there are distinct 𝑪𝑪2∗  values for every Level 1 subvolume and distinct Level 1 com-
posites present within each Level 0 subvolume. 

In addition to multiscale homogenization, multiscale localization of the stress and 
strain tensors can be performed with MsRM. Multiscale localization is required to obtain 
local fields for handling damage (and inelasticity). For the previously described example 
with three length scales, the local strain tensor in an arbitrary Level 2 subvolume is ex-
pressed using Equations (1) and (8) as: 

��𝜺𝜺2
(𝛼𝛼2)�

(𝛼𝛼1)
�

(𝛼𝛼0)
= ��𝑨𝑨2

(𝛼𝛼2)�
(𝛼𝛼1)

�
(𝛼𝛼0)

�[𝑻𝑻22](𝛼𝛼1)�(𝛼𝛼0)�𝑨𝑨1
(𝛼𝛼1)�

(𝛼𝛼0)
{𝑻𝑻21}(𝛼𝛼0)𝑨𝑨0

(𝛼𝛼0)𝜺𝜺0, (11) 

Again, superscripts on the bracketed terms are used to indicate that all variables 
within the brackets are a function of the subvolume indices from the next higher length 
scale. This procedure can be repeated to determine the strain tensor for any subvolume at 
any length scale. The stress tensor can be found by simply using the strain tensor, along 
with the constitutive relationship given by Equation (2), at the appropriate length scale. 
Note that the MsRM implementation in NASMAT accounts for the influence of thermal 
and inelastic strains, but these additional effects are omitted from this section for simplic-
ity. Since MsRM can seamlessly incorporate multiple length scales into a single analysis, 
it is ideal for the multiscale modeling of materials such as 3D woven composites that ex-
hibit identifiable microstructures across multiple length scales. 

2.3.2. Crack-Band Progressive Damage Model 
While fiber filament failure was modeled as sudden (brittle) at the lowest level con-

sidered (maximum stress criteria, with failure properties given in Section 2.3.3), the crack-
band model allows the matrix to be progressively damaged [27]. Herein, the crack-band 
model was applied at the lowest, constituent level for the resin matrix material. This ver-
sion of the theory assumes that the crack band is aligned normal to the local material co-
ordinates as opposed to being aligned normal to the direction of maximum principal 
stress, as in ref. [28]. 

The mixed-mode traction–separation law for the crack-band model follows the for-
mulation in ref. [29]. For complete details on the current implementation, the reader is 
referred to ref. [7]. Quadratic failure criteria are utilized to initiate a crack band within the 
subvolume for a monolithic matrix material (𝛼𝛼𝑚𝑚): 

�〈𝜎𝜎11
(𝛼𝛼𝑚𝑚)〉
𝑋𝑋𝑚𝑚

�
2

+ �𝜏𝜏12
(𝛼𝛼𝑚𝑚)

𝑌𝑌𝑚𝑚
�
2

+ �𝜏𝜏13
(𝛼𝛼𝑚𝑚)

𝑌𝑌𝑚𝑚
�
2

≥ 1,  

�〈𝜎𝜎22
(𝛼𝛼𝑚𝑚)〉
𝑋𝑋𝑚𝑚

�
2

+ �𝜏𝜏12
(𝛼𝛼𝑚𝑚)

𝑌𝑌𝑚𝑚
�
2

+ �𝜏𝜏23
(𝛼𝛼𝑚𝑚)

𝑌𝑌𝑚𝑚
�
2

≥ 1, (12) 

�〈𝜎𝜎33
(𝛼𝛼𝑚𝑚)〉
𝑋𝑋𝑚𝑚

�
2

+ �𝜏𝜏13
(𝛼𝛼𝑚𝑚)

𝑌𝑌𝑚𝑚
�
2

+ �𝜏𝜏23
(𝛼𝛼𝑚𝑚)

𝑌𝑌𝑚𝑚
�
2

≥ 1,  

where damage initiation is related to the normal (𝑋𝑋𝑚𝑚) and shear (𝑌𝑌𝑚𝑚) matrix cohesive 
strengths and 〈 〉 are the Macaulay brackets. These normal and shear strengths are nu-
merical parameters and may not necessarily be related to those obtained from 
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experiments. The mixed-mode traction, tM, is related to an equivalent mixed-mode strain, 
εM, through a triangular mixed-mode traction–strain law, as depicted in Figure 5. 𝜀𝜀𝑀𝑀0  and 
𝑡𝑡𝑀𝑀0  are the mixed-mode strain and traction, respectively, when damage initiates, and 𝜀𝜀𝑀𝑀

𝑓𝑓  
is the mixed-mode failure strain. The orientation of the crack band can be used to deter-
mine the relationship between the tractions and the material stresses 𝝈𝝈(𝛼𝛼𝑚𝑚) [7]. The dam-
aged compliance matrix 𝑺𝑺(𝛼𝛼𝑚𝑚), where 𝜺𝜺(𝛼𝛼𝑚𝑚) = 𝑺𝑺(𝛼𝛼𝑚𝑚)𝝈𝝈(𝛼𝛼𝑚𝑚), is expressed in terms of the sca-
lar damage variable, DM. For instance, assuming that the crack band initiated normal to 
the x1 direction (as governed by the first inequality in Equation (12)), the affected compo-
nents of the compliance matrix would be: 

