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Abstract16

This paper is aimed at atmospheric scientists without formal training in statistical17

theory. Its goal is to, 1) provide a critical review of the rationale for trend analysis18

of the time series typically encountered in the field of atmospheric chemistry; 2)19

describe a range of trend-detection methods; and 3) demonstrate effective means20

of conveying the results to a general audience. Trend detections in atmospheric21

chemical composition data are often challenged by a variety of sources of uncer-22

tainty, which often behave differently to other environmental phenomena such as23

temperature, precipitation rate, or stream flow, and may require specific methods24

depending on the science questions to be addressed. Some sources of uncertainty25

can be explicitly included in the model specification, such as autocorrelation and26

seasonality, but some inherent uncertainties are difficult to quantify, such as data27

heterogeneity and measurement uncertainty due to the combined effect of short28

and long term natural variability, instrumental stability, and aggregation of data29

from sparse sampling frequency. Failure to account for these uncertainties might30

result in an inappropriate inference of the trends and their estimation errors. On31
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the other hand, the variation in extreme events might be interesting for different32

scientific questions, for example, the frequency of extremely high surface ozone33

events and their relevance to human health. In this study we aim to, 1) review34

trend detection methods for addressing different levels of data complexity in dif-35

ferent chemical species; 2) demonstrate that the incorporation of scientifically in-36

terpretable covariates can outperform pure numerical curve fitting techniques in37

terms of uncertainty reduction and improved predictability; 3) illustrate the study38

of trends based on extreme quantiles that can provide insight beyond standard39

mean or median based trend estimates; and 4) present an advanced method of40

quantifying regional trends based on the inter-site correlations of multi-site data.41

All demonstrations are based on time series of observed trace gases relevant to at-42

mospheric chemistry but the methods can be applied to other environmental data43

sets.44

1. Introduction45

Chandler and Scott (2011) defined a trend as the “long-term temporal variation46

in the statistical properties of a process, where ‘long-term’ depends on the appli-47

cation.” Since long-term is a relative concept, attempts to detect possible trends48

might be made before a time series is of sufficient length for accurate trend de-49

tection, because in many circumstances the necessary length of the time series50

is not known beforehand. Under these circumstances, the trend detection might51

be less reliable when dealing with the large complexities of atmospheric chemi-52

cal composition measurements, e.g. the combined effect of spatial and temporal53

variability, instrument detection levels, and/or the influence of extreme events.54

Therefore the statistical models that ignore the underlying complexities produce55

under-represented estimation errors and biased trend estimates, providing either56

an over-interpretation of noisy data or inconsistent results for scientific assessment57

(Tong, 2019). These circumstances can be avoided if the atmospheric chemistry58

research community is familiar with a range of acceptable statistical approaches59

and their correct application.60

Sound scientific assessment relies on good statistical practices. Whereas var-61

ious trend detection techniques often arrive at similar answers with respect to62

estimated slopes or offsets, the uncertainties estimated by these different tech-63

niques vary widely. Because scientists assess the robustness of a trend through the64

associated uncertainty estimate, it is critical that an appropriate trend detection65

technique is applied.66

An appropriate reported uncertainty is as important as the trend estimate, and67
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a trend value without a properly derived uncertainty estimate provides no use-68

ful information for scientific assessment. Even though widely applied regression-69

based approaches always report the standard error (i.e. uncertainty) associated70

with each regression coefficient (e.g. trend value), the uncertainties can be un-71

realistically narrow if the model is applied incorrectly. The statistical model can72

be inappropriate if, 1) the model assumptions are violated; and/or 2) the model73

specifications are not adequate. If the model assumptions are not met, the result74

might be unreliable; if the model specifications are either mis-fitted, under-fitted75

(oversimplifying the reality) or over-fitted (using too many predictors to describe76

unimportant variation), the result is not representative.77

Atmospheric scientists interested in understanding methods of time series78

analysis and trend detection can turn to a wide range of text books and review ar-79

ticles for guidance (Brockwell and Davis, 1987; Hamilton, 1994; Chatfield, 2000;80

Lütkepohl, 2005; Durbin and Koopman, 2012; Box et al., 2015; Shumway and81

Stoffer, 2017), with some sources focusing on environmental time series (Chan-82

dler and Scott, 2011), meteorology (Wilks, 2011) or climate change (Von Storch83

and Zwiers, 2001). However, none of these references focus on atmospheric chem-84

istry, which may leave atmospheric chemists unaware of the most appropriate sta-85

tistical methods for analyzing time series of trace gases. This paper is aimed at86

atmospheric chemists to show how trend analysis can be improved if appropriate87

techniques are applied, and to encourage the uptake of statistical thinking (i.e. not88

relying on a single approach).89

Figure 1 shows the monthly mean time series of several trace gases measured90

at surface level from Mauna Loa Observatory, Hawaii (19.5◦N and 155.6◦W; 339791

m above sea level) (Oltmans and Komhyr, 1986; Thoning et al., 1989; Dlugo-92

kencky et al., 2020). This example demonstrates that the data characteristics and93

variability can vary widely among different chemical species, so a single set of94

trend techniques would have difficulty addressing the range of factors that con-95

tribute to uncertainty. The data characteristics of these time series can be summa-96

rized as follows: 1) Seasonality: methane (CH4) and carbon dioxide (CO2) have a97

regular seasonal cycle with a lower variability, carbon monoxide (CO) and ozone98

(O3) have an erratic seasonal cycle with a higher variability, and nitrous oxide99

(N2O) and sulfur-hexafluoride (SF6) have no seasonal cycles because they do not100

interact with the biosphere and lack efficient sink mechanisms in the troposphere;101

2) Magnitude of data variability: Strong increasing tendencies are obvious for102

methane, CO2, N2O and SF6 even without a quantification of the trends, while103

trend detection for CO and ozone is challenging due to erratic seasonal varia-104

tions and apparently weak changes over time; 3) Nonlinearity: Even though both105
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methane and CO2 show increasing trends, methane has a leveling-off in the early106

2000s, which is not seen in CO2; 4) Autocorrelation: the steady variation of CO2107

indicates that observations in the past are correlated with current observations,108

even if data are separated by several years (long memory, Barassi et al. (2011)),109

while a much shorter correlation range is found for ozone at the same location110

(short memory) (see later analysis) ; 5) Extreme events: An interesting aspect of111

CO and ozone is that the extreme events have changed over time; the high ex-112

tremes seem to show a stronger decrease than the low extremes for CO, but the113

change of the extreme events for ozone is rather uncertain. Therefore, trend detec-114

tion of the extreme quantiles could also be explored with appropriate techniques.115

This paper is outlined as follows: Section 2 reviews the challenges in trend116

detection of atmospheric time series. Section 3 describes the framework of trend117

detection techniques. Several demonstrations of these methods are presented in118

Sections 4 to 6. Section 4 examines the data characteristics and autocorrelation119

associated with different chemical species measured at MLO (although we fo-120

cus on trace gases, the methodology applies to aerosols too). Section 5 applies121

the quantile regression method to study the changes in extreme events, which122

provides additional insight to the commonly calculated mean or median trends.123

Section 6 demonstrates a method for deriving regional mean and extreme quan-124

tile trends from an extensive ozone monitoring network in the Southwest USA.125

This advanced statistical technique, when applied to a large ensemble of time se-126

ries data, not only provides more concrete evidence of the trends, but it also gives127

more robust and consistent results regarding quantile changes. Section 7 discusses128

additional advanced trend detection techniques relevant to this study. The paper129

concludes in Section 8 with discussions on the effectiveness of various trend de-130

tection techniques.131

2. Review of challenges in trend detections of atmospheric time132

series133

Various complexities are associated with the trend detection of atmospheric time134

series. The fundamental statistical principles of trend detection place the emphasis135

on the magnitude of the trend and its associated error, sample size and autocorre-136

lation (Tiao et al., 1990; Weatherhead et al., 1998). These principles are designed137

to provide sufficient (or minimum) evidence and require that the underlying as-138

sumptions are fulfilled and that model residuals are uncorrelated. Explanation of139

the variability is a more difficult task than trend detection, because it requires iden-140

tification of all (or the most important) sources of the variability and the proper141
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quantification of each attribution (Stott et al., 2010; Hegerl and Zwiers, 2011). To142

achieve the goal of appropriate attribution of data variability, we need to identify143

the best correlation between the observations and each covariate (i.e. a variable144

that is possibly predictive of the data variability) via a sequential process of vari-145

able selections and model comparisons; these processes ensure that the resulting146

model is adequate (neither under-fitted nor over-fitted). Additional techniques are147

also available for describing common phenomena such as changing magnitude of148

variability or varying seasonal cycle over time (Cleveland et al., 1990).149

A further important aspect for atmospheric composition trends is the detection150

and/or quantification of trend changes. This is especially relevant in the policy151

arena to determine the efficacy of certain air quality measures (Box and Tiao,152

1975), or to examine if the changes can be attributable to other natural or human-153

caused factors (Reinsel et al., 2005; Friedrich et al., 2020a).154

In addition to being one of the most variable trace gases (as shown in the155

Introduction), ozone’s extreme values are of particular interest to the research156

community and regulatory agencies. For example, epidemiologists might use the157

daily maximum 8-hour (MDA8) average to quantify human exposure to ozone158

pollution (Turner et al., 2016), or the number of days per summertime period in159

which the MDA8 exceeds 70 ppb to assess the frequency of high ozone events160

(the latter metric does not produce a continuous response, and an adjustment for161

the count data needs to be made by using generalized linear or additive models162

(Chang et al., 2017)). For regulatory purposes, the United States Environmental163

