

Flow Regime Transitions and Pressure Drop in Gas-Liquid Flows through Packed Beds in Microgravity

Principal Investigator:

Co-Investigators:

Dr. Brian Motil, NASA Glenn Research Center

Prof. Vemuri Balakotaiah, *University of Houston* Dr. Henry Nahra, *NASA Glenn Research Center*

Co-Investigator and Presenter: Dr. Mahsa Taghavi, University of Houston

Objective and Motivation

Objective

Study hydrodynamics of packed beds in microgravity and under different flow regimes

Motivation

Current/Future Space Applications:

- Microbial Check Valve (MCV)
- Activated Carbon/Ion Exchange (ACTEX)
- Ion Exchange for Calcium Removal (in development)
- Volatile Removal Assembly (VRA)
- Aqueous-Phase Catalytic Oxidation (APCO) System
- IntraVenous Fluid GENeration (IVGEN)

- NASA identified the need to conduct aircraft flights to develop an empirical prediction for pressure drop in two-phase flows through porous media for water reclamation processes.
 - \checkmark Limitation: Short time interval of low gravity (20 s)
 - ✓ Development of the ISS PBRE experiment to deliver a wide range of gas and liquid flows
 - Reducing the particle size in **PBRE-2** from 3 mm to 2 mm
 - Modifying the inlet mixing head to minimize the external disturbances
 - <u>Goal</u>: Analyzing the experimental data and developing a method to estimate pressure drop through porous media in the microgravity environment.

PBRE Modules

PBRE Flow Loop

Fill Port

Fluid	Range			
Nitrogen	0.001 < G < 1			
Gas (kg/hr)	$0.02 < {Re*}_{GS} < 23$			
Water	1 < L < 150			
(kg/hr)	$0.5 < \text{Re*}_{LS} < 72$			

Start-up:

- Initial condition of the bed is dry.
- Liquid flush and Gas flush between each test.
- ✓ Over 200 test points were recorded.

Steady Flow:

Liquid flush and Gas flush

After flushing the column for 30 s, the desired gas and liquid flow rates were flown for a duration long enough to establish pseudo-steady flow

Transient Flow:

• To check for the presence of hysteresis in the pressure drop versus flow rates.

Single-Phase Pressure Drop in Porous Media

 Viscous limit: Re_p<10, (ΔP proportional to U)

$$f = \frac{150}{Re_p}$$

Blake-Kozeny (1922 – 27)

• Inertial limit: $\operatorname{Re}_{p} > 1000$, f = 1.75(ΔP proportional to U²)

Burke-Plummer (1928)

Single Phase Ergun Eq.

$$f = \frac{(-\Delta P)}{\rho U_D^2} \frac{d_p}{L} \frac{\varepsilon^3}{(1-\varepsilon)} = \frac{150}{Re_p} + 1.75$$

or
$$\frac{(-\Delta P)}{L} = 150 \frac{(1-\varepsilon)^2}{\varepsilon^3} \frac{\mu U_D}{d_p^2} + 1.75 \frac{(1-\varepsilon)}{\varepsilon^3} \frac{\rho U_D^2}{d_p}$$

Ergun (1952)

Two-Phase Pressure Drop in 0-g Modified Ergun Eq.

 $f_{TP} = \frac{C_V}{Re_{LS}^*} + C_I + C_S (Re_{GS}^*)^{\alpha} (Re_{LS}^*)^{\beta} (Su_L)^{\gamma}$ Modified Reynols number $Ca_{LS}^* = \frac{\mu_L U_{LS}}{\sigma(1-\varepsilon)}$ Modified Capillary number

 $f_{TP} \equiv \frac{-\Delta P}{Z} \frac{d_p}{\rho_L U_{LS}^2} \frac{\varepsilon^3}{1-\varepsilon} = f_{SP} + C_S (Re_{GS}^*)^{\alpha} (Ca_{LS}^*)^{\beta} (Su_L)^{\beta+\gamma} \qquad \alpha, \beta, \gamma \text{ determined}$

 α,β,γ determined by regression

$$f_{TP} = \frac{C_V + C_S \left(\text{Re}_{GS}^*\right)^{\alpha} (\text{Re}_{LS}^*)^{\beta+1} \text{Su}_L^{\gamma}}{\text{Re}_{LS}^*} + C_I$$

$$C_V = 150.8, C_I = 1.78, \text{ and } \epsilon = 0.358$$
(for PBRE-2 single-phase data)

$$\frac{-\Delta P}{Z} = C_V \frac{(1-\varepsilon)^2}{\varepsilon^3} \frac{\mu_I U_{LS}}{d_p^2} + C_I \frac{(1-\varepsilon)}{\varepsilon^3} \frac{\rho_I U_{LS}^2}{d_p} + C_S \frac{(1-\varepsilon)}{\varepsilon^3} \left(\frac{\rho_I U_{LS}}{d_p}\right) \left(\frac{\rho_g U_{GS} d_p}{\mu_g (1-\varepsilon)}\right)^{\alpha} \left(\frac{\rho_I U_{LS} d_p}{\mu_I (1-\varepsilon)}\right)^{\beta} \left(\frac{d_p \rho_I \sigma}{\mu_I^2}\right)^{\gamma}$$
Viscous Inertial Capillary

