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Summary 22 

Nitrogen dioxide (NO2) is an important contributor to air pollution and can adversely affect human 23 

health1-9. A decrease in NO2 concentrations has been reported as a result of lockdown measures to 24 

reduce the spread of COVID-1911-21. Questions remain, however, regarding the relationship of satellite-25 

derived atmospheric column NO2 data with health-relevant ambient ground-level concentrations, and 26 

the representativeness of limited ground-based monitoring data for global assessment. Here we derive 27 

the first spatially resolved, global ground-level NO2 concentrations from NO2 column densities observed 28 

by the TROPOMI satellite instrument at sufficiently fine resolution (~1km) to allow assessment of 29 

individual cities during COVID-19 lockdowns in 2020 compared to 2019. We apply these estimates to 30 

quantify NO2 changes in over 200 cities, including 65 cities without available ground monitoring, largely 31 

in lower income regions. Mean country-level population-weighted NO2 concentrations are 29±3% lower 32 

in countries with strict lockdown conditions than in those without. Relative to long-term trends, NO2 33 



 

 

decreases during COVID-19 lockdowns exceed recent OMI-derived year-to-year decreases from emission 34 

controls, comparable to 15±4 years of reductions globally. Our case studies indicate that the sensitivity 35 

of NO2 to lockdowns varies by country and emissions sector, demonstrating the critical need for spatially 36 

resolved observational information provided by these satellite-derived surface concentration estimates. 37 

Main 38 

Nitrogen dioxide (NO2) is an important contributor to air pollution as a primary pollutant and as a 39 

precursor to ozone and fine particulate matter production. Human exposure to elevated NO2 40 

concentrations is associated with a range of adverse outcomes such as respiratory infections2–4, 41 

increases in asthma incidence 5,6, lung cancer 7, and overall mortality 8,9.  NO2 observations indicate air 42 

quality relationships with combustion sources of pollution such as transportation6,10. Initial 43 

investigations found significant decreases in  the atmospheric NO2 column from satellite observations 11–44 
17 and in ambient NO2 concentrations from ground-based monitoring 18–21 during lockdowns enacted to 45 

reduce the spread of COVID-19. However, questions remain about the relationship of atmospheric 46 

columns with health- and policy-relevant ambient ground-level concentrations, and about the 47 

representativeness of sparse ground-based monitoring for broad assessment. Thus, there is need to 48 

relate satellite observations of NO2 columns to ground-level concentrations. It is also important to 49 

consider the effect of meteorology on recent NO2 changes22 and to quantify NO2 changes due to COVID-50 

19 interventions in the context of longer-term trends23. Furthermore, air quality monitoring sites tend to 51 

be preferentially located in higher income regions, raising questions about how NO2 changed in lower 52 

income regions where larger numbers of potentially susceptible people reside. Estimates of changes in 53 

ground-level NO2 concentrations derived from satellite remote sensing would fill gaps between ground-54 

based monitors, offer valuable information in regions with sparse monitoring, and more clearly connect 55 

satellite observations with ground-level ambient air quality.  56 

Previous satellite-derived estimates of ground-level NO2 used information on the vertical 57 

distribution of NO2 from a chemical transport model to relate satellite NO2 column densities to ground-58 

level concentrations24–26. Recent work improved upon this technique by allowing the satellite column 59 

densities to constrain the vertical profile shape, allowing for more accurate representation of sub-60 

model-grid variability, reducing sensitivity to model resolution and simulated profile shape errors, and 61 

improving agreement between the satellite-derived ground-level concentrations and in situ monitoring 62 

data27. Applying this technique to examine changes in NO2 during lockdowns bridges the gap between 63 

previous studies focusing on either ground monitors or satellite column densities, thus providing a more 64 

complete and reliable picture of the changes in exposure. 65 

Since 2005, the gold standard for satellite NO2 observations has been the Ozone Monitoring 66 