   

𝑆𝑆11
(𝛼𝛼𝑚𝑚) =

𝜀𝜀11
(𝛼𝛼𝑚𝑚) − 𝜐𝜐

𝐸𝐸 �𝜎𝜎22
(𝛼𝛼𝑚𝑚) + 𝜎𝜎33

(𝛼𝛼𝑚𝑚)�

𝐸𝐸𝐷𝐷𝑀𝑀𝜀𝜀11
(𝛼𝛼𝑚𝑚)

𝑆𝑆55
(𝛼𝛼𝑚𝑚) = 𝑆𝑆66

(𝛼𝛼𝑚𝑚) =
1

𝐺𝐺𝐺𝐺𝑀𝑀

, (13) 

where E and G are the undamaged Young’s and shear moduli, respectively, and ν is the 
Poisson ratio for an isotropic material. If damage is initiated according to one of the other 
inequalities in Equation (12), then the appropriate compliance matrix, strain, and stress 
components must be used (Equation (13)). 

Assuming the triangular mixed-mode traction–strain law, as shown in Figure 5, DM 
can be calculated by: 

𝐷𝐷𝑀𝑀 =
𝜀𝜀𝑀𝑀
0 �𝜀𝜀𝑀𝑀

𝑓𝑓 −𝜀𝜀𝑀𝑀�

𝜀𝜀𝑀𝑀�𝜀𝜀𝑀𝑀
𝑓𝑓 −𝜀𝜀𝑀𝑀

0 �
, (14) 

 
Figure 5. Mixed-mode traction–strain law used to govern local crack-band damage. 

The final strain energy release rate, upon complete failure, is governed by the follow-
ing mixed-mode law: 

� 𝐺𝐺𝐼𝐼
𝐺𝐺𝐼𝐼𝐼𝐼
� + � 𝐺𝐺𝐼𝐼𝐼𝐼

𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼
� = 1, (15)  

where GI and GII are the mode-I and mode-II-strain energy-release rates of the material, 
respectively. GIC and GIIC, which are input properties, are the mode-I and mode-II fracture 
toughnesses of the material. Since the behavior of microcracks under mode-III conditions 
is still an active area of research, it is assumed in Equation (15) that the matrix has no 
fracture resistance under mode-III cracking similar to ref. [29]. GI and GII are calculated as: 
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𝐺𝐺𝐼𝐼 = 𝑙𝑙𝑐𝑐 ∫ 𝑡𝑡𝐼𝐼𝑑𝑑𝜀𝜀𝐼𝐼 , (16) 

𝐺𝐺𝐼𝐼𝐼𝐼 = 𝑙𝑙𝑐𝑐 ∫ 𝑡𝑡𝐼𝐼𝐼𝐼𝑑𝑑𝛾𝛾𝐼𝐼𝐼𝐼 , (17) 

where 𝑡𝑡𝐼𝐼 and 𝑡𝑡𝐼𝐼𝐼𝐼 are the mode-I and mode-II crack-band tractions, respectively, and 𝜀𝜀𝐼𝐼 
and 𝛾𝛾𝐼𝐼𝐼𝐼 are the mode-I (normal) and mode-II (shear) crack-band strains, respectively. GI 
and GII are related to the mode-specific traction–strain history and a characteristic length, 
lc. The total area under the mixed-mode traction–strain curve (Figure 5) is governed by 
Equation (15). 

If the physics of the micromechanical model being employed cause the damage to 
localize to the size of the geometric discretization (as in finite-element analysis and 
HFGMC [26]), the actual discretization geometry should be used aslc. That is, the charac-
teristic length should be set equal to the element or subcell dimension normal to the crack 
band. This will regulate the total energy dissipated and minimize pathological mesh-de-
pendence [28]. The crack-band implementation within NASMAT contains an option to 
automatically link the characteristic length to the subcell dimensions in a consistent man-
ner across the length scales. However, for micromechanical models that do not exhibit 
mesh-dependence and damage localization (such as the Mori–Tanaka method and GMC), 
the characteristic length may be treated as a material parameter. This latter approach has 
been taken herein, where the GMC micromechanical model is used at the lowest level, 
where the crack-band model is active. The effect of the lc parameter on the predicted 3D 
woven-composite behavior will be examined. 

2.3.3. Multiscale 3D Woven-Composite Model 
The multiscale 3D woven-composite RUC is depicted in Figure 6, both with and with-

out the pure matrix regions included. While this is a fairly coarse representation of the 
RUC, the key features of the woven-composite microstructural geometry have been cap-
tured. These include the ratio and sizes of the warp and weft tows and the difference be-
tween the binder-tow cross-section at the surface and as it traverses through the thickness 
of the composite. For reference purposes, the through-thickness (TT), weft, and warp ma-
terial directions are aligned with the NASMAT global x1, x2, and x3 coordinate axes, re-
spectively. 
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(a) 

 
(b) 

Figure 6. Three-dimensional woven-composite RUC showing the warp tows (yellow), weft tows 
(green), binder tows (blue), and pure matrix regions (red). (a) All materials. (b) Pure matrix regions 
removed. 

