
Authoring, Analyzing, and Monitoring
Requirements for a Lift-Plus-Cruise Aircraft

Tom Pressburger1, Andreas Katis2, Aaron Dutle3, and Anastasia Mavridou2

1 NASA Ames Research Center, Moffett Field, CA, USA
2 KBR, NASA Ames Research Center, Moffett Field, CA, USA

3 NASA Langley Research Center, Hampton, VA, USA

Abstract. [Context & Motivation] Requirements specification and
analysis is widely applied to ensure the correctness of industrial sys-
tems in safety critical domains. Requirements are often initially written
in natural language, which is highly ambiguous, and as a second step
transformed into a language with rigorous semantics for formal analy-
sis. [Question/problem] In this paper, we report on our experience
in requirements creation and analysis, as well as run-time monitor gen-
eration using the Formal Requirement Elicitation Tool (FRET), on an
industrial case study for a Lift-Plus-Cruise concept aircraft. [Principal
ideas/results] We study the creation of requirements directly in the
structured language of FRET without a prior definition of the same
requirements in natural language. We focus on requirements describing
state machines and discuss the challenges that we faced, in terms of cre-
ating requirements and generating monitors. We demonstrate how realiz-
ability, i.e., checking whether a requirements specification can be imple-
mented, is crucial for understanding temporal interdependencies among
requirements. [Contribution] Our study is the first complete attempt
at using FRET to create industrial, realizable requirements and gener-
ate run-time monitors. Insight from lessons learned was materialized into
new features in the FRET and JKind analysis frameworks.

1 Introduction

The process of writing requirements for safety critical systems can be an ar-
duous task, as engineers need to avoid ambiguous semantics and ensure that
the resulting specification excludes unsafe system behavior. Formal specification
can help engineers overcome both obstacles, as requirements are translated into
unambiguous constructs using mathematical logic. Still, writing requirements
using a formal language is not straightforward, especially when the author lacks
a solid background in logical concepts. Furthermore, the analysis of such require-
ments can often leave engineers in a state of confusion. as they struggle with the
interpretation of both positive and negative results.

The Formal Requirements Elicitation Tool (FRET) [9] is an active, open-
source research project [1] developed at NASA Ames, providing a highly acces-
sible requirements engineering and analysis framework. It is designed so that

1



engineers with varying levels of experience in formal methods can express re-
quirements using structured natural language, observe their behavior through
interactive simulation, and analyze their correctness with respect to their realiz-
ability; i.e., answer whether a system implementation exists that is guaranteed
to conform to the given specification no matter the inputs received from its en-
vironment. The requirements can then be used to generate run-time monitors,
which are programs that detect the violation of a particular requirement dur-
ing the execution of the system. A tool chain beginning with FRET allows for
partially automatic generation of such monitors.

In this paper, we briefly present FRET (§ 2) and report our experience us-
ing it to author and analyze requirements (§ 4) for an industrial case study
on a Lift-Plus-Cruise concept aircraft (§ 3) as well as generate run-time mon-
itors (§ 5). There is a focus on formulating state machines using FRET. We
showcase challenges that we encountered, corresponding to common problems in
requirements engineering, from expressing said requirements, to checking their
realizability and actually interpreting the analysis results. We furthermore dis-
cuss how we were able to address issues, not only through the process of refining
the specification, but also in terms of improving existing features of FRET to
improve explainability of analysis results. This top-to-bottom study provided us
with valuable insights, which we describe through lessons learned (§ 6).

Related Work: Previous work explored using FRET for industrial-level case
studies, in cases where natural requirements specification already existed [20,6].
In contrast, in this paper we create requirements from informal diagrams and
incorporate realizability checking as part of the workflow. Similar studies have
been conducted in the past for other requirements specification tools. Previous
works in the RAT [24] SPECTRA [19] and LTSA [17] tools has showed how re-
quirements expressed in Linear Temporal Logic could be evolved, guided by the
results of consistency and realizability analysis in a Boolean setting. The EARS-
CTRL [18] tool provides a natural language, and its analysis for synthesizing
controllers is also in a Boolean setting. In comparison, requirements written in
FRET’s language can deal with linear arithmetic expressions over unbounded
integer and real numbers. A study analyzing control software in the AGREE
framework identified errors in specification using realizability checking [3]. No-
tably, the checking algorithm used is known to be unsound w.r.t. unrealizable
results [8], whereas FRET employs sound procedures [12,16]. The CLEAR [4]
tool also uses a constrained natural language to formalize requirements. It can
check completeness and consistency, but not realizability.