Friction Factor Correlations and Pressure Gradient Plots

Dispersed Bubble Regime (DB):

 $f_{TP} - f_{SP} = 0.07 (Re_{GS}^*)^{0.26} (Re_{LS}^*)^{-0.5} Su_L^{2/3}$

- Pulse Regime (P): $f_{TP} - f_{SP} = 0.12 (Re_{GS}^*)^{0.35} (Re_{LS}^*)^{-0.82} Su_L^{2/3}$
- Elongated Bubble Regime (EB):

 $f_{TP} - f_{SP} = 0.26 (Re_{GS}^*)^{0.24} (Re_{LS}^*)^{-1.83} Su_L^{2/3}$

Gas Channeling Regime (GC):

 $f_{TP} - f_{SP} = 0.21 (Re_{GS}^*)^{0.66} (Re_{LS}^*)^{-1.86} Su_L^{2/3}$

✓ Slope change at U_{LS}≈1mm/s
 ✓ Separates the low-interaction region from the high-interaction

Packed Bed Reactor Experiment

Friction Factor and Pressure Gradient Plots

Examples of Large Bubbles in the Bed

Large bubbles (darker spots) extending over multiple glass particle diameters

 $U_{GS} = 0.108 \text{ mm/s}$ $U_{LS} = 1.03 \text{ mm/s}$

Large bubbles with Alumina packing $U_{GS} = 0.325 \text{ mm/s}$ $U_{LS} = 0.412 \text{ mm/s}$

Packed Bed Reactor Experiment

Pressure Gradient Contributors

U _{LS} (mm/s)	U _{GS} (mm/s)	Experimental -ΔP/Z (Pa/m)	Calculated -ΔΡ/Ζ (Pa/m)	Capillary -∆P/Z (%)	Viscous -ΔΡ/Ζ (%)	Inertial -ΔΡ/Ζ (%)	No-Slip Gas Fraction (%)
2.75	0.11	2210	3050	60.0	27.0	3.1	2.8
2.75	2.25	3219	5142	09.9 92.1	16.1	1.0	54.1
2.75	5.25	4743 5765	6202	02.1	10.1	1.0	70.7
2.15	10.82	5765	6292	85.4	13.1	1.5	/9./
2.75	108.19	9916	9433	90.2	8.8	1.0	97.5
5.50	0.11	6228	6306	67.8	26.2	5.9	1.9
5.50	3.25	13585	10472	80.6	15.8	3.6	37.1
5.50	10.82	15767	12771	84.1	13.0	2.9	66.3
5.50	108.19	22101	19053	89.3	8.7	2.0	95.2
9.62	0.11	15563	11527	64.9	25.1	10.0	1.1
9.62	3.25	23254	18818	78.5	15.4	6.1	25.2
9.62	10.82	27149	22841	82.3	12.7	5.0	52.9
9.62	108.19	36478	33835	88.0	8.6	3.4	91.8
13.74	0.11	23454	17170	62.3	24.1	13.7	0.8
13.74	3.25	30777	27587	76.5	15.0	8.5	19.1
13.74	10.82	36438	33333	80.6	12.4	7.0	70.3
13.74	108.19	53287	49039	86.8	8.4	4.8	88.7
17.18	0.11	25536	16691	60.2	23.3	16.5	0.6
17.18	3.25	37079	28233	74.9	14.7	10.4	15.9
17.18	10.82	44997	36151	79.2	12.2	8.6	38.6
17.18	108.19	69439	60594	85.8	8.3	5.9	86.3
20.61	0.11	32968	27514	58.3	22.5	19.2	0.5
20.61	3.25	44062	43138	73.4	14.4	12.2	13.6
20.61	10.82	51501	51758	77.8	12.0	10.2	34.4
20.61	108.19	93346	75317	84.8	8.2	7.0	84.0

Capillary force is the dominant contributor to the pressure gradient

Capillary contribution to ΔP increases with increasing gas flow rate and decreasing liquid flow rate

Hysteresis Effects

Increasing and then decreasing the liquid (gas) flow rate, at a fixed gas (liquid) flow leads to different values for the liquid holdup and pressure gradient

✓ Hysteresis effect exists within the V–C regime for both constant gas flow rate and constant liquid flow rate experiments.

✓ The relative hysteresis magnitude was found to be negligible outside of the V–C regime for first series of PBRE experiments.

Packed Bed Reactor Experiment

- For gas and liquid flow rates of interest in most microgravity applications, there are four major flow patterns: dispersed bubble, pulse, elongated/large bubble, and gas continuous regimes.
- We developed an approximate flow pattern map for the N2-water system based on the change in slope of the pressure gradient/friction factor with either gas or liquid flow rate.
- Dependence of the pressure gradient on gas and liquid flow rates is different in each flow regime. Hence, a separate correlation is presented here to make accurate predictions of the pressure drop in each flow regime.
- Capillary contribution to the pressure gradient is the dominant over all gas and liquid flow rates studied compared to inertial and viscous contributions.
- The capillary contribution is found to vary inversely with the particle diameter but its dependence on gas and liquid flow rates is different in different flow regimes.
- Hysteresis effects are observed at low gas and liquid flow rates but become negligible at higher flow rates.