Instrument (OMI) on board NASA’s Earth Observing System Aura satellite28,29. The newest remote 67 

sensing spectrometer, the European Space Agency’s TROPOspheric Monitoring Instrument (TROPOMI)30 68 

on the Copernicus Sentinel 5p satellite, has been providing NO2 observations with finer spatial 69 

resolution and higher instrument sensitivity since 2018. These attributes allow for TROPOMI NO2 maps 70 

at 100 times finer resolution (~1x1 km2) with a one month averaging period31,32, an improvement over 71 

the spatial and temporal averaging needed for accurate OMI maps (typically ~10x10 km2 over one 72 

year24). Concurrently, the unprecedented stability of the OMI instrument over the last 15 years provides 73 

an ideal data set for long term trend analysis28,33 that offers context for recent TROPOMI data.  74 



 

 

Lockdown restrictions act as an experiment about the efficacy of activity reductions on mitigating air 75 

pollution. The Oxford COVID-19 Government Response Tracker (OxCGRT, 76 

https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker#data) 77 

has been monitoring government-imposed restrictions, and studies have indicated that NO2 decreases 78 

were larger for cities in countries with strict lockdowns34. However, there is limited information on 79 

lockdown stringency on sub-national levels or on how various emission sectors respond to lockdowns. 80 

An observation-based metric for lockdown intensity could provide useful information for examining 81 

lockdowns on city-level scales or for examining effects on air quality associated with lockdowns in 82 

different emission sectors. 83 

Here we leverage the high spatial resolution of TROPOMI to infer global ground-level NO2 estimates 84 

at an unprecedented spatial resolution sufficient to assess individual cities worldwide, and to examine 85 

changes in ground-level NO2 occurring during COVID-19 lockdowns from January-June 2020. Case 86 

studies presented here demonstrate how the satellite-based estimates provide information on 87 

important spatial variability in lockdown-driven NO2 changes, and in the NO2 response to lockdowns in 88 

various emissions sectors. We also use TROPOMI to provide fine-scale structure to the long-term record 89 

of OMI observations (2005-2019), which provides an opportunity to examine trends in ground-level NO2 90 

over the last 15 years to provide context for the recent changes. 91 

Global NO2 concentrations and trends 92 

Global annual mean TROPOMI-derived ground-level NO2 concentrations for 2019 provide an initial 93 

baseline (Fig 1). The unprecedented resolution (~1x1 km2) of ground-level NO2 concentrations reveal 94 

pronounced heterogeneity (Supplemental Figures 1-7). NO2 enhancements are apparent over urban and 95 

industrial regions. TROPOMI-derived ground-level concentrations exhibit consistency with in situ 96 

observations (r = 0.71, N=3977, in situ vs satellite slope = 0.97±0.02), as shown in Supplemental Figure 8. 97 

Neglecting the spatial and temporal variability in the NO2 column-to-surface relationship degrades the 98 

consistency with ground monitors (slope = 0.78±0.01), demonstrating the importance of relating 99 

satellite columns to surface concentrations for exposure assessment. 100 

Examination of long-term changes in air pollution offers context for changes during COVID-19 lockdowns 101 

(Fig 1, Supplemental Figures 1-7). Satellite-derived NO2 concentrations decreased from 2005-2019 in 102 

urban areas across most of the United States and Europe, eastern China, Japan, and near Johannesburg, 103 

largely reflecting emission controls on vehicles and power generation. NO2 increases are observed in 104 

Mexico, the Alberta oil sands region in northern Canada, throughout the Balkan peninsula, central and 105 

northern China, India, and the Middle East, broadly consistent with reported trends in ground monitor 106 

data35–37. Trends in China can be separated into three regimes: ground-level concentrations increased in 107 

China from 2005-2010, plateaued from 2010-2013, and decreased from 2013-2019. This change was 108 

driven by stricter vehicle and power generation emission standards 38 and is consistent with observed 109 

changes in NO2 columns 39,40. Similarly, concentrations increased in urban and industrial areas of South 110 

America from 2005-2010, and in South Africa and the Middle East from 2005-2015, and decreased in 111 

more recent years. Maps of trends in these regions for these time periods are shown in Supplemental 112 