Protection Agency uses the annual 4th highest MDA8 ozone value at a monitoring164

site when identifying regions that comply with the National Ambient Air Qual-165

ity Standards for ozone, while Europe’s ozone target value is based on the 26th166

highest MDA8 value of a year (see also Fleming et al. (2018)).167

It is crucial to recognize that extreme values are data characteristics and not168

outliers. The formal definition of an outlier can be considered to be a data point169

that shows a substantial deviation from other data points, so it is reasonable to170

suspect that this data point is generated by a different process or mechanism171

(Hawkins, 1980; Aggarwal, 2015). Although this statement is qualitative, it sug-172

gests the extreme values should not be seen as outliers if their occurrence can173

be justified through scientific explanation. The interest in extreme ozone values174

introduces an important consideration for this study: naturally occurring extreme175

values are not equivalent to outliers which are defined as erroneous values. Ex-176

treme values may indeed contain important information that is relevant for trend177

analysis. Specifically, non-parametric methods like the often-applied Sen-Theil178

estimator, do not distinguish between outliers (presumably due to instrumental179
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error) and data points that simply present larger deviations from the median (pre-180

sumably due to natural variability); as a result this method ignores up to 29% of181

the data set. However, those neglected data in the Sen-Theil estimator can be put182

to good use in estimating changes of extreme events. As discussed later, quan-183

tile regression is designed to efficiently provide trend estimates based on multiple184

quantiles (not just the median) with a single specification.185

An additional trait of atmospheric chemistry observations is the measurement186

uncertainty, associated with instrumental and sampling conditions, and/or instru-187

ment calibration. For example, balloon-borne ozonesondes operated by NOAA’s188

Global Monitoring Laboratory (GML) have a typical sampling frequency of once189

per week, and therefore aggregated monthly means and standard deviations (or190

errors) are based on only 4 or 5 observations. These aggregated time series are191

often considered to be highly uncertain due to low sampling frequency combined192

with inherent natural variability (Saunois et al., 2012; Chang et al., 2020).193

All the uncertainties discussed above have an impact on the trend estimate194

and/or its estimated error, and therefore each factor must be considered carefully195

to avoid biased or inappropriate conclusions. Even though a large set of com-196

plications can be introduced by data measurement methods, e.g., instrumental197

stability/accuracy (Ambrosino and Chandler, 2013; Weatherhead et al., 2017b;198

Von Brömssen et al., 2018), representativeness of the measurements (Weather-199

head et al., 2017a), and sampling frequency (Chang et al., 2020), these issues are200

beyond the scope of this study. Here we focus on various approaches to study the201

characteristics of the available data, for a detection of trends in single time series202

and multi-site data.203

3. Statistical Methods204

The methodology is organized as follows: discussion of relevant factors, construc-205

tion of the statistical relationships, possible extensions, and an approach to report206

the robustness of trends.207

3.1. Ingredients in a trend detection model208

To represent the data variability in an atmospheric time series, we need to identify209

the relevant factors that can potentially affect the trend detection. For example, we210

can decompose a time series into several components as follows:211

obs = trend + seasonal cycle + covariates + error, (1)212

where the first three terms link ozone to the long-term change, cyclic seasonal213
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pattern, or external variability (these variables are referred as covariates and their214

magnitude or correlation with ozone can be measured by regression coefficients),215

and the last term represents the model residuals. The feature of this regression216

models include: 1) the trend and seasonal components can be further expressed as217

various forms, e.g. the trend component can be a line, a piecewise linear function218

(i.e. change point analysis), or any other nonlinear shape deemed appropriate, and219

the seasonal cycle can be a combination of sine, cosine or any periodic functions;220

2) this model remains linear and additive (nonlinear regression is not considered221

here), even if the trend and seasonal components are nonlinear; and 3) the relevant222

covariates should be considered by the data characteristics and scientific question223

to be addressed. For example, the addition of a meteorological adjustment might224

be important for short-term trend detection and reducing the magnitude of uncer-225

tainty (Camalier et al., 2007; Wells et al., 2021), or in multi-site data we can use226

a spatial-referenced covariate to account for inter-site correlation (Chandler and227

Scott, 2011).228

3.2. Investigation of statistical relationships by different methods229

In contrast to the identification of important components discussed above, the230

methods introduced in this section focus on how the statistical relationships can be231

explored by several different approaches. To simplify the scenario, the demonstra-232

tion is made through a basic equation for the linear trend detection of a time series,233

yt, that can be expressed as yt = β0 + β1t + Nt, t = 1, · · · , T , which involves234

an intercept β0, a slope β1 and residual series Nt. Even though this structure looks235

simple, there are several methods available for estimation of these coefficients236

(e.g., based on median, trimmed mean, weighted mean... etc). These methods can237

be classified into 2 categories:238

• Classical nonparametric approaches: these approaches often place the em-239

phasis on no assumption being made for the data distribution, and therefore240

are usually median-based methods. The Sen-Theil estimator and Siegel’s re-241

peated medians are the most common nonparametric methods (Theil, 1950;242

Sen, 1968; Siegel, 1982). The Sen-Theil estimator finds the overall median243

change by calculating all pairwise differences between observations. The244

Siegel’s repeated medians method finds the overall trend in 2 steps: 1) for245

each observation, a median change is calculated from the median of the246

pairwise difference against all the other observations; and 2) the overall247

trend is then assigned to the median among all these median values. Thus248
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the Siegel’s estimator is a more robust and computationally expensive vari-249

ant of the Sen-Theil estimator. Neither the Sen-Theil nor Siegels methods250

involve any numerical optimization, instead they assign the trend from pair-251

wise differences or individualized medians.252

• Regression based approaches: the fundamental optimization of a simple lin-253

ear equation is achieved by finding the optimal coefficients for (β0, β1) that254

minimizes the following loss functions:255

T∑
t=1

(yt − β0 − β1t)2 for the mean estimator of the coefficients,256

T∑
t=1

|yt − β0 − β1t| for the median estimator of the coefficients.257

The first equation is called the ordinary least squares (OLS), and the second258

equation is called the least absolute deviations (LAD).259

The OLS estimator is notoriously vulnerable to aberrant outliers. Therefore,260

several adjusted techniques are available for avoiding the influence of aberrant261

outliers. (It should be noted that traditional simple and multiple linear regressions262

are mainly based on OLS):263

1) LTS (least trimmed squares, Rousseeuw (1985)): the LTS is designed to264

minimize the residual sum of squares over a subset of data, and exclude265

potential outliers from the fit (which is determined by the numerical opti-266

mization) .267

2) LMS (least median of squares, Rousseeuw (1984)): this approach replaces268

the “sum” in least squares criterion with the median of squared residuals in269

the loss function:270

median
t
{(yt − β0 − β1t)2}.271

By replacing the sum with the median, the influence of outliers on the opti-272

mization can be eliminated.273

3) WLS (weighted least squares): the WLS gives lower weights to the obser-274

vations with higher uncertainties, since high uncertainty is often associated275

with extreme observations (although the appropriate weights are often dif-276

ficult to quantify). If the weights wt for each time t are supplied, the loss277

function for OLS can be modified as:278

T∑
t=1

w2
t (yt − β0 − β1t)2.279
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WLS is one of the remedies for the violation of homoscedasticity (see Ap-280

pendix S2). This approach is particularly useful when repeated measure-281

ments are available, as long as the variance at each time point can be prop-282

erly quantified. The time series in this paper do not have the associated283

variance series, therefore we use the inverse of monthly variance (derived284

from long-term mean series in each month) for data weighting (Schwartz,285

1994).286

4) Ridge regression (Hoerl and Kennard, 1970): this method prevents the prob-287

lem of overfitting to the outliers or noisy observations by altering the loss288

function as:289

T∑
t=1

(yt − β0 − β1t)2 + λ‖β‖22, where ‖β‖22 = β20 + β21 ≤ c <∞, (2)290

the second term is a parameter λ associated with L2 (Euclidean) norm ‖ · ‖2291

which constrains the regression coefficients within reasonable ranges. Even292

though it looks like a simple adjustment, this approach essentially intro-293

duces one of the most important concepts in modern statistics, i.e., regular-294

ization (or roughness penalty). The regularization is an iterative process to295

filter out the noisy variations from systematic patterns in the data structure.296

In the current setting, we only have 2 parameters that need to be deter-297

mined, but if we choose to extend the model, such as replacing the linear298

term with a nonlinear Loess (the locally weighted smoothing (Cleveland299

et al., 1990)), the result will be many undetermined (hyper-)parameters.300

The regularization technique can prevent overfitting to aberrant outliers and301

unrealistic wiggles caused by the noisy observations, and ease the multi-302

collinearity if multiple covariates are required for explaining the data vari-303

ability (Tikhonov et al., 2013). Note that equation (2) is presented as an304

illustration, and the regularization does not have to apply to the intercept.305

5) Lasso (least absolute shrinkage and selection operator, Tibshirani (1996)):306

this method replaces L2 norm (Euclidean distance) with L1 norm (absolute-307

value distance) in equation (2), i.e., ‖β‖1 = |β0 + β1|. In the multivariate308

setting L1 norm outperforms L2 norm in terms of variable selection, as L1309

norm tends to reduce the model complexity and selects fewer covariates310

(Leng et al., 2006).311

6) QR (quantile regression, Koenker and Zhao (1996)): The QR differs from312

the techniques above, as it is an optimization-based approach to find the313

quantile trend (in addition to the median) by minimizing the following loss314
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function:315

