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Abstract— The Mobile Metamaterial Internal Co-Integrator
(MMIC-I) is a structure assembly and servicing robot for
in-space servicing, assembly, and manufacturing of primary
structures and infrastructure. MMIC-I is a battery-powered
crawling robot that can travel through periodic structures such
as trusses and open framework mechanical metamaterials. It
does this through sequences of component extension, contrac-
tion, and gripping. This paper provides a detailed discussion
of MMIC-I’s lightweight and rapidly developed firmware ar-
chitecture, to enable demonstration of robot locomotion, sec-
ondary operations, and communications with a central com-
mand source. The rationale for the lightweight rapid develop-
ment approach is to allow for assessment of long term system
requirements in parallel with the mechatronics development,
including optimization of system and subsystem power densities,
to inform a future choice of flight ready software frameworks.
MMIC-I system computing and I/O requirements are much
lower than what is provided by proven baseline computing
hardware for existing flight ready software frameworks such
as the core Flight System, F prime, and the Robot Operating
System. Development of earth gravity ground demonstration of
the robotic systems is greatly benefited by limited power and
mass factors for computing hardware. Here, we implement
inter-process communication, commanding, and telemetry with
the Espressif ESP32 module running the Arduino OS.
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1. INTRODUCTION
In-space robotic servicing, assembly, and maintenance can
allow space structures to bypass the limitations of single-
vehicle launches. Early examples used astronaut extra-

Copyright 2023 United States Government as represented by the Admin-
istrator of the National Aeronautics and Space Administration. All Rights
Reserved.

vehicular activities (EVA) and human-operator controlled
dexterous manipulators to assemble trusses and the Inter-
national Space Station [1]. Since EVAs are hazardous
and crew-time is extremely valuable, recent efforts have
focused on robotic assembly to conduct construction tasks
[2][3][4][5][6]. However, despite these research investments,
the challenges of reliable autonomous robotic assembly of
complex and precise structures in unstructured environments
remains a significant technology challenge [7].

Large space structures are a key capability for both next
generation science and human exploration of the solar system
and beyond. Sustained human presence on the Moon and
Mars will require larger scale habitats, infrastructure, and
space-hubs [8], while larger aperture telescopes are needed to
capture better and more diverse snapshots of the universe [9].
Though current space assets rely on a “pack, launch, deploy”
paradigm that relies on complex deployment with high risk
of failure, the size of deployed structures is still subject to
single-launch restrictions.

The Automated Reconfigurable Mission Adaptive Digital
Assembly Systems (ARMADAS) project, currently under
development in the Coded Structures Lab at NASA Ames
Research Center, proposes implementation of large space
structures using relatively small robots that operate in and
on a modular structural system itself [10], to simplify the
autonomy and robotic requirements. The strategy is based
on breakthroughs in high-performance mechanical meta-
material lattice structures that are constructed by discrete
assembly from multiple materials [11][12][13][14][15]. By
controlling the geometry, density, and constituent material of
an individual unit cell (termed “voxel” for volumetric pixel),
a wide variety of mechanical properties can be realized at
scale [16][13][14][15] with an unlimited build envelope [16].
This type of robot is termed a “relative robot” [17][18][19],
and uses a highly-structured environment for alignment and
localization. This allows for very simple robotic agents with
minimal sensing (no vision for instance) to autonomously
assemble complex structures.

Relatively mature examples of robotic servicing for space
applications include full suites of functionality per robot, with
navigation and manipulation supported by machine vision
over fully autonomous and teleoperation modes. Control
architecture is typically handled with multiple processing
threads over multiple devices, with centralized coordination
of tasks that are distributed over child processes according
to the distribution of hardware systems or by task criticality
[20][21]. Modern conventional software practices and tools,
such as the Robot Operating System (ROS), are sometimes
incorporated [20].
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The ARMADAS system distributes physical sub-tasks across
different robot types [22], with a system architecture as a
whole having similar overall complexity to prior robotic ser-
vicing demonstrations. This differentiation or specialization
allows each individual robot to be a relatively simple system
with low numbers of actuated degrees of freedom and control
states. Modular scalability to very large systems can leverage
a distributed architecture [23], but for development purposes
we implemented a centralized architecture that allows for
simulated hybrid and distributed control [24]. Autonomy is
achieved through specifically designed algorithms that pro-
duce a “plan file”, that include a sequence of concurrent robot
motions. An operations control and telemetry user interface
and logging software (opsUI) coordinates the execution of
these motions based on regular feedback received from the
robots.