2 Background

FRET provides a collection of features for the creation, management and anal-
ysis of requirements. We next present the features that were used in this paper,
namely the FRETish language, the realizability checking component and finally
the requirements export functionality to achieve synthesis of run-time monitors.

2



Requirement specification and formalization. Users write requirements in
FRETish, i.e., a restricted natural language with standard mathematical ex-
pressions [9]. A FRETish requirement is described using up to six sequential
fields (the * symbol designates mandatory fields): 1) scope specifies the time
intervals where the requirement is enforced, 2) condition is a Boolean expres-
sion that triggers the response to occur at the time the expression’s value
becomes true from false, or is true at the beginning of the scope interval, 3)
component* is the system component that the requirement is levied upon, 4)
shall* is used to express that the component’s behavior must conform to the
requirement, 5) timing specifies when the response shall happen, subject to
the constraints defined in scope and condition and 6) response* is the
Boolean expression that the component’s behavior must satisfy.

FRETish provides 8 scopes: global , in, before, after , notin, only in, only
before, and only after . The scope global means always; the others are with respect
to when the system is in a mode or satisfies a Boolean expression. The optional
condition field is introduced by any of the words upon, when, or if , which are
synonymous. FRETish provides 10 timings: immediately (meaning: at the same
time point), at the next timepoint , always, eventually , never , for 𝑁 time steps,
within 𝑁 time steps, after 𝑁 time steps, until bool_expr, and before bool_expr.
When the scope is omitted it is taken as global ; when the condition is omitted,
it is taken as true; when the timing is omitted, it is taken as eventually .

The Boolean expressions use the standard logical symbols, as well as stan-
dard arithmetic symbols and relations. FRETish also supports several prede-
fined predicate symbols: preBool(init,x) (resp., preReal(init,x)) denotes, at the
first time point, the value of the Boolean (resp., real) expression init, and subse-
quently the value of the Boolean (resp., real) expression x at the previous time
point; absReal(x) denotes the absolute value of the real-valued expression x ; and
FTP is true at the first time point in the execution, and is false otherwise.

FRETish requirements are based on rigorous semantics and thus, have a
precise, unambiguous meaning. Once the requirements are specified, FRET pro-
duces formalizations in several logics. In this study, we make use of past-time
metric linear temporal logic (pmLTL).

To capture commonly occurring requirement patterns, FRET provides a
template facility. This allows the user to construct FRETish requirements by
instantiating placeholders in a template.

Realizability checking. Informally, a specification is realizable if we can im-
plement a system, such that it always conforms to the given requirements, while
considering inputs from an uncontrollable environment (sensors, user input, etc.).
A proof of realizability not only establishes the truth that a system can be im-
plemented for the given requirements, but also the fact that, given proper care
in the system implementation, the requirements themselves are free of conflicts
that would translate into unsafe behavior.

The analysis portal in FRET provides means to examine specifications in
terms of their realizability, as well as generate artifacts that help engineers fur-
ther understand the analysis results. The following features are available [13]:

3



— Compositional analysis: As a preprocessing step, FRET decomposes the spec-
ification, if possible, into a set of connected components, based on the outputs
exercised in each requirement. This decomposition is sound w.r.t. realizability,
allowing the independent analysis of each one of the computed components [21].
— A portfolio of engines and algorithms that support infinite theories. FRET
uses both the Kind 2 [5,16] and JKind [7,12] model checkers for realizability
analysis. Both engines are SMT-based, supporting unbounded theories of integer
and real arithmetic, while also providing means to compute counterexamples
from unrealizable specifications, in the form of deadlocking execution traces.
— Diagnosis of unrealizable specifications. FRET employs diagnostic algorithms
to provide further feedback in unrealizable requirements. This is achieved through
the computation and simulation of minimal sets of unrealizable requirements
(known as minimal conflicts) [14,15]. Counterexamples that demonstrate unre-
alizability can be graphically displayed in the interactive simulator in FRET.