Figure 7 shows schematically the full MsRM multiscale model for the 3D woven com-
posite. Level 4 refers to the lowest length scale considered in the composite—that of the 
individual fibers and the matrix within the tows. These are homogenized to represent the 
tows using a 2 × 2 GMC RUC with a fiber volume fraction of 0.672 (as shown with a blue 
fiber and red matrix at Level 3 in Figure 7). At Level 3, the tows and the pure matrix re-
gions between the tows are homogenized as through-thickness stacks, which is part of the 
double-homogenization procedure typically employed to compensate for the lack of 
shear–normal coupling in GMC when modeling woven composites [7]. Additionally, the 
appropriate fiber tow orientations are included in Level 3 RUCs. This results in a doubly 
periodic model at Level 1, where each through-thickness stack from Level 2 is depicted as 
a unique, anisotropic subcell. At this level, the HFGMC micromechanical model has been 
employed, which has been shown to give much more realistic in-plane shear predictions 
compared to GMC [25]. Finally, at the global scale, Level 0 represents the effective nonlin-
ear response of the composite as the homogenized RUC behavior. Note that localization 
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down the scales must also occur for every iteration at each increment of the applied load-
ing, as damage occurs at the lowest levels (3 and 4) based on the local stresses, and the 
effect of the damage on the elastic properties is then homogenized up the scales.  

 
Figure 7. NASMAT multiscale modeling strategy for the 3D woven composite involving five levels. 

The binder-tow disbonding discussed in Section 2.2.1 was incorporated along the 
binder tows, as shown in Figure 8. A number of thin subcells were added to either side of 
the through-thickness binder tows on the faces normal to the warp direction. This approx-
imated the observed binder-tow disbonds shown in Figure 3. These disbond subcells are 
assigned a very low stiffness (matrix stiffness divided by 106) for all components. Note 
that, because these subcells have very thin dimensions in the weft direction, they would 
be expected to have a minimal impact on the weft-direction response. 

As an approximation of the weft-fiber waviness discussed in Section 2.2.1, all of the 
weft tows were assigned an in-plane angle, with alternating columns of weft tows as-
signed 1.5° and −1.5°. Recall that this is roughly the average weft-fiber angle measured 
from the X-ray CT data. This is clearly a simplification of the actual complex weft-fiber 
waviness shown in Figure 3. However, it should still capture the first-order effects of the 
waviness, as every weft tow in the model contains an imperfect angle, which is clearly 
reflected in the microstructural observations. 

Finally, the constituent material properties employed for the RTM6 resin (treated as 
isotropic) and the IM7 fiber (treated as transversely isotropic) are given in Table 1. In the 
table, the transversely isotropic fiber properties are defined by the axial Young’s modulus, 
E11, the transverse Young’s modulus, E22, the axial shear modulus, G12, the axial Poisson 
ratio, ν12, and the transverse Poisson ratio, ν23. X, Y, and Z represent unique tensile, com-
pressive, and shear strength components, respectively. Subscripts f and m are used to de-
note fiber and matrix properties, respectively. 
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Figure 8. Binder tows isolated from the 3D woven-composite RUC, with dark blue indicating the 
locations of the subcells representing the binder-tow disbonds (see Figure 6). Note that the thick-
nesses of these disbond subcells have been exaggerated in this figure to make the disbonds visible. 

Table 1. Material properties employed for the IM7 fiber and RTM6 resin within the 3D woven-com-
posite model. 

IM7 Carbon Fiber [26] RTM6 Epoxy Resin  
Property Value  Property Value  Source 
E11f (GPa) 262.2 E (GPa) 2.755  [40] 
E22f (GPa) 11.8 ν 0.38 [40] 
G12f (GPa) 18.9 Xm (MPa) 87 [40] 

ν12f 0.17 Ym (MPa) 76.1 [40] 
ν23f 0.21 GIC (N-mm/mm) 0.216  [19] 

X11f (MPa) 4335 GIIC (N-mm/mm) 0.857  [19] 
X22f (MPa) 113    
Y11f (MPa) 2608    
Y22f (MPa) 354    
Z12f (MPa) 138    
Z23f (MPa) 128    

3. Experimental Results 
3.1. Geometic Characterization 

From acid-digestion testing, the mean overall 3D woven-composite fiber volume 
fraction was calculated to be 0.48 (0.01 standard deviation), and the mean void volume 
fraction was calculated to be 0.017 (0.003 standard deviation). Note that simulations were 
conducted in which diffuse matrix voids were included (although not shown herein), and 
it was found that such a low volume fraction of voids had a negligible effect on the com-
posite response (see ref. [6] for details about void modeling). As such, voids were not in-
cluded in the models presented in this work. 
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As mentioned in Section 2.2.1, a number of key dimensions were identified and meas-
ured from the X-ray CT data for use in the model RUC. These data are shown in Figure 9, 
with the means and standard deviations given in Table 2. Note that, aside from binder-
tow measurements at the TT transition region, the measured tow widths and heights are 
similar. 