T∑
t:yt≥β0+β1t

q |yt − β0 − β1t|+
T∑

t:yt<β0+β1t

(1− q) |yt − β0 − β1t| ,316

where q is the quantile. When q = 0.5, the solution is equivalent to the least317

absolute deviations (LAD, labelled as QR-50th in this study). Numerically318

QR is a natural approach to quantify quantile changes other than the median.319

Even though we use a simple linear equation for the above demonstrations,320

these can be extended to the multivariate case (Equation (1)), i.e., we can stack321

up all of the temporal indices and covariates into a matrix Xt with a corresponding322

coefficients vector β, shortening the trend equation to yt = Xtβ+εt, t = 1, . . . , T .323

One can replace yt − β0 − β1t in the loss functions with yt −Xtβ in any of the324

regression based approaches. It should be noted that the classical nonparametric325

approaches do not involve any numerical optimizations and loss functions, thus326

this multivariate extension does not apply to those methods.327

Further information on these methods is provided in three appendices in the328

supplemental material. Appendix S1 gives a historical context explaining why329

these techniques were developed and how they took advantage of increasing com-330

puting power. Appendix 2 discusses fundamental assumptions related to the OLS331

and how other robust techniques can be an alternative. Appendix S3 describes how332

the autocorrelation can be accounted for in regression based approaches.333

3.3. Incorporation of various complexities in suitable methods334

When discussing the assumptions and formulation of trend detection models, the335

distinction between various relevant factors (as described in Section 3.1) and ro-336

bust techniques (as described in Section 3.2) is poorly documented. The standard337

textbooks for time series analysis often place the primary focus on how to ac-338

count for the relevant factors, e.g., the Box-Jenkins methodology, which is based339

on the class of autoregressive moving average (ARMA) models and their exten-340

sions (Brockwell and Davis, 1987; Hamilton, 1994; Von Storch and Zwiers, 2001;341

Lütkepohl, 2005; Chandler and Scott, 2011; Durbin and Koopman, 2012; Box342

et al., 2015), and is (mostly) built in the class of OLS/GLS models. Whereas sev-343

eral different robust techniques have been proposed in parallel by other schools of344

thought in the statistical community, we can now combine the autocorrelation and345

covariates into a more advanced technique that is resistant to the impact of outliers346

and the non-normally distributed error term, instead of relying on the GLS models347

(which are less resistant to these impacts).348
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In the meantime, some fields of environmental research have developed dif-349

ferent opinions regarding the calculation and hypothesis test of trends, such as350

the application of the slope from the Sen-Theil method and the p-value from the351

Mann-Kendall test in water quality research (Hirsch et al., 1982; Gilbert, 1987;352

Helsel and Hirsch, 2002). The classical nonparametric approaches have not been353

adopted within the realm of formal statistical education (e.g. the references listed354

above), not only because these approaches cannot incorporate the relevant factors355

naturally, but also because they treat the data samples in a rather wasteful way.356

Even though these approaches are not affected by extreme values, ignoring ex-357

treme values implies that a portion of the data will have no influence on the trend358

estimator. To acknowledge the value of all observations (including the sampling359

frequency and temporal coverage behind it), we do not recommend the Sen-Theil360

or Siegel’s estimators, because they automatically ignore up to 29% or 50% of361

the data without even checking to see if those data are actually outliers. If such a362

large portion of data is presumed to be problematic, data quality control should be363

performed before making any attempt at trend analysis.364

Based on the above arguments, the regression-based methods provide an un-365

paralleled advantage over classical nonparametric approaches, because their ca-366

pabilities are designed to continually evolve as analysts tackle more complex and367

larger datasets than ever before, facilitated by inexpensive modern computer re-368

sources. In addition to the Box-Jenkins methodology used to deal with autocorre-369

lation, and harmonic functions used to deal with repeated seasonal patterns, sev-370

eral useful extensions are available:371

• The identification of a change point of the trends is an important topic, es-372

pecially if there are known factors or interventions which could induce a373

change of trends in the time series. Typically, a meaningful trend detection374

of an atmospheric time series requires at least a few decades of data (Weath-375

erhead et al., 1998), so in general we do not expect the actual trends to be376

highly nonlinear. When a turnaround of trends or sub-seasonal patterns are377

required, we can extend a linear trend and a regular seasonal cycle, i.e. from378

yt = β0 + β1t+ γ sin(2πMonth
12

) + η cos(2πMonth
12

) +Nt, to a combination of379

piecewise trends and higher frequencies of harmonic functions as follows:380

yt = [β0 + β1t+ β2max(t− tc, 0)] +

 Q∑
q=1

γq sin(2π
qMonth

12
) + ηq cos(2π

qMonth
12

)

+Nt,

(3)

381

where β2 is an adjustment of trends after a change point occurred at a time382
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tc, and Q controls the frequency of harmonic functions. Examples for ana-383

lyzing such problems are provided by previous studies (Reinsel et al., 2002;384

2005). In addition to a piecewise linear function, we could directly specify385

regression spline functions (analogous to a seasonal-trend decomposition386

by the Loess smoother) to represent the non-linear trends, without assum-387

ing any form of nonlinearity in advance (e.g., polynomials) (Wood, 2006).388

389

• Until now, the focus has only been placed on the trend detection of a single390

(aggregated) time series. However, analysis of an ensemble of multiple cor-391

related time series at the same time is also desirable in some cases, e.g., data392

in close proximity are commonly more similar, and a measure to borrow this393

similarity can often offer a better quantification of ensemble trends and their394

associated uncertainty (Park et al., 2013; Chang et al., 2020). Whereas the395

relationship between different time series can be highly nonlinear or very396

complex (e.g. spatial variability), the class of generalized additive models397

(GAM, Hastie and Tibshirani, 1990; Wood, 2006) allows incorporation of398

spatial variability and complex interactions as covariates in the trend model399

(Augustin et al., 2009; Chang et al., 2017; Wood et al., 2017). In a situation400

where we have a collection of time series from multiple sites in meaningful401

spatial proximity, such as the ozone monitoring network across the south-402

western USA, we can also modify the trend model as:403

obs = trend + seasonal cycle + spatial inhomogeneities + error,404

in order to account for potential spatial inhomogeneities (see Section 6).405

Therefore, this type of modeling approach can be very flexible. Since a large406

amount of parametrization is usually required to capture the potential spatial407

variability or any other nonlinear relationships (which can be estimated by408

a linear combination of various basis functions), the regularization to avoid409

overfitting is a built-in routine for the model fitting of GAM (Wood, 2006).410

• The trend estimation can be made for either mean or specific quantiles411

(Koenker and Hallock, 2001; Fasiolo et al., 2020), including a single time412

series or multiple time series from a monitoring network.413

These extensions make the regression-based methods more efficient and satisfac-414

tory than the traditional nonparametric approaches.415

Before selecting a trend detection technique based solely on its basic descrip-416

tion, we emphasize the importance of examining which uncertainties have been417
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taken into account by the different techniques. Regression based methods are of-418

ten considered to be passive learning tools, that can only handle the specific task419

specified by the model formulation, and nothing more. For example, a regression420

model can handle seasonality and autocorrelation only if we explicitly specify421

these issues in the model formulation. Therefore, if additional forcings, such as422

atmospheric circulations or meteorological conditions, are considered to be criti-423

cal to identify the trend and its uncertainty, they should be specified in the models424

(techniques cannot be a surrogate for these covariates). It is always good practice425

to inspect residuals for any “suspicious patterns” and use this information to adapt426

the statistical model if necessary (e.g. Guillas et al. (2006)).427

The above discussion has two key messages for the analyst: 1) specification of428

the trend model, e.g. identification of relevant covariates, should be motivated by429

the scientific question to be addressed; the techniques only help us with improving430

quantification of trends and their uncertainty; and 2) we should not judge a method431

and its result only by its name or basic descriptions; application of advanced tech-432

niques, e.g. implementation of overfitting prevention through the GAM, does not433

mean that autocorrelation or any other important factors relevant to trend detec-434

tion have been taken into account. Instead, evaluation should be made by carefully435

inspecting any factors that are deemed important for the trend analysis.436

3.4. Using signal-to-noise ratio to assess the robustness of trends437

To assess the uncertainty of the trend estimate, in the past, a common rule for trend438

detection has been to label a trend as “statistically significant” if the magnitude439

of the estimated trend is greater than two standard errors from zero, which corre-440

sponds to a p-value less than a threshold of 0.05. If a trend did not pass this test441

then it was labeled as “statistically insignificant”. Recent recommendations have442

called for abandonment of the phrase “statistical significance”, e.g. Amrhein et al.443

(2019); Tarran (2019), supported by the special issue “Statistical Inference in the444

21st Century: A World Beyond p< 0.05” in the peer-reviewed journal, The Amer-445

ican Statistician (https://www.tandfonline.com/toc/utas20/73/446

sup1#). This recommendation is based on the fundamental concept that “sta-447

tistical significance was never meant to imply scientific importance” (Wasserstein448

et al., 2019) and “scientific conclusions [...] should not be based only on whether449

a p-value passes a specific threshold” (Wasserstein and Lazar, 2016).450

The advice from Wasserstein et al. (2019) is to abandon the use of the phrase,451

“statistically significant” and simply report the p-value for all trend calculations;452

any conclusion that a trend is scientifically meaningful should be accompanied453

https://www.tandfonline.com/toc/utas20/73/sup1#
https://www.tandfonline.com/toc/utas20/73/sup1#
https://www.tandfonline.com/toc/utas20/73/sup1#
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by a thoughtful evaluation and discussion of the data. Wasserstein et al. (2019)454

also recommend that researchers consider using alternate statistical methods to455

replace or supplement p-values. Following this advice we consider the signal-to-456

noise ratio (SNR, i.e. the ratio between the magnitude of the trend and its sigma457

uncertainty (standard error)) in addition to slope, confidence interval and p-value458

when evaluating a trend (see Section 6). This method allows us to distinguish a459

strong trend with a low uncertainty (i.e. a higher ratio) from a strong trend with a460

high uncertainty (i.e. a lower ratio). A higher SNR indicates stronger confidence461

in the resulting trend detection. Likewise, one could imagine a situation in which462

greater confidence is placed in a trend with low magnitude but very low uncer-463

tainty (high ratio), compared to a trend with high magnitude and high uncertainty464