This paper focuses on the firmware architecture of the relative
robot assembly agent type called the Mobile Meta-Material
Interior Co-Integrator (MMIC-I). Multi-robot autonomy and
other robot types are subjects of companion articles [25] [26].

We first provide an overview of MMIC-I’s avionics. Sec-
tion 3 presents the overall firmware architecture. Internal
communication between controller boards, as well as their
interaction and coordination, is presented in Section 4. Sec-
tion 5 describes the controller strategy. Section 6 describes
the motion generation, primitives and robot states. Section
7 presents MMIC-I’s operating modes and the autonomous
fault detection implementation. Conclusions and future work
follow.

System Description

MMIC-I is designed to locomote internally throughout a
structure, and actuate fasteners that are captive in the struc-
tural unit. MMIC-I has a symmetric structure about the hip
module. Each of the two symmetric sides has an extension
arm, a gripper, and a bolter module. These modules are high-
lighted in Figure 1. For a full description of the kinematics
and hardware design, please see our companion article on this
subject [27].

MMIC-I exercises no localization in the global reference
frame of the structure, but it is able to calculate its current
configuration (including rotational orientation) among a total
of 15 discrete states it can occupy and execute reconfigu-
ration commands. One side is designated as the primary
board (board A). It embeds the motion generation, motion
primitives and coordinates operations of each of the robot
modules that result in the desired motion. It handles the WiFi
client and directly controls side A of the robot, as well as the
hip. The B side of the robot receives low level instructions
through a wired serial connection with the A side, to move
the modules connected to it.

2. AVIONICS
MMIC-I is powered by two 1000 mAh lithium polymer
batteries connected in parallel, providing between 10 V and
12.6 V. Below 10 V, the battery is considered out of charge
and must be replaced and recharged. Figure 2 shows the
top and bottom view of the MMIC-I controller board, which
has been appositely designed and fabricated. The 8-layers
board includes the ESP32-WROOM-32E [28] as the dual
core processor, supporting WiFi and Bluetooth. The board is
equipped with a reset and boot button, as well as some prob-
ing points useful for board testing and debugging. The board

Figure 1. MMIC-I’s modules.

has two DF3 power connectors (see Figure 2). The four-
pin one connects the board to the adjacent battery through a
switch. The three pin one activates the in-parallel connection
with the battery mounted on the symmetrically opposite
side, close to the other board. The micro USB connector
doesn’t provide power, it only provides serial connection and
firmware upload capability. The board has a voltage regulator
that lowers the voltage provided by the batteries to 7.4 V to
all the modules - servo motors adopted in the modules have
an operational voltage of 7.4 V. The board has a connector
dedicated to the board A-board B serial communication. The
controller board incorporates the MPU-6000 Inertial Mea-
surement Unit (IMU) [29], used by the firmware to calculate
the current state. The 8-channels ADS7828 analog-to-digital
converter with I2C interface [30] is used for voltage and
current sensing. These readings are used for autonomous
faults/warning detection and operating mode change. For
instance, the unregulated voltage reading is used to trigger

Figure 2. MMIC-I’s custom made controller board - top
view mounted on the robot (left), bottom view (right).
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the low-battery warning, the locomotion current reading is
used to determine whether the robot motion is being impeded
for any reason, and so on. Chapter 7 provides a detailed
description of the fault detection implementation.

Because of the scarcity of space on the board to include all
the bolter pins, the ADG1604 4-channels multiplexer [31]
was chosen to activate the bolter pair to be used, through
selecting one among the four possible combinations of the
two input channel A0-A1 (low-low, low-high, high-low, high-
high). The hip sensor is not located on the board. Although
the hip servo is the same servo adopted by the arms, it has
been modified to be a continuous servo. This means that
it requires a velocity closed loop controller, which uses a
position sensor. The magnetic encoder is mounted on the
hip, and connected to board A through an I2C line. All the
raw sensor data is sent to a moving average calculator, with a
window size of 50 samples.

The Espressif ESP32 dual core capability is utilized in board
A only, where core 1 runs the control loop and core 0 hosts
the WiFi Client.

3. FIRMWARE ARCHITECTURE
Figure 3 provides a high level representation of MMIC-I’s
main components, their mutual interaction and the interaction
with the opsUI. When the opsUI reads in the plan file that
a command has to be sent to MMIC-I, it sends the proper
command ID to the server board through serial port.