 
Figure 9. Histograms based on measurements extracted from X-ray CT images. 

Table 2. Three-dimensional woven-composite RUC geometric dimensions, as measured from X-ray 
CT images. 

Variable Description 
Mean  
(mm) 

Standard De-
viation 
(mm) 

WaW Warp-tow width 1.108 0.068 
WaH Warp-tow height 0.186 0.022 
WeW Weft-tow width 1.186 0.118 
WeH Weft-tow height 0.202 0.026 
BWf Binder-tow width (flat region) 1.171 0.081 
BHf Binder-tow height (flat region) 0.174 0.017 
BWz Binder-tow width (TT region) 0.501 0.105 
BHz Binder-tow height (TT region) 0.413 0.052 

Figure 10a contains a representative SEM image of a fiber tow, while Figure 10b 
shows a segmented image. The fiber volume fraction results are given in Table 3, and a 
histogram of the data is shown in Figure 11. As shown, the mean fiber volume fraction 
values in the warp and weft tows were quite similar, so these data were combined to ar-
rive at a mean tow-fiber volume fraction of 0.672, which was used for all tows (including 
the binder) in the model of the 3D woven-composite RUC. 
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(a) (b) 

Figure 10. Exemplary (a) SEM image from inside a tow and (b) segmentation of the same SEM image 
to enable determination of the fiber volume fraction (blue—fiber; black—matrix). 

 
Figure 11. Histogram of fiber volume fractions based on segmented SEM images of the warp and 
weft tows within the 3D woven composite. 

The dimensions associated with the geometry given in Table 2 were maintained and 
resulted in an overall fiber volume fraction for the 3D woven composite of 0.473 (vs. a 
mean value of 0.48 measured with acid digestion) when using a measured fiber volume 
fraction of 0.672 (see Table 3) within the tows. 

Table 3. SEM image segmentation results for the fiber volume fraction (Vf) within the warp and 
weft tows of the 3D woven composite. 

 Number of  
Measurements Mean Vf Vf Standard  

Deviation 
Warp Tows 66 0.6705 0.0249 
Weft Tows 54 0.6738 0.0876 
Combined 120 0.6720 0.0617 
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3.2. Warp and Weft Tensile and In-Plane Shear Tests 
The results from the in-plane tensile and shear tests are shown in Figure 12 and Ta-

bles 4, 5 and 6. Figure 12a shows four warp and three weft tensile stress–strain curves, 
while Figure 12b shows three in-plane shear stress–strain curves. Some DIC data were not 
available near the end of the tensile tests and, as such, the plotted stress–strain curves 
terminated at a slightly lower stress than the measured ultimate tensile strengths (UTSs). 

As expected, the weft-direction tensile modulus was greater than that for the warp 
direction because there are more weft tows than warp tows in the composite (and thus 
there are more fibers aligned with the weft direction). However, while the weft tensile 
modulus is approximately 20% higher than the warp (Tables 4 and 5), the UTSs are com-
parable (weft average UTS = 922 MPa, warp average UTS = 902 MPa), with a difference of 
only 2%. 

The in-plane shear stress–strain curves shown in Figure 9b indicate a much more 
ductile response compared to the warp and weft tensile curves. The tests progressed to 
very large shear strain values, although the physical strain gauges failed earlier, while the 
DIC strain measurements were able to continue. These shear tests also did not result in 
complete failure of the specimens. Furthermore, the V-notched rail shear test standard 
[39] indicates that these tests are only valid up to an engineering shear strain of 5%. As 
such, past this point, it is likely that the results shown are not reliable as material data. As 
indicated in Table 6, rather than shear strength, the shear stress at an engineering shear 
strain level of 5% is reported. 
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(a) 

 
(b) 

Figure 12. Three-dimensional woven-composite test data. (a) Four warp tensile tests and three weft 
tensile tests (DIC data only). (b) Four in-plane V-notched rail shear tests, with both physical strain 
gauge and DIC virtual strain gauge data shown. 

Table 4. Warp-direction tensile-test tensile modulus and strength data. 

 
Strain Gauge 

Tensile Modulus 
(GPa)  

DIC 
Tensile Modulus 

(GPa) 

Strength 
(MPa) 

 58.066 57.549 915 
 58.497 56.173 892 
 59.778 56.537 906 
 58.575 57.864 871 
 58.960 - 924 

Avg. 58.775 57.031 902 
St. Dev. 0.644 0.805 21 
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Table 5. Weft-direction tensile-test tensile modulus and strength data. 

 
Strain Gauge 

Tensile Modulus 
(GPa)  

DIC 
Tensile Modulus 

(GPa) 

Strength 
(MPa) 

 67.754 - 970 
 67.088 68.137 933 
 66.680 - 905 
 69.624 70.919 894 
 69.198 70.481 909 

Avg. 68.069 69.846 922 
St. Dev. 1.293 1.496 30 

Table 6. In-plane shear-test shear modulus and shear stress at 5% strain data. 