Exporting requirements for monitor synthesis. Having created a set of
realizable requirements, we can now generate runtime monitors. To this end,
FRET generates and exports a specification that can be digested by the Ogma
tool [23] for the generation of Copilot monitors [22]. This specification contains
formalized requirements and information about the variable types referenced in
the requirements. Ogma then produces an input specification for Copilot, and
finally Copilot generates C code suitable for use in hard real-time systems,
running without dynamic memory allocation in predictable space and time. The
C code accepts inputs to be monitored and invokes user-provided handlers when
the requirements are violated. The creation and integration of these monitors
is intended to be as seamless as possible; the properties to be monitored are
written in FRETish, and little to no code is required to be written by hand.

3 The Lift Plus Cruise Case Study

Fig. 1. The LPC vehicle.

Because of its ability to be used at many
stages of the development lifecycle, and
the familiarity of the researchers with
the tool, FRET was chosen as a main
component in a NASA project studying
safety assurance for a novel Lift-Plus-
Cruise (LPC) electric Vertical Takeoff and
Landing (eVTOL) aircraft. There are sev-
eral different concepts for VToL aircraft
being investigated by the aviation com-
munity, including NASA [26]. One such
design has a number of lifting rotors attached to the wings and a forward push-
ing propeller on the rear of the aircraft (Figure 1). NASA is developing models of
the flight characteristics of this LPC concept, as well as simulation capabilities,
and control schemes [11]. The project investigated aspects of safety assurance

4



Fig. 2. Control Allocation Schedule. KGS/KIAS: ground/indicated air speed (knots).

of the aircraft including hazard analysis, requirements capture, formal model-
ing, and runtime monitoring. FRET was used to capture requirements for the
vehicle, and the collection of requirements served as a model of how the vehicle
was expected to behave. Some of these requirements were then used to generate
runtime monitors for use in the simulation environment.

Due to the design of the aircraft, several distinct control regimes may ap-
ply at different phases of flight. For example, during takeoff and landing, the
aircraft motion is controlled by the lifting rotors only, and the flight surfaces
(wings, ailerons, etc) have no effect (thrust-borne mode, TB). On the other
hand, during the higher speeds of the en-route phase, the wings provide lift, the
rear propeller provides thrust, and the lifting rotors are inactive (wing-borne
mode, WB). Collective control means that all of the rotors are commanded to
increase or decrease torque, leading to more or less “heave” (vertical climb). Dif-
ferential control means that the rotors are commanded to have differing amount
of torques, enabling control of pitch, yaw and roll.

Figure 2 shows the ranges of air/ground speeds for the control regimes. The
hashed areas indicate regions of hysteresis; i.e., control lag. For example, if the
vehicle is slowing down from the wing-borne mode (WB), the transition to semi-
wing-borne (SWB) kicks in at an indicated airspeed of 90 knots (kias <= 90.0),
whereas if the vehicle is speeding up from a SWB mode, the transition to WB
mode occurs at kias > 100.0 knots; similarly for the transitions between semi-
thrust-borne (STB) mode and SWB mode. The vehicle remains in the thrust-
borne mode (TB) as long as kgs <= 20.0 knots and Hover Control (HC) mode
is selected.

5



The main research questions that we aim to answer through this work are:
1. Can we take informal descriptions of how the vehicle is supposed to operate
and behave, and (through FRET) turn this into a formal description/model that
can be analyzed? and 2. Can we use this formal model to easily create monitors?

4 Writing Requirements for LPC

The work presented in this paper was the result of multiple iterations between
requirements formalization and their respective analysis in terms of realizability.
Requirements development was done iteratively, over a period of eight months
part-time, with the requirements researchers meeting with the aircraft controls
researchers regularly to refine both the requirements and controls. The require-
ments development revealed some ways that FRET could be enhanced to better
capture the types of requirements needed, and to analyze them, so FRET ad-
ditional feature development occurred concurrently. While the current work is a
research project, the overall concept of formally capturing and analyzing require-
ments for a developer to test against, and using these requirements as runtime
monitors, is envisioned as a method to help assure safety of future aircraft.

4.1 Initial Formalization

To validate the control scheme concept, and facilitate use in further development
and refinement of control software, we undertook the formal modeling in FRET
of the control allocation of the LPC concept during the landing transition phase.
This phase transitions from fully wing-borne flight to fully thrust-borne, with
intermediate phases semi-wing-borne and semi-thrust-borne.