Table 1 summarizes the types of commands available for
MMIC-I. The first four rows describe commands to move
a single module. These are used for debugging and tuning
of motions. The following commands are adopted during
operation. MMIC-I exchanges information with the opsUI
over a WiFi bridge that includes a server board on the opsUI
side. This server board is an ESP32 WROOM devkit module,
and is connected to the opsUI software via RS232 over USB.

The primary function of the server board is as a dedicated
network interface to allow opsUI to maintain multiple persis-
tent WiFi connections with many robots, utilizing as many
server boards as robots. It also performs limited formatting
and pre-processing of command and feedback packets, for
development reasons. In Figure 4 the block diagram relative
to the server operation is shown. When the server detects that
there is information available on the serial port, it identifies
the command and fills the command packet. The command
ID is stored in another variable as well, called “command
byte”. Command byte stores the command ID until the
corresponding command byte gets successfully sent to the
client, after which it resets to a zero value. The server
establishes and terminates connection with the given client at
every loop. The reason is to support a single server-multiple
clients operation. After connection is established, if the value
of command byte indicates that there is a pending packet to
be sent, it sends the packet. The server, then, checks if any
packet has been received from the client. If there is a packet
ready to be sent to the client but the server and client are
not connected, the server keeps looping, trying to connect
and send the packet at each loop. If the lack of connection
lasts for a significant amount of time, the opsUI will detect
it without using any information from the server. Every time
the opsUI sends a command to MMIC-I through the server,
it waits for a feedback heartbeat packet as acknowledgement.
If the opsUI doesn’t receive a feedback packet within a given
time span, it will show a message on the opsUI and send the
packet repeatedly until it gets a response.

Table 2 summarizes the content of the 14-bytes long com-
mand packet. The packet includes the client board number, in
the event there are multiple robots attached to a single server,
and the the command identifier. Few bytes in the packet are
dedicated to target PWM commands for arms and hip, used
only when a arm or hip position command is sent.

The WiFi client, which runs on core 0 of MMIC-I’s board A,
receives the command packet and responds with a heartbeat
packet. The server-client connection type is IP. Figure 5

Figure 3. Conceptual diagram of MMIC-I’s firmware operation highlighting the opsUI, the WiFi server-client
communication, and the board to board wired communication.
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Table 1. A summary of MMIC-I commands.

Command Type Modules Engaged Explanation
Single module Arm Totally/partially contract/extend arm on side A or B
Single module Gripper Totally/partially contract/extend grippers on side A or B
Single module Hip Rotate hip to most common positions or any other value
Single module Bolter bolt/unbolt a single fastener or all four, move bolters down

Primitive motion All Execute the commanded primitive motion
Stop All Emergency stop of current motion
Reset All After a stop command, resume motion

Power Control All Turns on-off power to individual/all modules
Reconfiguration All Reconfigure from an initial to a target state

Mode All Changes operating mode
System fault All Triggers the assembly system operation fault

Heartbeat All Requests a heartbeat packet to server

shows the block diagram of the WiFi function looping on
core 0. After confirming there is an active connection, the
client receives the packet and sends back to the server the
updated heartbeat packet as acknowledgement. The content
of MMIC-I’s heartbeat packet is summarized in Table 3.
The packet reports the target and current angle values for
the locomotion-related modules, the battery voltage (Vbat),
battery current draw (Ibat), arm and hip current draw (Iloc),
gripper current draw (Igrip), regulated voltage (Vreg), bolter
current draw (Ibo). The packets includes the last commanded
target state, the command complete flag, current active bolter
number and bolter attempt number, faults and operating mode
information.

In board A, while core 0 is handling the WiFi task, core 1
handles the loop task. The two processes run independently
from each other, with their own timing, but they share the
same information, e. g. before sending the heartbeat packet,
the WiFi task updates the packet with the latest values, and
then sends it. The values it uses to update the packet come
from the loop task, since it’s the controller loop that reads
the current/voltage sensors and angles encoders/interpolation
values. In this process there’s the risk that the two tasks
try to access the same memory location at the same time,
which would result in loss of communication efficiency. This
issue was addressed implementing a communication system
between tasks based on queues. When the WiFi task receives
the command packet, it copies the packet content into a rx-
queue, that is read by the loop task. The loop knows that
after receiving a command packet, a heartbeat packet will be
sent, so it updates its own copy of the heartbeat packet and
sends it to a tx-queue. Then, the WiFi task receives the queue
heartbeat information and sends it to the server.