 
Strain Gauge 

Shear Modulus 
(GPa)  

Shear Stress at 5% Strain 
(MPa) 

 3.369 71.881 
 3.425 72.802 
 3.271 71.360 
 3.326 71.808 

Avg. 3.348 71.968 
St. Dev. 0.065 0.599 

4. Multiscale Modeling Results and Discussion 
Predictions of the nonlinear tensile and in-plane shear stress–strain responses for the 

3D woven composite were made while varying the characteristic length parameter, lc. The 
impact of including manufacturing-induced disbonding binder tows was examined, fol-
lowed by the presentation of simulations that included the observed waviness of the weft 
tows. Finally, the predicted responses were compared with the experimental data. 

To highlight the effects of the characteristic length parameter on the response of the 
materials that make up the 3D woven composite, Figure 13 shows how this parameter 
affects the tensile and shear responses of the RTM6 matrix material, as well as the 3D 
woven-composite tows, which are effectively analogous to a unidirectional composite. As 
discussed above, a simple 2 × 2 subcell GMC RUC, with a fiber volume fraction of 0.672, 
was used to model the tows. 

Figure 13a, which displays the tensile response of the neat resin material and the 
transverse tensile response of the tow, shows that increasing lc leads to a more brittle re-
sponse as the softening slope of the stress–strain response increases. The tow is modeled 
by an RUC that includes a brittle fiber (which, recall, is not subject to the crack-band 
model), and its response is thus much more brittle than that of the neat resin. The changing 
slopes in the tow stress–strain curves are due to different regions (subcells) of the matrix 
being damaged at different times. 

In Figure 13b, in addition to the neat resin shear response (which is isotropic), both 
axial (σ12, with x1 as the fiber direction) and transverse (σ23) shear stress–strain curves are 
shown. As there are warp, weft, and binder tows in the 3D woven composite, the various 
tows will be subjected to predominantly transverse or axial shear stresses. Figure 13b 
shows that, again, increasing lc leads to a more brittle response, but because the applied 
shear loading results in mode-II-dominated simulated damage, the responses are consid-
erably less brittle compared to the tensile loading in Figure 13a. This is because the mode-
II fracture toughness is approximately four times greater than that in mode-I (see Table 
1). Despite the fact that the characteristic length was varied, the mode-I and mode-II 
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fracture toughnesses (areas under the traction–separation curves) were preserved in the 
crack-band model, according to the mixed-mode law in Equation (15). 

It should also be noted that the responses shown in Figure 13 were generated by ap-
plying a monotonically increasing uniaxial strain. In contrast, when the resin and tow are 
in situ within the 3D woven-composite RUC, the loading is applied at the global scale and 
the local strains will be multiaxial and nonproportional during a simulation. That is, for 
instance, at a given point in the 3D woven composite, at a given applied global load, dam-
age may progress significantly (e.g., local strain increasing as local stress decreases) as the 
model iterates. Thus, although the stress–strain curves in Figure 13 are reasonably contin-
uous, one should not expect the global response of the 3D woven composite to be similarly 
free of sharp discontinuities. 

 
(a) 

 
(b) 

Figure 13. Neat resin and tow (as represented by a 2 × 2 GMC RUC, vf = 0.672) responses based on 
the material properties given in Table 6 and different values of the characteristic length, lc. (a) Trans-
verse tensile response. (b) Shear response. 

4.1. Effect of Binder-Tow Disbonds 
As described previously, pre-existing binder-tow disbonds, as shown in Figure 6, 

were incorporated within the multiscale model of the 3D woven composite, as shown in 
Figure 12, as thin subcells with very low stiffnesses. Figure 14 shows the predicted warp 
and weft tensile stress–strain curves, along with the predicted in-plane shear responses, 
for different values of the characteristic length parameter, lc, both with and without the 
binder-tow disbonding. From Figure 14a, it is clear that both the disbonding and the 
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choice of lc have very minimal effects on the warp and weft tensile bahavior. This can also 
be seen in Tables 7 and 8, which show the predicted orthotropic effective elastic properties 
of the woven composite and the predicted warp- and weft-direction ultimate tensile 
strengths (UTSs). Eij, Gij, and νij denote individual Young’s moduli, shear moduli, and Pois-
son ratios, respectively. Note that the effective elastic properties are independent of lc, 
which affects the predictions only after damage initiation (see Figure 13). As a result of 
the continuous tows oriented in both the warp and weft directions, the global tensile re-
sponse in these directions is fairly brittle (with final failure occurring due to fiber failure). 
Damage does occur well before the UTS; however, its effect on the global stiffness of the 
composite is relatively minor. 