(low ratio).465

4. Quantifying autocorrelation and uncertainty in different466

chemical species467

4.1. Quantifying autocorrelation468

We continue our exploration of the data characteristics presented in Figure 1 by469

first examining the autocorrelations in different trace gases measured at Mauna470

Loa Observatory and reported as monthly means; we then compare various fits to471

those time series. Figure 2 shows the autocorrelation function (ACF) and partial472

autocorrelation function (PACF) for the different trace gases based on monthly473

means (after deseasonalization). ACF finds the correlation of any time series with474

its lagged values (i.e. the correlation is 1 at lag 0 by definition, and decreases af-475

terwards). PACF finds the correlation after excluding the variations that can be476

explained by the previous lag(s), and therefore PACF plots typically have a spike477

at lag-1, which indicates a large portion of the higher-order autocorrelations can478

be explained or represented by the lag-1 correlation. Except for CO and ozone,479

the other gases have a slow decay ACF, but have a single spike at lag-1 in the480

PACF. The presence of such a spike suggests that autocorrelation persists for a pe-481

riod of time (over 24 lags or months in the figure), but this behavior can be well482

represented by an AR(1) process. The ACF for CO and ozone reveals a substan-483

tial drop, in contrast to other trace gases. PACF shows a different pattern for CO484

and ozone, with CO having an oscillation between positive and negative numbers485

in the first 6 lags. This oscillation indicates that considerable seasonal variations486

remain after deseasonalization, requiring a more complex component of covari-487

ate(s) or error structure to account for the sub-seasonality. Ozone shows weak488

lag-2 correlation in PACF: the following will examine the impact of various lags489
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of the autoregressive model on the trends and their uncertainty.490

The first part of Table 1 reports the fitted trend value and 2-sigma uncertainty491

for CO and ozone by various lags of the autocorrelation process (with a regular492

seasonal cycle and a single linear trend included in the model, i.e. the M1 model493

setting discussed in the next paragraph). From a statistical point of view, the OLS494

estimate of the trend value (which does not account for autocorrelation) remains495

unbiased in the presence of autocorrelation (i.e. the estimate is not systematically496

different from the truth). However, the autocorrelation does result in underesti-497

mated uncertainty for the OLS, with the OLS estimators having the lowest uncer-498

tainty for both ozone and CO. Due to a stronger autocorrelation in the CO time499

series, the magnitude of increased uncertainty is also larger than that for ozone.500

In terms of the model comparisons by R2 and mean-square error, no substantial501

improvement was found by increasing the lag of autoregressive process for either502

CO or ozone (not shown), but the maximal signal-to-noise ratio is achieved by503

AR(2) process for CO and AR(1) process for ozone.504

4.2. Exploring different complexities of data characteristics505

To illustrate the different levels of complexity between the trace gas time series,506

we further compare several model specifications listed as follows (we do not show507

the results for N2O and SF6):508

M1: fixed seasonality + linear trend,509

M2: fixed seasonality + nonlinear trend,510

M3: fixed seasonality + nonlinear trend + varying seasonality,511

M4: fixed seasonality + nonlinear trend + varying seasonality,512

where the bold fonts indicate that regularization has been applied to this compo-513

nent. Whereas the seasonal cycle is essential in time series modeling, different514

approaches to estimate this term do not have a noticeable impact on the results of515

the estimates of the other terms in the model (Weatherhead et al., 1998), includ-516

ing the regularization. The varying seasonality component essentially represents517

the short-term variability (with respect to the long-term trend). Trend detections518

based on similar decompositions of a time series can be commonly found in the519

literature (e.g. Boleti et al. (2018; 2020)). These equations are built hierarchically520

by changing or adding a single component only. Since the variations for CO2 and521

methane are relatively steady, a simple approach is expected to capture the most522

variability. The fitted results from models M1 and M2 for CO2 and methane are523



16

shown in Figure 3. Even though the CO2 record shows a slight departure from524

the straight line, it highlights the potential acceleration of increase in recent years.525

The distinction between linear and nonlinear fits (specified by the penalized cu-526

bic regression splines) is more obvious for the methane record due to a pause of527

trends in the early 2000s. Both trends increase monotonically and show no sign of528

turnaround, and therefore we might conclude that the linear approximation of the529

methane trend (54.8 [±5.9] ppb per decade over the period 1983-2019) provides530

an adequate description of the trend, with a proviso that a leveling-off period oc-531

curred in the early 2000s, and thus the rates of increase in the other periods are532

higher than the average.533

Note that the variabilities of CO2 and methane are considered to be less vari-534

able, not only due to a lack of complex interannual variations, but also because535

the magnitudes of the trends are much stronger than their seasonality. When ap-536

plying models M1 and M2 to the CO and ozone records (upper panel of Figures 4537

and 5), we see even with the nonlinear trend, the fitted results cannot adequately538

capture the seasonal peaks and troughs which show large departures from the539

regular seasonal cycle. Therefore, the next step is to investigate if further curve-540

fitting techniques, such as varying seasonality over time (Ambrosino and Chan-541

dler, 2013), can improve the quality of the fit and, more importantly, the trend542

detection. However, it is meaningless to pursue a perfect fit without proper scien-543

tific interpretations of the model specifications. To avoid overfitting, we illustrate544

the fits without and with regularization for the varying seasonality (from models545

M3 and M4, respectively).546

The effect of regularization is displayed in the lower panels of Figures 4 and547

5: the fit from M3 indeed captures many peaks and troughs, but only minor differ-548

ences can be seen from the fits between M2 and M4, especially for the trend com-549

ponent. Therefore, certain information metrics are needed for quantifying those550

model fits. We use three metrics to assess the quality of the fit: 1) R2: coefficient551

of determination; 2) MSE (mean-square error): the overall mean squared residual552

between model fitted and observed values; 3) GCV (generalized cross validation):553

the mean squared error in a leave-one-out test. Lower MSE and GCV indicate a554

better fit. However, a low MSE accompanied with a high GCV often indicates555

severe overfitting, because it implies when we randomly remove one data point556

and refit the model under the same setting, the new model will have a very poor557

performance when predicting this training point (also known as poor generaliz-558

ability).559

The second part of Table 1 reports these three metrics for CO and ozone (the560

models M5-M8 will be discussed later in this section): 1) the fit from M2 is better561
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than M1 for all metrics, because the general nonlinearity is taken into account,562

even though the level of nonlinearity looks minor for both CO and ozone; 2) the fit563

from M3 shows a substantial improvement on R2 and MSE over other models, but564

also has the worst GCV score, which implies severe overfitting as discussed above;565

3) the only difference between M3 and M4 is the application of regularization on566

the varying seasonality term, with M4 achieving a good balance between fidelity567

(low MSE) and complexity (low GCV). Overall, M4 is the best model in terms of568

curve fitting and representing the underlying process, it does not necessarily have569

a strong impact on the trend estimate. In this case a linear approximation of the570

trends (e.g. from M1) seems to be adequate, even though it might leave plenty of571

room for improvement.572

4.3. Incorporating meteorological covariate(s)573

At this stage, we only consider the very basic components that are relevant to trend574

detection (i.e. autocorrelation and seasonality), and the novel technique to capture575

the irregular seasonality. However, there is also a different approach to improve576

the model predictability: incorporation of relevant covariates (e.g., meteorological577

variables). There is a clear physical basis for taking this approach as previous578

work has shown correlation between ozone and temperature (Rasmussen et al.,579

2012; Pusede et al., 2015), and for the specific case of Mauna Loa, ozone trends580

have been shown to differ between dry and moist air masses (Gaudel et al., 2018).581

Instead of using a varying seasonality component (i.e. M4) to account for the582

irregular part of the time series, we further specify different models that extend583

from M2 via:584

M5: fixed seasonality + nonlinear trend + dewpoint,585

M6: fixed seasonality + nonlinear trend + relative humidity,586

M7: fixed seasonality + nonlinear trend + temperature,587

M8: fixed seasonality + nonlinear trend + dewpoint + relative humidity + temperature.588

In this example the regularization aims to avoid overfitting by functional compo-589

nents (e.g., nonlinear trends and seasonality: these terms are approximated by the590

spline functions), thus we do not apply the regularization to the linear term (i.e.,591

the correlation between ozone and a meteorological variable is only measured by592

a single regression coefficient). Determination of the best (sub)set of covariates593

is also known as the variable selection, the conventional approach relies on the594

statistical significance and p-value of a given regression coefficient, or relies on595
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the Lasso technique to directly rule out the unimportant covariate(s) (however,596

for an illustrative purpose, we do not adopt this approach here). Since we do not597

use the p-value as the sole piece of evidence for evaluating a trend (Wasserstein598

and Lazar, 2016), we use the same metrics listed above to assess the model fits.599