4. BOARDS
MMIC-I’s two controller boards work in a coordinated fash-
ion to ensure synchronous execution of motion commands.
Although the two boards control two symmetric and identical
parts of the robot (with the exception of the hip that is only
controlled by board A), board B is subordinated to A, in
which it only serves to move the single modules attached to it,
whenever commanded by A. Board A embeds all the motion
primitives, the motion planning, the fault detection, operating
mode handling, the bolter state machine. A block diagram of
the firmware running on board A is shown in Figure 6.

Boards A and B are placed at the two far ends. They are
connected by a serial cable that traverses the entire body of
the robot. The cable allows for bi-directional serial commu-
nication, that is used by board A to send commands to B.
Board B also uses the connection to send a periodic heartbeat
to A.

Board B’s firmware architecture is shown in Figure 7. This
runs on ESP32-WROOM-32E’s core 1 on MMIC-I’s board B.
The firmware includes the controller for each module, sensors
reading, communication with board A. The heartbeat packet
is shown in Table 4. The packet contains status variables
relative to the B side, a series of Boolean variables needed
for the synchronous operation of the bolters side A and B,
an acknowledgement of received command from board A,
the direction of the gravity vector in the reference frame of
the IMU mounted on board B, overcurrent-related Boolean’s,
switch sensor pushed information after arm contraction com-
mand.

Table 2. MMIC-I’s command packet.

0 1 2 3 4 5 6
header header header header board command lowByte

number hip PWM

7 8 9 10 11 12 13
highByte lowByte highByte lowByte highByte lowByte highByte
hip PWM arm A PWM/ arm A PWM/ arm B PWM arm B PWM checksum checksum

final state init state
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Table 3. MMIC-I’s WiFi heartbeat packet.

0 1 2 3 4 5 6
header header header header board lowByte highByte

number hip-target hip-target

7 8 9 10 11 12 13
lowByte highByte lowByte highByte lowByte highByte lowByte
hip-now hip-now arm A-target arm A-target arm A-now arm A-now arm B-target

14 15 16 17 18 19 20
highByte lowByte highByte lowByte highByte lowByte highByte

arm B-target arm B-now arm B-now gripper A-target gripper A-target gripper A-now gripper A-now

21 22 23 24 25 26 27
lowByte highByte lowByte highByte lowByte highByte lowByte

gripper B-target gripper B-target gripper B-now gripper B-now VbatA VbatA IbatA

28 29 30 31 32 33 34
highByte lowByte highByte lowByte highByte lowByte highByte
IbatA IlocA IlocA IgripA IgripA I3v3A I3v3A

35 36 37 38 39 40 41
lowByte highByte lowByte highByte lowByte highByte lowByte
VregA VregA IboA IboA VbatB VbatB IbatB

42 43 44 45 46 47 48
highByte lowByte highByte lowByte highByte lowByte highByte
IbatB IlocB IlocB IgripB IgripB I3v3B I3v3B

49 50 51 52 53 54 55
lowByte highByte lowByte highByte target command active
VregB VregB IboB IboB state complete bolter

56 57 58 59 60 61 62
bolter empty empty empty fault fault fault

attempt byte0 byte1 byte2

63 64 65
operating lowByte highByte

mode checksum checksum

5. CONTROLLER
The gripper and arm modules operate through an open loop
controller. Given a target state, the trajectory is calculated
through simple interpolation and the interpolated values fed
directly to the servos at a given frequency. The servos are in-
dividually programmed to have an internal velocity limit. The
interpolation interval on the firmware side and the velocity
limit on the servo side are tuned together to ensure a smooth
motion at the desired speed. The only sensing associated with
the arm and gripper motion is the current monitoring and a
switch that confirms when the arm is contracted. The “current
PWM” values included in the heartbeat correspond to the last
interpolated value sent to the servos. This doesn’t necessarily
correspond to the actual PWM, but it’s an accurate enough
representation.