It may be somewhat surprising that the warp direction shows such insensitivity to 
the binder-tow disbonding, as the disbonding is normal to the warp loading direction. 
However, the TT portions of the binder tows (which are disbonded) are oriented normal 
to the warp direction and thus do not contribute much to the composite stiffness. Further-
more, by examining the pristine warp tensile response curves in Figure 14a, it can be seen 
that the disbonded simulations are elastically slightly more compliant. At a stress of ap-
proximately 400 MPa (strain of 0.007), there is a slight jog in the pristine curves that 
slightly reduces their stiffness and causes these curves to align closely with the disbonded 
binder responses. This jog is caused by damage initiated in portions of the binder tows 
and it appears to reduce the stiffness by a similar amount to the disbonding. 

In contrast to the fairly brittle predicted tensile response, as shown in Figure 14b, the 
3D woven composite’s predicted in-plane shear response is very ductile. Both the choice 
of lc and the presence of the binder disbond have a major impact on the predicted re-
sponse. This can also be seen in Tables 7 and 8. The in-plane shear modulus, G23, is reduced 
by 8.1% by the binder-tow disbond, and the shear stress at 5% strain is significantly dif-
ferent as well. The binder disbond results in significanly lower stress after damage has 
been initiated, as do higher lc values, although the effect of lc is less than that of the binder-
tow disbond. Note that, as was the case in the experiments (see Figure 12b), the shear 
predictions do not exhibit complete failure or a large stress drop. Rather, the strains be-
come quite large as the damage continues to accumulate. Note that the shear stress at 5% 
strain is dependent on the damage-event sequence (i.e., the jaggedness of the stress–strain 
curves), and, as such, the trend in the data in Table 8 is not consistent. 
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(a) 

 
(b) 

Figure 14. Predicted in-plane nonlinear stress–strain responses of the 3D woven composite for dif-
ferent values of the characteristic length, lc. (a) Warp and weft tension. (b) In-plane shear. 

Table 7. Predicted effective elastic properties of the 3D woven composite with and without binder-
tow disbonds (1—TT; 2—weft; 3—warp). 

 Pristine  
Disbonded Binder 

Tow Difference 

E11 (GPa) 8.51 8.46 −0.6% 
E22 (GPa) 68.9 68.9 0% 
E33 (GPa) 59.2 58.5 −1.2% 
G23 (GPa) 2.71 2.49 −8.1% 
G13 (GPa) 1.88 1.72 −8.5% 
G12 (GPa) 1.95 1.94 −0.5% 

ν23 0.0315 0.0291 −7.6% 
ν13 0.0492 0.0483 −1.8% 
ν12 0.0411 0.0410 −0.2% 
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Table 8. Predicted warp and weft UTSs and in-plane shear stresses at 5% strain as functions of the 
specified characteristic length, 𝑙𝑙𝑐𝑐, with and without binder-tow disbonds. 

 lc (mm) Warp UTS 
(MPa)  

Weft UTS 
(MPa) 

In-Plane Shear 
Stress at 5% 
Strain (MPa) 

Pristine 0.008 782 1110 36.7 
 0.02 780 1107 65.2 
 0.05 781 1092 57.2 

Disbonded 0.008 781 1109 48.2 
Binder 0.02 788 1107 49.0 
Tow 0.05 780 1091 41.9 

4.2. Effect of Weft-Tow Waviness 
Figure 15 shows predicted stress–strain curves for warp, weft, and in-plane shear 

loading for the pristine model and models accounting for misaligned weft tows (with and 
without binder-tow disbonds) with increasing lc. Predicted effective properties and 
strengths are shown for these models in Table 9 and Table 10, respectively. For warp-
direction loading (Figure 15a), there is little difference between the curves, similar to the 
results shown in Figure 14a, and only a slight difference in the UTSs (Table 10). However, 
for the weft-direction loading (Figure 15b), the strength significantly decreased with in-
creasing lc for models containing misaligned weft tows. For instance, the weft-direction 
UTS for misaligned weft tows without disbonds decreased from 1111 MPa to 912 MPa as 
lc increased from 0.008 to 0.05 (Table 10). Similar values were obtained for the misaligned 
weft-tow case with disbonds included as well, as shown in Table 10. In these cases, the 
slight misalignment appeared to make the weft tensile behavior more sensitive to the non-
linear matrix behavior, which was affected significantly by lc. The trends in the weft stress–
strain curves thus followed the trends shown in Figure 13 based on the choice of lc. 

The in-plane shear-response predictions in Figure 15 show that weft-tow misalign-
ment has a relatively minor effect. The in-plane shear stiffness increases slightly (by 1.3%; 
see Table 9), and the stress–strain curves are slightly higher than the pristine curves just 
after damage initiation (strains between 0.015 and 0.025). In Table 10, once again, because 
the shear stress at 5% strain is dependent on the damage-event sequence, the trend in 
these data is not consistent. 

When the slight weft-tow misalignment was added, overall, the effective properties 
were not significantly different from those in the pristine case (Table 9). However, when 
disbonds were added, most of the effective properties were reduced, with noticeable de-
creases in G23, G13, and ν23. This response was consistent with that of the pristine model 
with and without disbonds (Table 7). 
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Figure 15. Predicted stress–strain curves for (a) warp, (b) weft, and (c) in-plane shear loading for 
pristine, weft-misaligned, and weft-misaligned-with-disbond models. 
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Table 9. Predicted effective elastic properties of the 3D woven composite with and without weft-
tow misalignment, in addition to binder-tow disbonds (1—TT; 2—weft; 3—warp). 