Table 1. LPC Variables.
cr boolean output
dr boolean output
fcs boolean output
HC boolean output
rearprop boolean output
kgs double output
kias double output
wind_speed double input
lift_mode integer output
TB integer constant 0
STB integer constant 1
SWB integer constant 2
WB integer constant 3

Our task is to develop realizable require-
ments for the control schedule (Figure 2).
The complete set of requirements is in the
technical report [25]. The variables used in
these requirements, as well as their types are
shown in Table 1. For the purposes of realiz-
ability checking and monitor generation, we
need to declare each variable as either an in-
put or output. An output is a variable that
the system controls. An input is a monitored
variable, one whose value is set by the envi-
ronment that the system has no control over.

We start with a requirement that the ve-
hicle be in one of the lift modes at each time
point. Note that integer constants in Table 1 are used to simulate a lift-mode
enumerated type.
[LIFT_MODE]: The vehicle shall always satisfy lift_mode = TB | lift_mode =

STB | lift_mode = SWB | lift_mode = WB

6



Fig. 3. Lift Mode State Machine derived from Fig. 2. The acronyms are: HC = hover
control, B = borne, T = thrust (rotors), W = wing, S = semi-, kgs = ground speed
(knots), kias = indicated air speed (knots).

Fig. 4. Differential Rotors (DR), Collective Rotors (CR), and Flight Control Surface
(FCS) state machines derived from Fig. 2.

We also require that the rear propeller be always used, except in HC mode:
[REARPROP]: The vehicle shall always satisfy rearprop xor HC

To specify the control schedule requirements, we chose the clear and suc-
cinct way that state machines provide, and expressed those state machines in
FRETish. Initially, we transformed what is shown in Figure 2 into state ma-
chines. E.g., for the required behavior of the lift modes, we created Figure 3: the
four states correspond to the lift modes and the black, solid-line guarded transi-
tions define when a mode change may happen. For instance, when in STB mode
and the ground speed is less than or equal to 20 knots (kgs <= 20), the pilot,
or an automated control system, can switch to HC mode, allowing the aircraft
to enter the TB lift mode. Similarly, the control allocation state machines are
represented in Figure 4. The guards on the transitions refer to the conditions
on the indicated airspeed in knots (kias) and ground speed (kgs). Initially, we
designed Figures 3 and 4 without the red, dashed-line loop transitions.

To capture transition requirements, we created the following FRET template
to express transitions from state 𝑠0 to a state 𝑠1 under condition 𝑝:

Upon state = 𝑠0&𝑝 the vehicle shall at the next timepoint satisfy state = 𝑠1

E.g., the transition originating from state WB to state SWB in Figure 3 can
be written as follows: [WB_TO_SWB]: Upon lift_mode = WB & kias <= 90.0
the vehicle shall at the next timepoint satisfy lift_mode = SWB

7



4.2 Refinement using Realizability Checking

Using the realizability analyzer over this initial set of requirements, led us to
discover that we also need a stay requirement that says the state remains 𝑠0
if none of the exit transition conditions from 𝑠0 hold. Otherwise, the required
behavior is under-specified, and hence anything could happen after a transition
to a particular state when no transition condition applies. In particular, real-
izability analysis, as shown in Table 2, reported a realizable trace where the
aircraft state transitions from wing-borne mode directly to thrust-borne mode
without visiting intermediate modes. The stay requirements are necessary for
specification completeness: the behavior under all conditions must be specified,
so the disjunction of the guards of the transitions from a state needs to be a
valid formula [10]. In the past, FRET had a template for writing state-machine
transition requirements, which originated from a set of given natural-language
requirements [20] that were neither realizable nor complete. We improved on
this template, by having a simplified transition requirement template that uses
a single state variable, as well as adding a template for stay requirements. The
new templates allow for complete specifications of state machine requirements.

One could express the stay requirement in FRETish as: When state = 𝑠0&𝑃 ,
the vehicle shall at the next timepoint satisfy state = 𝑠0, where 𝑃 =!𝑝1 & . . .& !𝑝𝑛
is the conjunction of negated guards that belong to outgoing transitions of 𝑠0.
However, this would only constrain the value of state when the condition tran-
sitioned from false to true, not whenever the condition held. Instead, the stay
requirement can be expressed with the following FRET template (see [25]):