From the statistics in Table 1, the dewpoint (M5) is the most important variable600

to explain ozone variability at MLO (Gaudel et al., 2018), followed by relative601

humidity (M6) and temperature (M7). Once the dewpoint is accounted for, the602

inclusion of one or two additional covariates (e.g. M8) does not substantially im-603

prove the model fit.604

The fitted result of M5 (dewpoint) is shown in the upper panel of Figure 6,605

revealing substantial improvement with respect to M2 in Figure 5. More impor-606

tantly, with the meteorological adjustment, the nonlinear component from M2 is607

almost degenerated to a line by the regularization, which indicates that a con-608

sideration of nonlinearity is not required in this case. From the summary ozone609

statistics in the second part of Table 1, we can see that inclusion of dewpoint as610

a covariate reveals an almost linear trend, and produces a lower GCV score than611

either the nonlinear fit from M2 or the more complicated numerical optimization612

from M4.613

The lower panel of Figure 6 also compares the residual series from M2, M4614

and M5; except for an overlapping single spike in the late 1970s, we can see a615

similar error pattern between M4 and M5, thus the complex approach from M4616

might have detected the signal of meteorological phenomena. Therefore, inclusion617

of essential covariates is the key to improving model predictability, rather than618

searching for a numerical method that may not be meaningful from a physical or619

scientific perspective. Nevertheless, if the essential covariates are unknown, the620

novel technique might be useful to identify potential signals out of the residuals.621

To quantitatively summarize the trends, we replace the nonlinear components622

in M5-M8 with linear trends and report the results in the third part of Table 1623

(using AR(2) process for CO and AR(1) process for ozone). For CO, M5 outper-624

forms M1 in terms of R2, MSE and GCV, but the trend estimate and uncertainty are625

almost identical; whereas under the same circumstance for ozone, the trend uncer-626

tainty is substantially reduced from M5 (i.e., incorporation of dewpoint variation).627

Therefore the trend detection and quantification are a rather complex problem (the628

method works for ozone, but it doesn’t provide any advantage for CO).629

This example shows that different levels of complexity influence trend de-630

tection of atmospheric time series, including: 1) the magnitude of autocorrela-631

tion could have a strong impact on the trend uncertainty; 2) trend detection is632

a different task from curve fitting, so pursuing a high R2 value or a perfect fit633
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through the numerical method is not the primary goal for trend detection. Also, a634

model selected by a single information metric (e.g., maximal R2 or minimal MSE635

value) does not imply that the model is appropriate; and 3) the novel technique is636

only useful when we specify the appropriate model, requiring us to consider the637

model’s implications for bad inference (fitting non-meaningful changing season-638

ality) and good inference (finding that nonlinearity of trends can be attributable639

to meteorological variability). We made this demonstration by showing that a lin-640

ear fit (analogous to a GLS routine) with an appropriate model formulation can641

outperform the nonlinear fit with a complex numerical optimization (via a GAM642

framework).643

In terms of trend detection, even though the linear trends in this section show644

a departure from zero at the 95% confidence level regardless of autocorrelation645

or covariates, this outcome is simply due to the signal being much stronger than646

the noise. Rather than limiting this analysis to just one or a handful of time series,647

which may result in an incomplete or biased view of the impact of autocorrela-648

tion, Appendix S4 in the supplementary material provides a demonstration of the649

impact of autocorrelation on short-term trend detection. The demonstration relies650

on 1,728 globally distributed time series based on monthly tropospheric column651

ozone values detected by the OMI/MLS satellite instruments (from October 2004652

through December 2019) (Ziemke et al., 2019), and it clearly shows that substan-653

tial discrepancies arise when ignoring autocorrelation.654

5. Using quantile regression to explain the changes in extreme655

events656

The previous section showed that a perfect fit to a time series using a numerical657

method is not a solution for trend detection, rather relevant covariates might be658

the key for improving model predictive power. However, the complex variability659

of an atmospheric time series, such as ozone, can not always be attributable to spe-660

cific factors, and can also be subject to measurement uncertainty. Whereas several661

trend detection techniques are able to describe the central tendency of a time se-662

ries, usually represented by mean or median based slope estimates, consideration663

of changes in the extreme values (e.g. 5th or 95th percentiles) should also be a part664

of trend analysis, as the central and extreme tendencies are complementary com-665

ponents of an atmospheric time series (Simon et al., 2015; Gaudel et al., 2020).666

An effective method for quantifying trends across the range of observations (e.g.667

low, median and high values) is quantile regression.668

As a demonstration of quantile regression we focus on long-term surface669
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ozone time series from three remotely located monitoring sites (Cooper et al.,670

2020a;b): the coastal site of Mace Head, Ireland, the high elevation site of Mt.671

Waliguan in central China, and Schwarzwald-Sued in a low elevation forested re-672

gion of southwestern Germany. These time series are at least 20 years in length673

(i.e., extend back in time to at least 1995), and are deseasonalized in order to fo-674

cus on the irregular part of the time series (Cooper et al., 2020a). These three sites675

were selected because their central tendency is relatively linear (as illustrated by676

the Loess smoother), which facilitates the comparison of the change in extreme677

quantiles with respect to the central tendency. Note that the low and high per-678

centile ozone trends at MLO are relatively consistent with the mean trends (with679

respect to the selected sites above), so the results are not shown here.680

Figure 7 shows the monthly anomaly series from the three sites. To demon-681

strate the unique capability of quantile regression, we also fit several trend esti-682

mates from different techniques (and the Loess smoother for an indication of vari-683

ability on shorter time scales). As described earlier in this paper, autocorrelation684

results in underestimated trend uncertainties but does not result in biased trend685

estimates (thus the lines from OLS and GLS are almost identical). Even though686

some trend estimates could be more sensitive to outliers or extreme values, with687

sufficiently long time series (and no aberrant outliers), most techniques yield sim-688

ilar trends, particularly those techniques that are designed to avoid the influence689

of outliers by using median slope estimates (e.g. Sen-Theil, Siegel, QR-50th and690

LMS), by removing the most extreme data (e.g. LTS), or by implementing regu-691

larization (e.g. Lasso and ridge regression). It should be noted that only the LMS692

estimator shows a visible difference from the other estimators at Mace Head and693

Mt. Waliguan, presumably because the LMS estimator can be unstable in response694

to small changes in the data (Hettmansperger and Sheather, 1992). Nevertheless,695

since all of these techniques aim to derive trends that are representative of the cen-696

tral tendency of the time series, none are suitable for the investigation of extreme697

events.698

The quantile regression provides a natural extension to estimate the trend at699

any specific quantiles (in addition to the QR-50th for the median change in Figure700

7). For example, we show the quantile trends and their uncertainty (accounting for701

autocorrelation) from the 5th to the 95th percentile for all three sites in Figure 8.702

The primary indication of these plots is that the changes in different percentiles703

can be inconsistent with the mean or median trends, especially for the extreme per-704

centiles, thus it is desirable to include these estimators of extreme percentiles to705

convey our extended knowledge beyond the central tendency. The distribution of706

the quantile trends at Mace Head shows that the mean trend estimator is stronger707
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than the median estimator, and consistently stronger than the estimators for all708

percentiles greater than the 40th percentile. Because the estimators for the 5th709

and 10th percentiles are stronger than the mean estimator, we can conclude that710

the positive mean trend is largely driven by the strong increases of the lower per-711

centiles. Similarly, the increasing mean trend at Mt. Waliguan could be driven by712

the strong enhancements of the high percentiles (Lefohn et al., 2017), and the de-713

creasing trend at Schwarzwald-Sued could be driven by the strong decline of high714

percentiles, although the uncertainty of the quantile trends mostly overlaps with715

the uncertainty of the mean trends.716

In addition to the quantile linear trend analysis demonstrated above, we further717

show that the change point analysis can also be carried out by quantile regression718

(Equation (3), but only applied to deseasonalized anomalies). Figure 9 shows the719

ozone anomaly series measured at Zugspitze, Germany (47.4◦N, 11.0◦E, 2800 m).720

The primary feature of this time series is that it has a clear (overall) upward trend721

and a relatively steady trend before and after the late 1990s (Cooper et al., 2020a).722

We fit quantile piecewise trend models to the time series, and we can see how the723

changes vary at different quantiles. The largest turnaround can be found in the724

change of trend at the 5th percentile, and the upward trend at the 95th percentile725

since the late 1970s has paused. Nevertheless, the overall mean trend does not726

show a substantial decrease after 1997. This is another example that demonstrates727

how the statistical relationships can be explored through quantile regression.728

6. Deriving common mean and quantile trends in multi-site data729

Trend analysis of a collection of multiple time series has become a necessary task730

for scientific assessments nowadays, due to the availability of a variety of moni-731

toring data from local to regional-scale networks. Such analysis has two main pur-732

poses: 1) compare trends from different locations, and 2) derive common trends733

within a network, to enable the comparison of trends between different networks.734

A direct approach to achieve the first purpose is to fit a model to each time735

series independently, but in reality the lengths of the time series are often different736

and the spatial coverage of a network can change over time. In order to truncate737

the data to a (minimum) common period, a portion of data is often wasted. Also,738

this approach might not explore the full potential of available information. For739

example, none of the sites show a strong trend, but a high agreement of the trends740

is observed across all sites. Under this circumstance the small signal among all741

sites is expected to be representative. Therefore, a joint statistical inference of742

multiple sites is a better option to deliver a more reliable conclusion.743
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The irregular distribution of monitoring stations in space is an obvious reason744

that a common trend can not be derived properly and representatively by calcu-745

lating a simple average. Given that urban surface ozone or other pollutants can be746

sensitive to localized emissions (e.g. traffic), the data variability and trends from747

neighboring locations might be different, which introduces additional spatial in-748

consistencies. Due to these inherent inhomogeneities, as well as the fact that a749

network can consist of hundreds or thousands of monitoring sites, approaches that750

do not account for spatial inhomogeneities will yield unreliable results.751

The final goal of this paper is to describe methods for quantifying regional752

scale trends based on observations from large and widespread monitoring net-753

works. For this demonstration, a collection of daily surface ozone time series from754