 Pristine  
Weft  

Misalignment 
Difference  
vs. Pristine 

Weft Misalignment  
and Binder Disbond 

Difference 
vs. Pristine 

E11 (GPa) 8.51 8.52 0.1% 8.46 −0.6% 
E22 (GPa) 68.9 67.9 −1.5% 67.8 −1.6% 
E33 (GPa) 59.2 59.3 0.2% 58.6 −1.0% 
G23 (GPa) 2.71 2.75 1.3% 2.52 −7.0% 
G13 (GPa) 1.88 1.89 0.5% 1.73 −8.0% 
G12 (GPa) 1.95 1.95 0% 1.95 0% 

ν23 0.0315 0.0320 1.6% 0.0296 −6.3% 
ν13 0.0492 0.0491 −0.2% 0.0482 −2.0% 
ν12 0.0411 0.0418 1.7% 0.0416 1.2% 

Table 10. Predicted warp and weft UTSs and in-plane shear stresses at 5% strain as functions of the 
specified characteristic length, lc, with and without tow misalignment, in addition to binder-tow 
disbonds. 

 lc (mm) 
Warp UTS 

(MPa)  
Weft UTS 

(MPa) 

In-Plane Shear 
Stress at 5% 
Strain (MPa) 

Pristine 0.008 782 1110 36.7 
 0.02 780 1107 65.2 
 0.05 781 1092 57.2 

Misaligned Weft 0.008 782 1111 62.9 
Tows 0.02 781 985 46.8 

 0.05 775 912 41.3 
Misaligned Weft  0.008 782 1111 48.7 
Tows and Binder 0.02 781 974 44.0 

Disbond 0.05 783 894 73.5 

4.3. Correlations with Test Data 
Figure 16 compares the in-plane tensile and shear test data with the model results for 

the misaligned weft tows with no disbonding, including the different values of lc. The 
elastic properties and strengths are compared in Tables 11 and 12. The model did an ex-
cellent job of predicting the warp and weft tensile moduli, which were within 5% of the 
test-data averages. The warp UTS was underpredicted by approximately 13% across all 
values of lc. Note that the warp UTS was observed to be insensitive not only to lc but also 
to the presence of binder-tow disbonds and weft-tow misalignment. As such, further in-
vestigation of both the test and model results is needed to fully understand this discrep-
ancy. In contrast, the weft UTS sensitivity to lc in the presence of weft-tow misalignment 
enabled the weft UTS predictions to improve considerably with increasing lc. With lc val-
ues of 0.02 mm and 0.05 mm, the weft UTS predictions bounded the test data, with both 
predictions within 7%. 

Figure 16b shows that, while the model was able to capture the general, less brittle 
character of the in-plane shear response, it significantly underpredicted the in-plane shear 
modulus and shear stress at 5% strain. Regardless of the value of lc, the in-plane shear 
stress–strain curves were also underpredicted. It should be noted that the model’s only 
nonlinear deformation mechanism is stiffness-reduction damage, whereas other nonlin-
ear mechanisms (e.g., plasticity, viscoelasticity) could be present in shear tests. Addition-
ally, model refinement could improve the in-plane shear predictions, particularly if the 
actual geometry of the weft tows (i.e., their waviness) is accurately captured. 
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Figure 16. Predicted in-plane nonlinear stress–strain responses of the 3D woven composite for dif-
ferent values of the characteristic length, lc. (a) Warp and weft tension. (b) In-plane shear. 

Table 11. Comparison between test and predicted composite elastic properties. 

 Test Avg.  Model Difference 
Warp Tensile Modulus (GPa) 57.031 59.3 4.0% 
Weft Tensile Modulus (GPa) 69.846 67.9 −2.8% 

In-Plane Shear Modulus (GPa) 3.348 2.75 −17.9% 

Table 12. Comparison between test and predicted composite strength data. 

 Test Avg.  Model 
lc = 0.008 mm 

Difference Model 
lc = 0.02 mm 

Difference Model 
lc = 0.05 mm 

Difference  

Warp UTS (MPa) 902 782 −13.3% 781 −13.4% 775 −14.1%  
Weft UTS (MPa) 922 1111 20.5% 985 6.8% 912 −1.1%  

In-Plane Shear Stress 
at 5% Strain (MPa) 71.968 62.9 −12.6% 46.8 −35.0% 41.3 −42.6%  

5. Conclusions 
A multiscale progressive failure model for an IM7/6k carbon fiber–RTM6 epoxy 3D 

orthogonal woven composite has been presented. Based on the MsRM approach, the 
methodology employed considered the fiber and matrix constituents within the tows, as 
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well as the intertow matrix. The GMC and HFGMC micromechanical theories were used 
at different scales, while a crack-band progressive damage model was used for the matrix 
material. The model RUC dimensions and local fiber volume fractions were determined 
via measurements taken from X-ray CT and SEM images. Two key features observed in 
these images, binder-tow disbonding and weft-tow misalignment, were also incorporated 
into the models. 