Vehicle shall always satisfy if preBool(false, 𝑠𝑡𝑎𝑡𝑒 = 𝑠0&𝑃 ) then state = 𝑠0

Currently, this is formalizable by FRET only in pmLTL. This was adequate
for this case study, since both realizability analysis and monitor generation rely
on the past-time formalization. If, in a different situation, a future-time formula
is needed, it can be expressed in FRETish without preBool as Upon state
= 𝑠0 & 𝑃 the vehicle shall until state = 𝑠0 & !𝑃 satisfy state = 𝑠0. This says
that the system, upon entering state 𝑠0 when no transition condition applies, will
remain in state 𝑠0 until and including the time point where a transition condition
holds. The two formulations were shown, using the NuSMV model-checker, to be
equivalent. Although equivalent logically, realizability analysis using the second
formulation was 15 to 100 times slower; we are investigating the cause. We show
below stay transition requirements from the wing-borne mode (Figure 3) and
flight control surfaces (Figure 4). Other stay and transition requirements were
written in a similar manner. These requirements correspond to the dashed-line
loop transitions (Figures 3 and 4).
[WB_STAY_ON_pre]: The vehicle shall always satisfy
if preBool(false, lift_mode = WB & kias > 90.0) then lift_mode = WB
[WB_STAY_ON_until]: Upon lift_mode = WB & kias > 90.0 the vehicle shall
until lift_mode = WB & kias <= 90.0 satisfy lift_mode = WB

8



Table 2. Example trace from incomplete specification.

Variable
Step 0 1 2 3 4 5 6

HC false false false false false false false
kgs 120 120.25 110.25 111.5 103.5 100 90.25
kias 120 120.25 110.25 111.5 103.5 100 90.25
lift_mode WB TB STB SWB WB SWB SWB

Table 3. Example trace from the final specification.

Variable
Step 0 1 2 3 4 5 6 7 8 9 10 11

HC false false false false false false false false false false true true
kgs 120 110 100 90 80 70 60 50 40 30 20 20
kias 120 110 100 90 80 70 60 50 40 30 20 20
lift_mode WB WB WB WB SWB SWB SWB SWB SWB SWB STB TB

[FCS_STAY_OFF]: The vehicle shall always satisfy if preBool(false, !fcs & kias
<= 40.0) then !fcs

[FCS_TURN_ON]: Upon !fcs & kias > 40.0 the vehicle shall at the next time-
point satisfy fcs

So far, we have specified the required behavior for transitioning from wing-
borne lift mode to thrust-borne mode. Still, we are not done: we need to specify
initial conditions, as well as a time target before which the transition should
complete. We try the scenario where the initial airspeed is 120 knots, the initial
lift mode is wing-borne, the ground speed always equals the airspeed, and the
airspeed changes by no more than 10 knots in consecutive time points:
[INIT_KIAS]: The vehicle shall immediately satisfy kias = 120.0

[INIT_LIFT_MODE]:
The vehicle shall immediately satisfy lift_mode = WB <=> kias >= 90.0

[KIAS_KGS]: The vehicle shall always satisfy kias = kgs

[KIAS_DERIVATIVE]: The vehicle shall always satisfy
FTP | absReal(preReal(0.0, kias) − kias) <= 10.0

All that is now left is to define a possible goal about lift_mode:
[REACH_HOVER]: The vehicle shall within 10 ticks satisfy lift_mode = TB

We now claim that we have a complete formalization. Is it realizable, though?
Careful inspection should result in a "no" answer, as 10 ticks is not enough time
to complete the transition. The realizability analysis supported this claim: the
requirements are unrealizable for 10 ticks and realizable for 11 ticks. Table 3
shows a positive trace from the latter result, where the system is able to complete
the transition from wing-borne to thrust-borne in a proper manner, exercising
the intended intermediate mode transitions.

9



Fig. 5. Runtime monitor displays: monitor violation (left), no violation (right).

4.3 Reasoning about the System’s Environment

Notably, the requirements presented thus far do not constrain the system’s in-
put. We experimented with additional requirements involving wind, changing
[KIAS_KGS] to specify that kgs is the sum of kias and the wind_speed input
variable (hence uncontrollable). Furthermore, we added the following assump-
tion on the environment: [WIND_SPEED_assumption]: The vehicle shall

always satisfy absReal(wind_speed) <= 30.0
We expected that this assignment for kgs would prohibit entering TB mode

because the wind would prevent kgs <= 20. However, in about a minute, re-
alizability checking said that it was realizable. Examination of a positive trace
revealed that this was due to kias becoming negative; i.e., the vehicle flying
backwards. The diagram we were initially given (Fig 2) is misleading: the ve-
hicle can only maneuver backwards slowly, while in TB mode, to make small
corrections while landing. When a requirement was included that said kias >=
0, the requirements were shown to be unrealizable, even when increasing the
time limit in [REACH_HOVER] to 16 ticks. Strengthening the assumption
to |wind_speed| <= 20 fixed the issue, as the requirements were shown to be
realizable within 13 ticks, which makes sense as kias needs to be reduced to zero
for kgs to be <= 20, for any valid wind speed.