The hip module uses a custom proportional-integral (PI)
feedback controller to reach its commanded position. To
guarantee smooth motion during a rotation, a combination of
velocity and position controller is implemented. When the
target and current hip position differ more than 3°, the hip
follows a PI velocity controller with a target speed of 10°/sec,

using a smoothing technique to estimate the velocities from
the angle readings over time. Once the hip position is within
3° of the commanded position, the controller transitions to
a position controller to accurately reach its target, again
estimating velocity from the servo’s position readings. The
utilization of a PI position controller for the final 3º allows
the hip to minimize position error regardless of the robot’s
orientation with respect to gravitational force.

The bolter state machine controls the bolters operation. The
diagram in Figure 8 shows bolter states. For each bolter pair
that sequence of states gets executed once. Each face has
four fasteners. To bolt a single face, the state machine has
to run four times. MMIC-I can operate each bolter pair one
at a time because the bolter PWM is sent to the multiplexer,
which sends the signal to the bolter number identified by the
analog high-low of two variables A0 and A1. There are four
possible high-low combinations of A0 and A1, corresponding
to the four bolter pair numbers. So, before executing the
bolter state machine, the proper values for A0 and A1 are
set and the desired bolter number activated. After setting the
bolter pair (1 to 4), the bolters start their translation towards
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Table 4. MMIC-I internal heartbeat packet.

0 1 2 3 4 5 6
header header header header lowByte highByte lowByte

arm B-target arm B-target arm B-now

7 8 9 10 11 12 13
highByte lowByte highByte lowByte highByte lowByte highByte

arm B-now gripper B-target gripper B-target gripper B-now gripper B-now VbatB VbatB

14 15 16 17 18 19 20
lowByte highByte lowByte highByte lowByte highByte lowByte
IbatB IbatB IlocB IlocB IgripB IgripB I3v3B

21 22 23 24 25 26 27
highByte lowByte highByte lowByte highByte bolter B operation
I3v3B VregB VregB IboB IboB auxiliary variables

28 29 30 31 32 33 34
bolter B operation
auxiliary variables

35 36 37 38 39 40 41
command g direction g direction arm B gripper B bolter B arm B
received sign axis over-idle over-idle over-idle overcurrent

42 43 44 45 46
gripper B bolter B arm B lowByte highByte

overcurrent overcurrent contracted checksum checksum

their respective fastener, push them towards each other, and
go back to their initial configuration. The decision on when
to stop pushing and start moving the opposite direction is
based on current sensing. States whose transition is regulated
by current sensing are indicated with an asterisk in Figure
8. The bolters are commanded to descend more than they
physically can. So they will keep pushing even after they
come in contact with the fastener until the IboA and IboB
current threshold is met, and the state machine will switch
to the next state. The same motion is repeated, but this time,
when Ibo hits the threshold while pushing, it rotates the bolter
head, that engages the fastener. At this point both bolter heads
are rotating the opposite directions until the pair of fasteners
is locked. Current sensing determines if it’s locked. After
detecting that the fasteners are locked, the bolters rotate the
opposite direction and go back to their original configuration.

6. MOTION GENERATION
MMIC-I has 15 allowed configuration states [27]. Descriptive
names are listed in Table 5. Each state is defined with respect
to a reference voxel, considering the global coordinate frame
of the structure. To define the state, let’s imagine to have
the coordinate frame at the center of the reference structural
unit. The name of the state is determined by what axis of the
reference frame each MMIC-I side aligns with, and what face
each side is gripped to, negative if gripped on the negative
coordinates, positive otherwise. As an example, the “d” state
has “Xneg Xpos” in its name, because the entire robot lies
along the X axis of the structure reference frame: side A
is placed on the negative side of the X axis, side B on the
positive. A state can be a match, a stretch or a turn. It is a
match when MMIC-I is contracted and gripped onto a single
face, as in “a”. For matched states, the name includes only

Table 5. MMIC-I’s allowed configurations.

state name
a Xneg match
b Yneg match
c Zneg match
d Xneg Xpos stretch
e Xneg Ypos turn
f Xneg Zpos turn
g Yneg Xpos turn
h Yneg Ypos stretch
i Yneg Zpos turn
j Zneg Xpos turn
k Zneg Ypos turn
l Zneg Zpos stretch
m Xpos match
n Ypos match
o Zpos match

one alignment because the two sides are gripped on one face.
The stretch configuration has two sides gripped onto different
faces, as in “h”. The turn state has A and B along different
axes.

The matched states are used in the re-configuration com-
mands, since they are considered final states. The other
ones are transitional, i. e. they serve as intermediate
states during re-configuration between two matched states.
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Figure 4. MMIC-I’s WiFi server block diagram.