168 monitoring stations across the southwestern United States (California, Nevada755

and Arizona) was downloaded from the Tropospheric Ozone Assessment Report756

(TOAR) database (Schultz et al., 2017; TOAR database, 2017). To reduce the757

complexity of the problem, we use all maximum daily 8-hour averages (MDA8)758

limited to the warm season (April to September) to derive the regional trends (i.e.,759

around 183 data points per year for each station) over 2000-2014 using all 168760

stations.761

A preliminary data visualization is shown in Figure 10 by comparing the mean762

and quantile trends and their SNR values derived from each individual site. We can763

see that the pattern of the 95th percentile trends tends to be negative with strong764

SNR, and the magnitude of negative trends is reduced for the mean and the me-765

dian MDA8 values, whereas both trends and SNR values for the 5th percentile766

are centered around zero. This figure illustrates why the multi-site trend analysis767

is complicated, due to the highly variable local trends. The first two rows of Fig-768

ure 11 further display the regional 5th, 50th and 95th MDA8 distributions during769

2000-2002 and 2012-2014 (several techniques are available for this type of anal-770

ysis, see the study by Heaton et al. (2019); details are beyond the scope of this771

paper. Here we use Gaussian process approximation through the quantile GAM772

(Fasiolo et al., 2020)). Figures 10 and 11 show that a general reduction can be773

expected for the 50th and 95th percentiles over the study period, and the next step774

is to investigate the sub-regional variations and explicitly quantify the regional775

trends.776

6.1. Investigating sub-regional variations777

To compare the trends from different sub-regions, we further approximate the778

5th, 50th and 95th regional MDA8 distributions on a 0.1◦× 0.1◦ grid covering the779
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monitoring network for each year, and derive the trend estimate based on the GLS-780

AR1 model in each grid cell (we can also directly apply quantile regression to all781

MDA8 values; the result will be similar, but it requires much more computational782

power due to a far greater sample size). The results are shown in the third row783

of Figure 11: at the 95th percentile negative trends dominate across most of the784

region, at the 50th percentile the negative trends are of a lower magnitude and785

there are a few additional spots with positive trends, while the results are mixed786

across the region at the 5th percentile.787

The map view of SNR for MDA8 ozone trends and uncertainties is shown in788

the fourth row of Figure 11 . When the ratio exceeds a value of ±2, the signal of789

the trend is twice as large as the estimation uncertainty, which corresponds to a790

rejection of the null hypothesis at the 95% confidence level. A continuous scale of791

SNR allows us to gauge our confidence in a trend based on our tolerance for noise792

in the time series. For example, the largest magnitude of positive trends at the 5th793

percentile was found over the city of Bakersfield, but the highest SNR ratio over794

California was found in the Los Angeles region.795

The above findings and discussion demonstrate that reporting SNR is a useful796

endeavor for providing additional information on the trend uncertainty (especially797

in a map view). It efficiently characterizes the quality of the trend estimation in798

an objective way, without further computation. Thus reporting SNR is an effective799

and intuitive alternative to providing a dichotomized statement of statistical signif-800

icance based on a p-value threshold, since the uncertainty cannot be dichotomized.801

6.2. Deriving overall regional trends802

Deriving common trends from multi-site data requires the consideration of two803

additional challenges (Chandler and Scott, 2011): 1) data from neighbouring sites804

are likely to be correlated (but not necessarily with similar trends), and 2) each site805

might show a unique feature due to its geographical characteristics (e.g., degree of806

urbanization), thus the general statistical model for multi-site data can be written807

as:808

obs(s, t) = trend(t) + fixed spatial field(s) + varying spatial field(s, t) + error,809

where the first component is the regional trend, the second component represents810

the purely spatial field (i.e., not varying with time), the third component represents811

the temporally varying spatial patterns (i.e., an interaction term), and the error812

term follows an AR(1) process. The second and third terms address the challenges813

pointed out above, respectively. Therefore, even though a single trend component814
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is used to represent the common signal regionally, the interaction term allows815

some deviations to the regional trends from each individual station (adjustments816

are made to the individual trend against the regional trend for each station). The817

fixed spatial field is specified through the same GAM setting described in the818

last section, and the varying spatial field is represented by the station-specific819

variations using a factor smoothing technique (without actually implementing the820

full spatial interpolation for each year (Chang et al., 2017; Pedersen et al., 2019)).821

The upper panel of Figure 12 shows the regional trends corresponding to the822

mean, 5th, 50th and 95th percentiles (their values are reported in Table 3). If we823

simply assume all sites are independent, and calculate the regionally pooled trend824

estimate and standard error (by calculating an independent trend and uncertainty825

for reach site, and then simply taking the mean and pooled standard error, i.e., if826

σSE(i) is the standard error of the fitted trend at site i, then the pooled standard827

error is
√∑n

i=1 σ
2
SE(i)/n), the regional mean trend and 2-sigma range will be828

-0.72 [±1.11] ppb per year. However, once we take into account inter-site corre-829

lations, the slope is less negative and uncertainty estimate is reduced substantially830

(-0.32 [±0.15]). Except for the spatial irregularity, this is also likely due to a well831

recognized phenomenon called preferential sampling (Diggle et al., 2010), e.g.,832

an area with denser monitoring locations can be simply due to the fact that this833

area is more polluted and spatially dense measurements are desired to evaluate834

human exposure. Therefore a simple average of all individual trends results in bi-835

ased regional trends (in this case, an overestimation of negative trends). We also836

observe that the magnitude of the decreasing rate in the 95th percentile is more837

than twice as great as the 50th percentile (and with a higher SNR). The regional838

trend for the 5th percentile is flat, as we expected from the result in the last sec-839

tion. A further demonstration is made by displaying the trend estimate for every840

5th percentile (with the 1st and 99th percentiles also included) in the lower panel841

of Figure 12. With this amount of information, we see that the variations are tran-842

sitioning smoothly from one percentile to the next (in contrast to the result from a843

single time series, see Figure 8) with no spike in variability, as expected.844

6.3. Sensitivity of the regional trend to the sites with a stronger signal845

The final experiment is devoted to a sensitivity and stability test regarding the im-846

pact of those sites with the strongest signal on the estimation of the regional trend.847

For the annual 95th, 50th and 5th percentile trends we sequentially removed the848

sites with p-values less than 0.01, 0.05 and 0.10, and refitted the statistical model849

to investigate the influence of the remaining sites on the regional trends. The re-850
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sult is shown in Figure 13: in each panel we first show the regional trend esti-851

mated using all available sites (dark red), then the resulting trend after removing852

the sites with p-values less than 0.01 (orange), 0.05 (light blue) and 0.10 (dark853

blue). The features of this plot can be summarized as follows: 1) At the 50th and854

95th percentiles, since the removed sites had relatively strong negative trends, the855

magnitudes of the slopes of the regional trends are reduced with each iteration;856

2) Even though the slopes have changed, the interannual variations remain very857

similar in each iteration, indicating that this statistical approach is very robust;858

3) The degree to which the slopes decrease depends on the initial strength of the859

signal. For example, at the 95th percentile the slope is strong when all sites are860

used, thus the drop is also the strongest when sites are removed sequentially, but861

at the 5th percentile the slope is very weak from the outset, thus the result is in-862

sensitive to the removal of sites with the strongest signal (also because fewer sites863

are removed, see following comparison).864

To assess the uncertainty of the sensitivity analysis, we provide the summary865

statistics for the further removal of sites according to the p-value in Table 3. For866

the 95th and 50th percentiles, the magnitude of trends decreases and the p-value867

increases with each iteration. The implication is that if the signal is strong enough868

(e.g. 95th percentile), we can still derive a clear regional trend even if 50% of the869

most representative sites are removed. For example when the individual sites with870

p-values less than 0.10 were removed from the analysis the remaining sites were871

only 38% of the original network but the regional trend clearly persisted (see the872

95th percentile results in Table 3). This result is consistent with the discussion873

of p-values by Wasserstein et al. (2019) and demonstrates that a trend can still874

contain valuable information when the p-value exceeds a threshold of 0.05; this875

result is also consistent with the vector plot of trends and uncertainty demonstrated876

in the TOAR special issue (Gaudel et al., 2018; Fleming et al., 2018). In this877

example we have shown that an advanced modeling approach making full use of878

all available information enables us to properly quantify the mean and extreme879

quantile changes, and make robust statements about the regional variation, which880

is not possible when the analysis is limited to just one or a handful of sites.881

7. Discussion of further advanced techniques882

In the previous sections we demonstrated the trend detection of single time series883

by various trends techniques and of multi-site data based on the GAMs. These884

techniques are chosen not only because their systematic and flexible formulations885

allow for extensions (e.g. from linear to non-linear trends or from single time886
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series to multi-site data), but also because their programming languages have sim-887

ilar syntax (see supplementary code). However, advancements in trend detection888

techniques are continuously evolving, and several additional developments are889

available and can be applied to achieve differing but appropriate perspectives.890

As discussed and demonstrated previously, trends in extreme events of atmo-891

spheric compositions are of great interest. Quantile regression is a straightfor-892

ward approach for practitioners since it shares similar theoretical background and893

implementation as traditional regression models. Other perspectives are through894

1) bootstrap-based approaches (Gilleland, 2020), and 2) approaches based on895

the generalized extreme value (GEV) or threshold exceedance (e.g. generalized896

Pareto) models (Berrocal et al., 2014; Stein, 2017; Opitz et al., 2018). Bootstrap897

is a resampling procedure that can be used for estimating the sampling distribu-898

tion about the trends and/or their uncertainty. This technique is also known for899

its ability to mitigate the violation of normality assumption, and for being robust900

to autocorrelation and heteroskedasticity in the errors (Politis and White, 2004;901

Gardiner et al., 2008; Noguchi et al., 2011; Friedrich et al., 2020a;b). Bootstrap-902

based approaches are commonly adopted by practitioners due to their simplicity.903