5 Generation of Run-Time Monitors

We integrated the C code generated by Copilot into the FlightDeckZ Vehicle
Simulation Environment [2], monitoring three requirements described earlier:
[REARPROP], [FCS_STAY_OFF], and [WIND_SPEED_assumption].
FlightDeckZ is a system that incorporates physics models of the LPC concept
with flight controllers, and a visualization system, to allow for fairly realistic
flight simulation of the LPC vehicle model with experimental controllers.

The first two monitors express requirements that we expect from the control
system of the LPC model, while the last monitor expresses an environmental
property that may be of interest to a pilot during an actual flight (as most
eVToL systems are not designed to take off in high winds). This difference here is
intentional. The first two monitors are likely more useful to a system developer,
and so can likely be removed from use once a stable and trustworthy control

10



system is in place. The last monitor is something that may be integrated into a
system display on a real aircraft. The status of the monitors is displayed to the
users with a simple window frame, with descriptions of the monitors and their
current status displayed side-by-side (Figure 5).

6 Lessons Learned

We list below lessons and FRET needs and improvements resulting from the
experience of using FRET in this case study.

Expressiveness of FRETish: In this effort, requirements were written directly in
FRETish based on informal diagrams describing desired behavior, rather than
being translated from an initial natural language description. Thus, we were
interested in understanding whether FRETish provides adequate expressive-
ness and clarity and whether we are able to capture requirements that observe
complex interaction behavior for generating meaningful runtime monitors.

We were able to express in FRETish all the requirements of the control al-
location schedule. Writing these requirements directly in FRETish made them
more detailed while avoiding ambiguities; a lot of attention was given to under-
standing their semantics and how small changes in their syntax affect it.

We also found limitations: FRET lacks an enumerated type facility; a work-
around with integer constants was used instead for the lift modes in Table 1.
Also, a condition that enforces the response whenever the condition is true, not
just triggering the response upon the condition becoming true from false, would
have been useful, as discussed in § 4.2.

Usefulness of tool assistance in writing requirements: Crucial to the requirement
formulation process were the interactive simulator of FRET and the realizability
checking mechanism that guided the discussion to corner cases, important sanity
checks, and complete requirement sets (see § 4.2).

Formulating correctly the FRETish for state transitions involved some sub-
tlety, but once the FRET templates were devised, they were used to specify
26 out of the 53 LPC requirements. Since state machines are frequently used
in requirements development, we expect that the FRET templates could be
useful to others who wish to formulate complete and realizable state machine
requirements. On the other hand, instead of formulating such requirements in
FRETish, the ability to express requirements in a state-machine notation di-
rectly could be a useful addition to FRET.

Usability of feedback from realizability analysis in the form of positive and nega-
tive traces, and minimal conflicts: In several cases (e.g., the cases mentioned in
§ 4.3 that revealed negative air speed, and in § 4.2 the need for “stay” require-
ments for completeness), we needed evidence to understand why a specification
was realizable. This motivated a new feature in JKind and the FRET analysis
portal that computes and displays a satisfying, i.e., positive, trace showing how

11



the requirements are realizable. We achieved this by using the proof produced by
realizability checking. More specifically, when a specification is proved realizable
by the underlying tools, a symbolic fixpoint of “good system states” is computed.
We reuse this fixpoint to compute and present to the users valid system execution
traces of bounded length, that can be seen as indicative runs of a system that is,
by definition, guaranteed to always comply with the specification. Examples of
such generated positive traces were shown in Tables 2 and 3. Furthermore, we
enabled the use of the simulator to interact with the requirements in context,
starting from the satisfying trace (see [25]).