Figure 5. MMIC-I’s WiFi client block diagram.

Some reconfigurations require passing by two intermediate
states, some require to pass by one intermediate state, some
others do not require an intermediate state. For the latter
case, the reconfiguration requires a single motion primitive.
While the other reconfigurations use a combination of motion
primitives. All MMIC-I motion primitives are listed in Table
6. Re-configurations between matched-stretched states use
Primitives from 1 to 4. The turns use from 4 to 8. The
“fwd” and “back” in the primitive naming refers to towards
which side, A - fwd, B - back, the motion happens. To
identify which reconfiguration can be accomplished using a
single primitive and what that primitive is, the reconfiguration
map shown in Figure 9 can be used. The color of the
intersection cell between a chosen initial state on the left
column and a target state chosen on the upper row, provides
this information. If the cell is grey, a single-primitive recon-
figuration is not possible, though it might be possible to use
multiple primitives. If the cell is colored, the transition is
possible using the primitive number written in the cell. The
green identifies intermediate states, while the blue final states.
The black cells identify reconfiguration between same states,
which is not a reconfiguration. Some cells have asterisks that
indicate possible moves that the robot is capable of executing,
but not necessary or used during motion generation for the
demo build sequence.

To determine the sequence of primitives needed to go from a
matched state to another it is sufficient to perform an iterative
search on the reconfiguration map.
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Figure 6. MMIC-I’s board A control loop block diagram.
8



Figure 7. MMIC-I’s board B control loop block
diagram.

Figure 8. Bolter state machine diagram representing the
series of states, from start to completion of the bolting

process.

Table 6. MMIC-I’s motion primitives. The first four
primitives entail motion along the same direction, while
the last four include a rotation of the hip, thus a change

of direction.

Primitive
1 fwdContract
2 backContract
3 fwdExtend
4 backExtend
5 fwdTurnCW
6 fwdTurnCCW
7 backTurnCW
8 backTurnCCW

7. OPERATING MODES AND AUTONOMOUS
FAULT DETECTION

MMIC-I has three possible operating modes: standby, safed
and operational mode, as shown in Table 7. Upon startup,
the robot enters standby mode. When in standby mode, the
voltage regulator is not powered, thus all the modules are
not powered. In these conditions, MMIC-I can be manually
extended or contracted to position it onto a face, since the
servo motors are back-drivable. MMIC-I stays typically in
standby mode when waiting for other robots to complete their
motion or when it’s done with a task. In this mode, MMIC-I
does not accept motion commands, it only accepts commands
to change operating mode. When it’s time to move or bolt, the
opsUI sends a command to transition to operational mode.
While in operational mode, all actuators are powered, the
voltage regulator is on and MMIC-I is able to accept all types
of commands.

When switching to “opmode”, actuators are set to go to their
home position. The home position corresponds to a con-
tracted configuration, gripped to a face. It is hence advisable
to have MMIC-I already in this configuration before sending
the opmode command. The autonomous fault detection is
implemented in such a way that, if any fault is detected,
MMIC-I goes to standby or safed mode. Safed mode differs
from standby mode in that the hip and arm modules do not
loose power upon the automatic switch of mode. Safed mode
is designed for those faults that need immediate intervention,
but the intervention shouldn’t compromise the integrity of the
robot or structure. For the rest, standby mode is used.

Table 8 lists the faults currently implemented on MMIC-I
and the respective mode that the robot enters upon detection.
After a bolting or unbolting failure is detected, MMIC-
I enters standby mode because the bolting action always
happens when the robot is fully gripped to a face. So cutting
power to the actuators doesn’t let the robot fall. Same applies
to the initial state mismatch fault. This is triggered when,
upon reception of a reconfiguration command, the initial state
communicated within the command and the current state,
calculated using IMU measurements and PWM values, do
not coincide. This check is important because it validates the
opsUI belief of MMIC-I’s current location in the structure.
The low battery fault triggers when either of the two VbatA
or VbatB , fall below 10 V for more than 0.5 seconds. The
assembly system operation fault is the only fault that is
externally triggered. It is used when there is a fault in the
entire armadas system and it is wanted that the robots enter a
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Figure 9. MMIC-I’s reconfiguration map. It determines if it’s possible to transition from an initial state (column on
the left) to a target state (row above) using a single primitive. A colored-background cell filled with a number identifies

a possible transition through that specific primitive number.