Progressive damage simulations were conducted for applied warp and weft tensions, 
as well as applied in-plane shear stresses. Stiffness and strength predictions, along with 
full stress–strain curves, were compared for different values of the crack-band length-
scale parameter, lc, for cases with and without binder-tow disbonding and with and with-
out weft-tow misalignment. It was found that both the disbonding and the choice of lc had 
very minimal effects on the fairly brittle warp and weft tensile behavior. However, the 
simulated in-plane shear response, which was much more ductile, was quite sensitive to 
the choice of lc and the presence of the binder-tow disbonding. The impact of weft-fiber 
misalignment was small on the warp-direction tensile response and relatively minor on 
the in-plane shear response, but quite significant on the weft-direction tensile behavior. 
With the addition of the weft-tow misalignment, a strong influence of the choice of lc on 
the simulated weft-direction tensile response was observed, indicating that the misalign-
ment greatly enhanced the influence of the matrix nonlinearity.  

Finally, comparing the predictions with experimental data, it was shown that the 
model’s stiffness predictions were in very good agreement with the test data for in-plane 
tension, while the in-plane shear modulus was underpredicted to some extent. Tensile 
strength predictions were also reasonable, with the weft-tow misalignment enabling 
much-improved strength predictions for the weft direction. Most notable was the clear 
ability of the presented multiscale model to capture the fairly brittle response for in-plane 
tension, while also capturing the much more ductile in-plane shear response observed in 
the experiments. 
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Nomenclature 
Variable Description 

𝑨𝑨𝑖𝑖
(𝛼𝛼𝑖𝑖),𝑪𝑪𝑖𝑖

(𝛼𝛼𝑖𝑖) Strain concentration and stiffness tensors for subvolume αi, respectively 

𝑪𝑪𝒊𝒊∗ Effective stiffness tensor for an RUC at Level i  
BHf, BWf Binder-tow height and width, flat warp-aligned region, respectively 
BHz, BWz Binder-tow height and width, mid-thickness region, respectively 
DM Scalar damage variable 
E, G Undamaged matrix Young’s and shear moduli, respectively 
E11f, E22f, G12f, ν12f, ν23f Transversely isotropic fiber elastic constants 
E11, E22, E33 Orthotropic elastic Young’s moduli 
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G23, G13, G12 Orthotropic elastic shear moduli 
lc Characteristic length 
GI, GII Mode-I- and mode-II-strain energy-release rates, respectively 
GIC, GIIC Mode-I and mode-II fracture toughnesses, respectively 
𝑁𝑁𝛼𝛼𝑖𝑖 Total number of subvolumes  

𝑆𝑆(𝛼𝛼𝑚𝑚) Damaged compliance matrix 
𝑡𝑡𝐼𝐼, 𝑡𝑡𝐼𝐼𝐼𝐼 Mode-I and mode-II crack-band tractions, respectively 
tM, εM Mixed-mode traction and strain, respectively 
𝑡𝑡𝑀𝑀0 ,𝜀𝜀𝑀𝑀0  Mixed-mode traction and strain when damage initiates, respectively 

𝑻𝑻𝟐𝟐𝒊𝒊 ,𝑻𝑻𝟒𝟒𝒊𝒊  
Second- and fourth-order coordinate transformation tensors for RUC at 
Level i, respectively 

𝑣𝑣𝛼𝛼𝑖𝑖  Volume fraction of subvolume αi 

WaH, WaW Warp-tow height and width, respectively 
WeH, WeW Weft-tow height and width, respectively 
𝑋𝑋𝑚𝑚, 𝑌𝑌𝑚𝑚 Normal and shear cohesive strength (matrixes), respectively 
αi Subvolume located at Level i 

𝜺𝜺𝑖𝑖
(𝛼𝛼𝑖𝑖),𝝈𝝈𝑖𝑖

(𝛼𝛼𝑖𝑖) Subvolume αi strain and stress tensors, respectively 

𝜺𝜺𝑖𝑖,𝝈𝝈𝑖𝑖 Average strain and stress tensors for an RUC at Level i, respectively 
𝜀𝜀𝐼𝐼 , 𝛾𝛾𝐼𝐼𝐼𝐼 Mode-I and mode-II crack-band strains, respectively 
𝜀𝜀𝑀𝑀0 , 𝜀𝜀𝑀𝑀

𝑓𝑓  Mixed-mode damage initiation and failure strains, respectively 
𝜎𝜎𝑖𝑖𝑖𝑖

(𝛼𝛼𝑚𝑚), 𝜏𝜏𝑖𝑖𝑖𝑖
(𝛼𝛼𝑚𝑚) ii normal and ij shear stresses for matrix subvolume 𝛼𝛼𝑚𝑚, respectively 

ν Poisson ratio for isotropic matrix 
ν23,ν23,ν12 Orthotropic elastic Poisson ratios 
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