In contrast, the GEV or generalized Pareto models currently receive less attention904

because they involve greater mathematical complexity and require some advanced905

knowledge in probability theory.906

In this paper we adopt the Loess or smoothing spline to capture the nonlin-907

earity of the trends, but several other approaches are also possible. Except for908

simple situations, such as a turnaround or a leveling-off of the trend, it is gener-909

ally difficult to interpret highly nonlinear behavior through an explicit parametric910

representation or a deterministic model (Chandler and Scott, 2011). Many adap-911

tive nonlinear trend fitting techniques are available, such as state-space model-912

ing (and its variant, dynamical linear modeling) (Petris et al., 2009; Durbin and913

Koopman, 2012; Laine et al., 2014), vector autoregressive modeling (Holt and914

Teräsvirta, 2020), empirical mode decomposition (Wu et al., 2007), signal filter915

technique (Thoning et al., 1989), the Gasser-Müller kernel smoothing (Gasser and916

Müller, 1984), the Kalman filter (Harvey, 1990; Ramos-Ibarra and Silva, 2020),917

and the Kolmogorov-Zurbenko filter (Rao et al., 1997; Yang and Zurbenko, 2010).918

It should be emphasized that even though the above techniques are able to capture919

the nonlinearity in the time series, not all the curve features can be considered to920

be a change point of the trends (see Figure 9).921

Detection of change point(s) is an important topic that is only partially covered922

in this paper (see the review by Reeves et al. (2007)). Broadly speaking, change923

point analysis involves two considerations: 1) do we expect one or multiple change924
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points? and 2) is the location of change point(s) known or unknown? These ques-925

tions determine the complexity of the analysis. If the timing of a change point926

is expected (e.g. intervention takes effect), piecewise trends can be applied (see927

the example in Figure 9); if the number of change points and their locations are928

both unknown, some learning techniques can be applied for such identifications929

(Li and Lund, 2012; Fryzlewicz and Rao, 2014; Zuo et al., 2019). However, care930

should be taken when detection of trends and multiple change points is carried out931

simultaneously, since it is inappropriate to conclude a change of long-term trends932

based on a shorter time frame (e.g. near the beginning or end of the study record).933

Therefore, one should not use simple curve fitting techniques, such as polynomi-934

als, to perform change point analysis. Instead, a formal test of appropriateness and935

meaningfulness of change point is preferred (Friedrich et al., 2020a).936

Finally, our demonstration on the analysis of multi-site data relies on a com-937

bination of trend detection and spatial modeling techniques, which account for938

irregularity of the spatial distribution of stations and potential spatio-temporal in-939

teractions. Under this framework, other spatial modeling approaches can serve940

as an alternative (Heaton et al., 2019). Additional approaches for deriving com-941

mon trends from an ensemble of time series include: 1) co-integration analysis942

that investigates whether the average differences between two or more time series943

remain relatively invariant over time (Engle and Granger, 1987; Johansen, 1988;944

Pfaff, 2008); (2) principal component analysis that extracts as much of the data945

variability as possible (Estrada and Perron, 2017); and (3) rolling window regres-946

sion that mitigates the biases resulting from time series with different lengths or947

mild instances of missing observations (Lang et al., 2019).948

8. Conclusions949

This paper gives an overview of current statistical knowledge for atmospheric950

composition trend detection and analysis. We make a distinction between the nu-951

merical optimizations (behind the statistical methods) applied to trend estimation952

and the scientifically relevant factors that should be considered when stating a953

level of confidence for trend detection. Techniques alone are not the spirit of trend954

detection, but are supporting tools that help us to tackle the numerical issues, such955

as the influence of outliers, non-normally distributed residuals, or the risk of over-956

fitting. Beyond the basic and indispensable components for the trend detection957

(e.g., autocorrelation and seasonality), we also show that an appropriate model958

formulation with simple GLS routines can outperform a model fitted by complex959

numerical optimization via a GAM framework. Therefore, the technique itself960
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cannot be used as a replacement for the essential covariates in the trend model (or961

used as justification for taking them into account).962

Note that the above statement is limited to trend detection of a time series. If963

the analysis problem involves any sort of prediction (e.g. predicting ozone at unob-964

served locations or forecasting ozone levels), the application of novel techniques,965

such as machine learning techniques, remains a promising approach (Kleinert966

et al., 2021; Leufen et al., 2021).967

Decades ago robust statistics based on median values were developed for min-968

imizing the impact of aberrant outliers in the data (i.e., assuming the worst case969

scenario), the cause of which are beyond the experience or knowledge of the data970

analyst. However, today those aberrant outliers can now be tracked and ruled out971

by quality control and database management methods (Schultz et al., 2017), and972

therefore the problem of aberrant outliers is hardly an issue any more (but the iden-973

tification of possible anomalies is still one of the most challenging problems for974

the research community (Foorthuis, 2021)). Under the circumstance that the aber-975

rant outliers are removed and the data record is sufficiently long, most techniques976

can describe the central tendency properly and give similar trend estimators (either977

mean or median based estimator), but this also implies these estimations cannot978

be used to represent the change of the extreme events. When data are distributed979

remotely from other points, but believed to be valid observations (e.g. part of nat-980

ural variability), conventional regression models may have difficulty addressing981

this extreme data variability. Alternatively, we can seek to investigate the changes982

of the extreme events, with quantile regression being a natural solution to provide983

this estimation. In this paper we illustrate how the analysis of extreme quantile984

changes can provide additional insight to the mean or median based estimators,985

and can reveal the impact of the extreme events on the central tendency of the986

trend.987

Based on our comparison of trend detection methods, the classical nonpara-988

metric methods (i.e. Sen-Theil and Siegel’s repeated medians) are not recom-989

mended for routine use, because even though the aberrant outliers (and erroneous990

data) are ruled out, these estimators still treat the remaining extreme values as out-991

liers which are omitted from the trend estimation. Instead the following methods992

are preferable as they account for as much information and data variability as pos-993

sible in an objective way. To accommodate the possibility of autocorrelation and994

covariates, the class of GLS models remains a good foundation and flexibility for995

incorporating different sources of uncertainty and different advanced modeling996

approaches, such as the basis function representation of complex functional form997

in GAM. In addition to the central tendency of time series represented by the GLS998
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estimator, quantile regression also provides insight regarding the extreme quan-999

tiles, which can have very different trends compared to the median or mean trend,1000

and maintains the flexibility for incorporating autocorrelation and covariates into1001

the models. These recommendations are made because this set of techniques can1002

be learnt under the similar statistical framework and can therefore be extended to1003

address additional complexities with less effort. However, other approaches dis-1004

cussed in Section 7 might also be appropriate, as long as the relevant factors are1005

properly accounted for.1006

We used a collection of multiple surface ozone time series in the southwestern1007

United States to illustrate a regional-scale assessment of trends, based on both the1008

regional mean and quantile trends. Analyzing a large data set with hundreds or1009

thousands of monitoring sites simultaneously is a common challenge in the at-1010

mospheric sciences. The information in each station can be thought of as a piece1011

of a puzzle, some are informative, and some are ambiguous, but if we can put1012

the pieces together into a bigger picture, the volume of information will be maxi-1013

mized, and the result will be compelling.1014

References1015

Aggarwal CC. 2015. Outlier analysis (2nd ed.). Springer.1016

Ambrosino C, Chandler RE. 2013. A nonparametric approach to the removal of documented1017

inhomogeneities in climate time series. J Appl Meteorol Clim 52(5): 1139–1146. doi:1018

10.1175/JAMC-D-12-0166.1.1019

Amrhein V, Greenland S, McShane B. 2019. Scientists rise up against statistical significance.1020

Nature 567: 305–307. doi:10.1038/d41586-019-00857-9.1021

Augustin NH, Musio M, von Wilpert K, Kublin E, Wood SN, et al. 2009. Modeling spatiotemporal1022

forest health monitoring data. J Am Stat Assoc 104(487): 899–911. doi:10.1198/jasa.2009.1023

ap07058.1024

Barassi MR, Cole MA, Elliott RJR. 2011. The stochastic convergence of CO2 emissions: a long1025

memory approach. Environ Resour Econ 49(3): 367–385. doi:10.1007/s10640-010-9437-7.1026

Berrocal VJ, Gelfand AE, Holland DM. 2014. Assessing exceedance of ozone standards: a space-1027

time downscaler for fourth highest ozone concentrations. Environmetrics 25(4): 279–291.1028

doi:10.1002/env.2273.1029

Boleti E, Hueglin C, Grange SK, Prévôt AS, Takahama S. 2020. Temporal and spatial analysis1030

of ozone concentrations in Europe based on timescale decomposition and a multi-clustering1031

approach. Atmos Chem Phys 20(14): 9051–9066. doi:10.5194/acp-20-9051-2020.1032

Boleti E, Hueglin C, Takahama S. 2018. Ozone time scale decomposition and trend assess-1033

ment from surface observations in Switzerland. Atmos Environ 191: 440–451. doi:10.1016/1034

j.atmosenv.2018.07.039.1035

Box GEP, Jenkins GM, Reinsel GC, Ljung GM. 2015. Time series analysis: forecasting and con-1036

trol (5th ed.). John Wiley & Sons.1037

Box GEP, Tiao GC. 1975. Intervention analysis with applications to economic and environmental1038



30

problems. J Am Stat Assoc 70(349): 70–79.1039

Brockwell PJ, Davis RA. 1987. Time series: theory and methods. Springer.1040

Camalier L, Cox W, Dolwick P. 2007. The effects of meteorology on ozone in urban areas and their1041

use in assessing ozone trends. Atmos Environ 41(33): 7127–7137. doi:10.1016/j.atmosenv.1042

2007.04.061.1043

Chandler R, Scott M. 2011. Statistical methods for trend detection and analysis in the environ-1044

mental sciences. John Wiley & Sons.1045

Chang KL, Cooper OR, Gaudel A, Petropavlovskikh I, Thouret V. 2020. Statistical regularization1046

for trend detection: An integrated approach for detecting long-term trends from sparse tropo-1047

spheric ozone profiles. Atmos Chem Phys 20: 9915–9938. doi:10.5194/acp-20-9915-2020.1048

Chang KL, Petropavlovskikh I, Cooper OR, Schultz MG, Wang T. 2017. Regional trend analysis1049

of surface ozone observations from monitoring networks in eastern North America, Europe1050

and East Asia. Elem Sci Anth 5: p.50. doi:10.1525/elementa.243.1051

Chatfield C. 2000. Time-series forecasting. CRC press.1052

Cleveland RB, Cleveland WS, McRae JE, Terpenning I. 1990. STL: A seasonal-trend decomposi-1053

tion. J Off Stat 6(1): 3–73.1054
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Figure 1: Monthly mean time series for different chemical species.