Unrealizable results also contributed to the refinement of the specification.
E.g., note how we allow the vehicle to control the HC variable (i.e., declared
as an output). The fact that it needed to be an output was pointed out by the
realizability analysis: the specification was unrealizable when the variable was
originally declared as an input, because the environment could decide to never
switch to hover control mode. When a set of requirements is unrealizable, it is left
up to the FRET user to puzzle out from a negative trace and experimentation
why the requirements don’t allow a positive trace. In particular, minimal conflicts
can be subsets of requirements that discard necessary requirements, for example,
LIFT_MODE. Further research is needed in the area of providing helpful
counterexamples. We sometimes found it sufficient to find the cause just by
examining which requirements were in the conflict set.

Dealing with requirement versions: During realizability analysis, we refined our
requirements multiple times. Thus, we ended up with several different versions
of the same requirements that can be used within different subsets of require-
ments. This motivated a new feature in the FRET analysis portal that allows
the user to easily select which requirement versions should be included in each
realizability check (see [25]). In certain cases, we ended up with logically equiv-
alent requirement versions. We thus think that there should be a capability of
the FRET interface to test the equivalence of requirements, without the user
needing to escape to other tools.

Easy monitoring: FRETish allows for the easy specification of many complex
and time-based interactions inside a system. For example, in the LPC model,
if one of the lifting rotors fails, the mirrored rotor on the other wing should
be turned off, so that a thrust imbalance does not occur. In FRETish, one
could easily specify a property that says “Upon rotor_1_fail, the vehicle shall
within 5 seconds satisfy rotor_4_power_off”. Such a monitor could then be
automatically generated, and requirements violations could be detected without
post-simulation analysis, or even without the need for manual writing of code
that collects and assesses the state of the system over periods of time.

Monitor semantics mismatch: We discovered an issue with FRET-generated
Copilot monitors during the integration and testing process. Due to the fact
that the requirements are turned into pmLTL, the interpretation of each re-
quirement is the statement “always in the past, requirement x holds.” What this

12



means is that at each time step, the monitor is determining if there has ever
been a violation. Hence even if the system returns to a state that is determined
to be safe, the monitor is still considered violated. For example, if the wind ever
goes above 30 knots, then even after the wind calms, the statement “The wind
shall always be below 30 knots” is false, so the monitor stays on. Currently,
a workaround “reset” button restarts the monitors, effectively erasing all past
history, mitigating the issue.

7 Conclusion

This experience report paper showed how certain aspects of a concept Lift-Plus-
Cruise aircraft were captured in requirements written in FRETish and how
realizability analysis was crucial for guiding the evolution of the requirements.
The main requirements engineering challenges that we encountered stemmed
from the iterative process of refining requirements with respect to realizability.
These challenges were not apparent until after the step of analysis was reached.

To answer our main research questions: we were successful in turning informal
descriptions into an analyzable formal model through FRET and subsequently
using this formal model to easily create monitors. To this end, the FRET model
did fulfill its purpose. Additionally, experience with this case study led us to
improve FRET as well as to point to future work such as adding to the expres-
siveness of FRETish and revisiting the semantics of run-time monitoring.

Acknowledgements: We acknowledge Michael Feary, John Kanishige, and
Kimberlee Shish who explained the vehicle used in this study and provided
Figure 2, and Dimitra Giannakopoulou who did an early requirements develop-
ment. Thanks also to the anonymous reviewers who provided detailed improve-
ment suggestions. This work was supported by the Advanced Air Mobility and
System Wide Safety projects in the NASA Aeronautics Mission Directorate’s
Airspace Operations and Safety Program. Andreas Katis and Anastasia Mavri-
dou were supported by contract NASA 80ARC020D0010.

References

1. FRET, https://github.com/NASA-SW-VnV/fret.git
2. Archdeacon, J., Iwai, N., Feary, M.: Aerospace cognitive engineering laboratory

(ACELAB) simulator for electric vertical takeoff and landing (eVTOL) research
and development. In: AIAA Aviation Forum (2020)

3. Backes, J., Cofer, D., Miller, S., Whalen, M.W.: Requirements analysis of a quad-
redundant flight control system. In: NFM 2015

4. Bhatt, D., Ren, H., Murugesan, A., Biatek, J., Varadarajan, S., Shankar, N.:
Requirements-driven model checking and test generation for comprehensive ver-
ification. In: NFM 2022

5. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The Kind 2 model checker.
In: CAV 2016

6. Farrell, M., Luckcuck, M., Sheridan, O., Monahan, R.: Fretting about requirements:
Formalised requirements for an aircraft engine controller. In: REFSQ 2022