Table 7. MMIC-I’s operating modes and their features: how to enter and exit, what modules are powered and what
commands can be received in each mode.

Standby mode Operational mode Safed mode
Entry Upon startup, Command Fault,

fault, command only command
Power availability No Yes Limited: hold hip/arms

to modules position only
Command Limited: transition to Yes Limited: to hip/arms
availability other mode only actuators only

Exit Command Fault, command Command

fault mode too. If the assembly system operation or/and the
low battery faults trigger during a motion, the robot completes
the motion first and then enters standby mode. All the other
faults switch the mode to safed. The arm not fully contracted
fault is triggered when after a contract arm command, the
physical switch doesn’t get pushed. This fault can only
happen in the middle of a motion, so the resulting mode is
safed.

With regards to overcurrent faults, there are two types: the
idle check and the operational check. The idle check happens
at the beginning and end of a reconfiguration motion and
consists of verifying that the current draw for this module
is lower that a maximum allowed when the robot is in a
resting - gripped to a face - configuration. This check is

aimed at spotting situations in which the robot is not properly
gripping to a face, or the arm is not properly contracted
because stuck, or a bolter is for some reason stuck in a
fastener. If any of these conditions are true and MMIC-
I starts a motion, the consequence would be that the robot
falls or motors pull high current for a long time and get
damaged. The operational overcurrent check is performed at
all times. The threshold relative to this check is the maximum
absolute allowed current value for each module. Events that
might trigger the operational overcurrent are short-circuit due
to cables wearing or damage, presence of an obstacle that
impedes locomotion, etc.

The hip mismatch fault wants to catch malfunctioning or
damage of the hip encoder, or its connection, when the robot
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enters operational mode. It triggers when the reading values
differ substantially from the known value of the hip angle in
the contracted-gripped configuration.

Finally, the internal communication loss fault detects if the
integrity of the board A-board B communication was com-
promised. The fault is triggered if board A stops receiving
B’s heartbeat for a given amount of time or if A sent the
same command to B multiple times, but never got acknowl-
edgement. Before integration with the opsUI, the firmware
included an “external communication loss” to handle the
WiFi malfunctioning case. In this version, MMIC-I client
would send a periodic heartbeat to the server, similarly to how
B sends its heartbeat to A through serial. The periodic WiFi
heartbeat packet was replaced with a periodic request from
the opsUI, so now this WiFi loss check is done by the opsUI
itself, and not the firmware.

8. VALIDATION DATA
Validation of MMIC-I’s firmware performance was per-
formed during the ARMADAS ground demonstration of au-
tonomous robotic assembly. For more information and data
collected ducting the ARMADAS ground demo please refer
to [26], [27] and [25]. The data included in this section
aims at showing the efficacy of the bolter state machine
and the efficiency of the WiFi communication. Figure 10
shows how many times, in percentage, it was sufficient to run
the bolter state machine respectively once, twice and three
times, to result in the successful bolting of a given pair of
fasteners. Figure 10 also shows the percentage of failure,
which indicates the number of fasteners that MMIC-I wasn’t
able to bolt. During the ground demo, the total number of
engaged fasteners was 2524, which means that the number of
fastener pairs successfully bolted after one attempt was 2307,
103 after two attempts, 28 after three, and 86 failed. One of

Figure 10. Percentage of bolting success after first,
second, third attempt, and failure.

the main factors influencing the success of MMIC-I’s bolting
action is the placement accuracy of the structural unit that
MMIC-I is tasked to attach to the structure. If the voxel is not
well placed and there is a gap between the two faces MMIC-
I is trying to connect, the fasteners are not able to interlock,
even when correctly engaged. During the ground demo, this
was the main reason of bolting failure.

During the ground demo, the opsUI would send through the
server a command packet to MMIC-I every 1.2 seconds and
wait for a feedback heartbeat packet as acknowledgement.

Table 8. MMIC-I’s autonomously detectable faults and the operating mode resulting from the detection.