Trace gases are measured at Mauna Loa Observatory (MLO), Hawaii.

(Schultz et al., 2017; TOAR database, 2017); OMI/MLS satellite data are1296

available for download at https://acd-ext.gsfc.nasa.gov/Data_1297

services/cloud_slice/. All computations are implemented in R (R Core1298

Team, 2020).1299

https://acd-ext.gsfc.nasa.gov/Data_services/cloud_slice/
https://acd-ext.gsfc.nasa.gov/Data_services/cloud_slice/
https://acd-ext.gsfc.nasa.gov/Data_services/cloud_slice/
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Figure 2: Autocorrelation function and partial autocorrelation function for differ-
ent chemical species.

Trace gases are measured at Mauna Loa Observatory (MLO), Hawaii (after deseasonal-
ization).
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Figure 3: Linear and nonlinear fits to the CO2 and methane time series at MLO.

The smooth curve or straight line is the trend component extracted from the full model fit.
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Figure 4: Various fits to the CO time series at MLO.

Various models include (top) linear and nonlinear trends, and (bottom) an additional vary-
ing seasonality component with and without regularization. The smooth curve or straight
line is the trend component extracted from the full model fit.
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Figure 5: Various fits to the ozone time series at MLO.

Various models include (top) linear and nonlinear trends, and (bottom) an additional vary-
ing seasonality component with and without regularization. The smooth curve or straight
line is the trend component extracted from the full model fit.
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Figure 6: Model fits to the ozone time series with meteorological adjustment at
MLO

The upper panel shows the observed and modeled values, and the lower panel shows a
comparison of residual series from different model fits.
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Figure 7: Monthly ozone time series and mean trends at Mace Head, Mt. Waliguan
and Schwarzwald-Sued.

Regression lines from several trend detection techniques are fitted. The nonparametric
Loess smoother and its 95% confidence interval is highlighted with a gray envelope to
illustrate the potential tendency of the trend. Each red tick on the x-axis indicates that a
monthly value is missing.
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Figure 8: Various illustrations for the distributions of the 5th-95th quantile trends
and the 95% confidence intervals.

Demonstrations are made for the ozone time series measured at Mace Head, Mt. Waliguan
and Schwarzwald-Sued, with the trend mean value derived by GLS-AR1 model provided
for reference.
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Figure 9: A demonstration of change point analysis based on quantile regression.

The ozone anomaly series is measured at Zugspitze, Germany.



45

Figure 10: Scatter plots of MDA8 quantile trends and SNR values in the south-
western US.

Demonstrations are made for individual time series trend analysis of the mean, 5th, 50th
and 95th percentiles over 2000-2014.
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Figure 11: Quantile spatial fields over two periods, distributions of trends and
SNR ratios in the southwestern US.

Demonstrations are made for MDA8 spatial distributions (in units of ppb) of the 5th, 50th
and 95th percentiles over 2000-2002 (1st row) and 2012-2014 (2nd row) in the southwest-
ern US, with corresponding spatial distributions of trends (in units of ppb per year, 3rd
row) and signal-to-noise ratios (SNR, i.e. trend value divided by standard error, 4th row)
over 2000-2014. White crosses represent the locations of the monitoring stations.
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Figure 12: The estimated regional trends and the quantile distribution of regional
trends in southwestern US.

The regional ozone time series and trends are estimated with respect to the mean, 5th, 50th
and 95th percentiles (upper panel). Quantile distributions of regional trends are based on
the 1st, 5th, 10th, ..., 90th, 95th, 99th percentiles, with the trend mean value derived by
GLS-AR1 model provided for reference.
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Figure 13: Impact of the representativeness of sites on trends.

Estimated long-term changes for MDA8 using all 168 sites (red), and only the sites with
p-value of slope of the trend within the range of [0.01, 1.00] (orange), [0.05, 1.00] (light
blue) and [0.10, 1.00] (dark blue).
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Table 1: Comparison of (a) fitted trends, 2-sigma uncertainty [ppb decade−1] and
signal-to-noise ratio (SNR) from various lags of autocorrelations; (b) fitted quality
from various fits using R2, MSE and GCV score; and (c) linear trend estimates
when incorporating different covariate(s) for CO and ozone at MLO.

(a) Statistics from various lags of autocorrelations
OLS AR1 AR2 AR3 AR4 AR5 AR6

CO trend -5.85 -5.68 -5.73 -5.50 -5.76 -5.49 -5.65
2-sigma 0.89 2.68 1.72 2.84 1.91 2.79 2.33
SNR -13.12 -4.24 -6.65 -3.88 -6.04 -3.93 -4.84

Ozone trend 0.99 0.99 0.99 0.99
2-sigma 0.30 0.43 0.48 0.48
SNR 6.64 4.65 4.04 4.12

(b) Fitted quality from various fits
M1 M2 M3 M4 M5 M6 M7 M8

CO R2 81.8 82.6 90.9 86.9 84.8 84.8 84.2 84.9
MSE 55.1 50.7 27.4 39.6 46.0 45.9 47.7 45.6
GCV 57.9 54.9 1095.5 51.4 50.3 50.3 52.1 50.4

Ozone R2 58.5 60.0 97.2 75.4 77.0 75.3 64.7 77.0
MSE 20.9 20.2 1.4 12.4 11.6 12.5 17.8 11.6
GCV 21.7 21.3 169.8 18.0 12.2 13.0 18.9 12.3

(c) Linear trend estimate with covariate(s) included
M1 M2 M3 M4 M5 M6 M7 M8

CO trend -5.73 -5.68 -5.73 -5.76 -5.64
(AR2) 2-sigma 1.72 1.71 1.71 1.71 1.73

SNR -6.65 -6.64 -6.71 -6.72 -6.53
Ozone trend 0.99 1.17 0.93 0.53 1.42
(AR1) 2-sigma 0.43 0.30 0.31 0.40 0.36

SNR 4.65 7.68 6.04 2.66 7.97
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Table 2: Regional trend estimates based on the 95th, 50th and 5th percentiles of
all available MDA8 values and only the sites with p-value of slope of the trend
within a certain range in southwestern US.

Percentile Intercept Slope 2-sigma p-value SNR # site
(ppb) (ppb yr−1) (ppb yr−1)

95th All sites 78.46 -0.75 0.22 <0.01 -6.82 168 (100%)
p = [0.01− 1.00] 74.22 -0.53 0.24 <0.01 -4.42 104 (62%)
p = [0.05− 1.00] 71.72 -0.44 0.24 <0.01 -3.67 83 (49%)
p = [0.10− 1.00] 69.71 -0.36 0.27 0.02 -2.67 63 (38%)
p = [0.15− 1.00] 68.27 -0.30 0.31 0.08 -1.94 54 (32%)
p = [0.20− 1.00] 67.92 -0.26 0.36 0.18 -1.44 46 (27%)
p = [0.30− 1.00] 67.72 -0.20 0.48 0.41 -0.83 33 (20%)
p = [0.40− 1.00] 65.14 -0.16 0.53 0.55 -0.60 26 (15%)

50th All sites 55.58 -0.29 0.14 <0.01 -4.14 168 (100%)
p = [0.01− 1.00] 54.12 -0.19 0.15 0.02 -2.53 128 (76%)
p = [0.05− 1.00] 53.58 -0.15 0.15 0.06 -2.00 105 (63%)
p = [0.10− 1.00] 53.39 -0.15 0.16 0.08 -1.88 94 (56%)
p = [0.15− 1.00] 53.19 -0.12 0.15 0.15 -1.60 83 (49%)
p = [0.20− 1.00] 53.58 -0.12 0.16 0.16 -1.50 73 (43%)
p = [0.30− 1.00] 52.99 -0.10 0.15 0.21 -1.33 63 (38%)
p = [0.40− 1.00] 53.07 -0.08 0.16 0.30 -1.00 56 (33%)

5th All sites 37.90 -0.03 0.14 0.63 -0.43 168 (100%)
p = [0.01− 1.00] 37.98 -0.05 0.15 0.54 -0.67 154 (92%)
p = [0.05− 1.00] 38.37 -0.06 0.14 0.40 -0.86 136 (81%)
p = [0.10− 1.00] 37.86 -0.02 0.14 0.78 -0.29 118 (70%)
p = [0.15− 1.00] 37.99 -0.04 0.14 0.62 -0.57 103 (61%)
p = [0.20− 1.00] 37.94 -0.04 0.15 0.59 -0.53 98 (58%)
p = [0.30− 1.00] 37.48 -0.03 0.14 0.65 -0.43 84 (50%)
p = [0.40− 1.00] 37.22 -0.02 0.16 0.80 -0.25 72 (43%)
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