13

https://github.com/NASA-SW-VnV/fret.git


7. Gacek, A., Backes, J., Whalen, M., Wagner, L., Ghassabani, E.: The JKind model
checker. In: CAV 2018

8. Gacek, A., Katis, A., Whalen, M.W., Backes, J., Cofer, D.: Towards Realizability
Checking of Contracts Using Theories. In: NFM. Springer (2015)

9. Giannakopoulou, D., Pressburger, T., Mavridou, A., Schumann, J.: Automated for-
malization of structured natural language requirements. Information and Software
Technology 137, 106590 (2021)

10. Heitmeyer, C.L., Archer, M., Bharadwaj, R., Jeffords, R.D.: Tools for construct-
ing requirements specifications: the SCR toolset at the age of ten. Intl. Journal
Comput. Syst. Sci. and Eng. 20(1), 19–35 (2005)

11. Kanishege, J., Lombaerts, T., Shish, K., Feary, M.: Command and control concepts
for a lift plus cruise electrical vertical takeoff and landing vehicle. In: AIAA Aviation
Forum and Exposition, San Diego, CA (June 2023)

12. Katis, A., Fedyukovich, G., Guo, H., Gacek, A., Backes, J., Gurfinkel, A., Whalen,
M.W.: Validity-guided synthesis of reactive systems from assume-guarantee con-
tracts. In: TACAS (2018)

13. Katis, A., Mavridou, A., Giannakopoulou, D., Pressburger, T., Schumann, J.: Cap-
ture, analyze, diagnose: Realizability checking of requirements in FRET. In: CAV
2022

14. Könighofer, R., Hofferek, G., Bloem, R.: Debugging unrealizable specifications with
model-based diagnosis. In: Haifa Verification Conference (2010)

15. Könighofer, R., Hofferek, G., Bloem, R.: Debugging formal specifications: a prac-
tical approach using model-based diagnosis and counterstrategies. International
Journal on Software Tools for Technology Transfer 15(5-6), 563–583 (2013)

16. Larraz, D., Tinelli, C.: Realizability checking of contracts with Kind 2 (2022)
17. Letier, E., Heaven, W.: Requirements modelling by synthesis of deontic input-

output automata. In: 2013 35th International Conference on Software Engineering
(ICSE). pp. 592–601. IEEE (2013)

18. Lúcio, L., Rahman, S., bin Abid, S., Mavin, A.: EARS-CTRL: Generating con-
trollers for dummies. In: MODELS (Satellite Events). pp. 566–570 (2017)

19. Maoz, S., Ringert, J.O.: Synthesizing a lego forklift controller in gr (1): A case
study. arXiv preprint arXiv:1602.01172 (2016)

20. Mavridou, A., Bourbouh, H., Giannakopoulou, D., Pressburger, T., Hejase, M.,
Garoche, P.L., Schumann, J.: The ten Lockheed Martin cyber-physical challenges:
Formalized, analyzed, and explained. In: Proceedings of the 28th IEEE Interna-
tional Requirements Engineering Conference (2020)

21. Mavridou, A., Katis, A., Giannakopoulou, D., Kooi, D., Pressburger, T., Whalen,
M.W.: From partial to global assume-guarantee contracts: Compositional realiz-
ability analysis in FRET. In: Formal Methods (2021)

22. Perez, I., Dedden, F., Goodloe, A.: Copilot 3. Tech. Rep. NASA/TM 2020-220587
(April 2020)

23. Perez, I., Mavridou, A., Pressburger, T., Goodloe, A., Giannakopoulou, D.: Au-
tomated translation of natural language requirements to runtime monitors. In:
TACAS 2022

24. Pill, I., Semprini, S., Cavada, R., Roveri, M., Bloem, R., Cimatti, A.: Formal
analysis of hardware requirements. In: DAC 2006

25. Pressburger, T., Katis, A., Dutle, A., Mavridou, A.: Using FRET to create, analyze
and monitor requirements for a lift plus cruise case study. Tech. Rep. NASA/TM
20220017032 (2023)

26. Silva, C., Johnson, W.R., Solis, E., Patterson, M.D., Antcliff, K.R.: VTOL urban
air mobility concept vehicles for technology development. In: AIAA 2018

14


	Authoring, Analyzing, and Monitoring Requirements for a Lift-Plus-Cruise Aircraft