Fault Triggers when Mode
(Un)Bolting failure After trying three consecutive times, the bolter module Standby

wasn’t able to bolt successfully
Arm not fully contracted After executing an arm contraction command, the Safed

contraction is not sensed by hardware
Bolter module overcurrent Bolter electrical current rises above a given threshold Safed

Gripper module overcurrent Gripper electrical current rises above a given threshold Safed
Locomotion module overcurrent Locomotion electrical current rises above a given threshold Safed

Hip mismatch Entering operational mode, the hip angle reading differs Safed
substantially from its supposed value

Initial state mismatch Receiving a reconfiguration command, the detected Standby
and communicated robot states do not match

Internal communication loss Board A stops receiving B’s heartbeat for a given time Safed
interval and/or when B doesn’t acknowledge

reception of a command repeatedly sent by A, through Safed
wired connection internal to the robot

Locomotion module overcurrent Locomotion electrical current rises above a given threshold Safed
Low battery Battery level falls below a certain threshold Standby

for a given time interval
Assembly system operation Externally injected through command Standby
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If the heartbeat packet is not received within 0.7 s, the
opsUI counts that as a failed communication attempt, in
which MMIC-I is not responding. Figure 11 shows WiFi
communication efficiency. The percentage, calculated using
a moving window approach, measures how many communi-
cation attempts were successful over the last 100 attempts.

Figure 11. MMIC-I’s WiFi communication efficiency.

9. CONCLUSIONS AND FUTURE WORK
The Automated Reconfigurable Mission Adaptive Digital
Assembly System (ARMADAS) is a project being developed
in the Coded Structures Lab at NASA Ames Research Center.
The Mobile Metamaterial Internal Co-Integrator (MMIC-I) is
one of the relative robots, responsible for securing, or bolting,
to the structure all the contact faces of a voxel that has just
been placed by another robot. MMIC-I is able to locomote to
a given location in the structure through contraction/extension
of its two arms, hip rotation and gripping. When it reaches a
face and both its gripper modules are extended, it activates
the bolter module, that engages the fasteners and and locks
the new voxel face to the structure.

MMIC-I’s avionics includes two custom made controller
boards, mounted on the robot, and a server board responsible
for communication with the operation User Interface (op-
sUI). All the boards mount the dual-core ESP32 chip, which
allows to run the WiFi communication task on a separate
and dedicated core. The two controller boards on the robot
mount: an Inertial Measurement Unit to detect the orientation
of the robot, and a 8-channel ADC converter to measure the
battery current and voltage, the regulated voltage, and all the
currents drawn by the actuation modules. Other sensors are
the magnetic absolute hip encoder and a switch that confirms
when the arms are contracted. The sensors data are received
through the i2c protocol.

MMIC-I’s boards are identified by the side they belong to: A
and B. Board A hosts the WiFi client, the motion primitives
and motion planning, the bolter state machine, operating
modes and autonomous fault detection. The WiFi client-
server implementation allows the opsUI to send command
packets and receive heartbeat packets containing the overall
status of the robot. Board B only executes commands sent by
A through a wired serial connection that passes through the

robot. B sends a continuous heartbeat to A, sharing the latest
current/target angles and the voltage/current measurements.
Whenever A sends a command, B acknowledges reception.

MMIC-I has 15 possible states. Each motion consists of
reconfiguration between states, which can happen executing
between one and three motion primitives. The number and
types of primitives required for each reconfiguration is dic-
tated by a reconfiguration map, which is embedded in the
firmware.

MMIC-I has three operating modes and autonomous fault
detection. Upon startup, the robot automatically enters
standby mode, in which all actuators are off. When ready
for operation, the robot is commanded to enter operational
mode. When faults that need immediate attention are de-
tected, MMIC-I automatically enters safed mode, which has
all actuators disabled except for the hip and arms, to avoid
crashing. Upon detection of faults that can be addressed
after completing what is currently being executed, MMIC-
I automatically enter standby mode. Implemented faults
include: overcurrent detection, low battery, not allowed state
detection, internal communication loss, etc.

With the autonomous robotic assembly ground demonstra-
tion, the ARMADAS project is transitioning to a new phase
aimed at preparing for a flight demo. This phase includes re-
design of MMIC-I and its firmware to increase their flight
readiness. For the flight demo, the team will consider re-
placing the herein described communication protocol with
an international standard, such as CCSDS space packets or
ECSS PUS services, and add the capability of receiving
housekeeping data from the robots without the need of a
heartbeat request by the opsUI. Furthermore, the team will
work on increasing the overall system autonomy level.

The ARMADAS team has additionally demonstrated au-
tonomous reconfiguration of structures trough detachment,
transportation and re-attachment of voxels previously locked
onto the lattice, in a different location. MMIC-I’s unbolting
capability allowed for this demonstration.
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