Figure 9. Concentrations in India increased across both time periods due to increasing coal-powered 113 

electricity demands and growing industrial emissions41. Trends in population-weighted NO2 114 

concentrations, used to represent population NO2 exposure, were calculated using ground monitors and 115 

coincidently-sampled satellite observations in North America, Europe, and China. Satellite-derived 116 



 

 

concentrations exhibit decreasing trends (-2.8 ± 0.2 %/year in Europe 2005-2019, -4.3 ± 0.7 %/year in 117 

North America 2005-2019, and -6.0 ± 0.7 %/year in China 2015-2019) that agree well with trends in the 118 

ground monitor data (within 0.7%/year in North America, 0.3%/year in Europe, and 1.2%/year in China).  119 

Regional NO2 changes during lockdowns 120 

Figure 2 shows the April 2020 – 2019 difference between mean ground-level NO2 concentrations 121 
derived from TROPOMI observations. NO2 concentrations are lower in most regions in 2020 than in 122 
2019, particularly over urban areas, with global population-weighted mean concentrations decreasing 123 
by 16% in 2020 relative to 2019. Figure 3 shows regional maps focusing on the month with the largest 124 
change in population-weighted regional mean concentration for each region, with an additional period 125 
included for China, as lockdown restrictions occurred earlier than in other countries. Regional 126 
population-weighted mean concentrations decreased by 17-43%. The largest decreases occur in China in 127 
February with concentration decreases exceeding 10 ppbv and significant decreases persisting in eastern 128 
urban areas through April. Thus these lockdown measures temporarily bolstered the decreasing trends 129 
across North America 42 and Europe25 over the last two decades and in China since 201243 due to 130 
technological advances in vehicles and power generation, while temporarily buffering changes from 131 
increasing energy demands in India and the Middle East 40,44,45. NO2 increases in April 2020 in central 132 
China (Chengdu and Chongqing) as lockdowns began lifting during this time.  133 
 134 
Figure 3 shows maps of long-term NO2 trends for context. In most regions, the observed changes during 135 
COVID-19 restrictions exceed the expected year-to-year differences observed in the long-term trends 136 
(Table 1). 2020-2019 population-weighted mean concentration changes are lower than long-term trends 137 
by factors of 17±7 in North America, 19±2 Europe, of 2.9±0.6 in Africa/Middle East, of 3.6±0.6 in Asia, 138 
8±7 in South America, and 2±2 in Oceania.  139 
 140 
Meteorological differences are calculated with the GEOS-Chem chemical transport model using emission 141 

inventories that do not include changes that occurred due to COVID-19 lockdown policies but do reflect 142 

meteorological changes. Supplemental Figure 10 shows TROPOMI-derived changes at 2°x2.5° resolution 143 

for comparisons with simulated values at the same resolution. Population-weighted NO2 concentration 144 

changes due to meteorology in Asia, Europe, South America, Africa, and the Middle East are a factor of 145 

2-6 smaller than observed; thus, meteorology alone cannot explain the observed decreases. 146 

Concentration increases in the central US, as noted in other studies11, do not appear to be 147 

meteorologically driven and may be due to changes in biogenic NOx sources.  148 

 149 
Supplemental Figure 11 shows the ratio of population-weighted Jan-June monthly mean NO2 150 

concentrations in 2020 to 2019 across selected regions. Most regions have the largest decrease in NO2 in 151 

April when lockdown conditions were strongest (global mean COVID restriction stringency index 152 

(defined in Methods) reached maximum of 0.79 on April 18), apart from China, where lockdowns were 153 

initiated in January. In most regions, 2020 NO2 concentrations return toward pre-lockdown values in late 154 

spring due to relaxing travel restrictions (June 30 global mean stringency index 0.60) as well as 155 

increasing soil, lightning, and biomass burning emissions that lessen the sensitivity of ambient NO2 to 156 

anthropogenic emissions. 157 

 158 



 

 

City- and country-level NO2 changes 159 

The fine resolution of our satellite-derived ground level NO2 dataset enables the assessment of larger 160 
changes in NO2 concentrations from 2020-2019 evident at the city level. We calculate changes in 161 
TROPOMI-observed monthly mean ground-level NO2 from 2020-2019 over 215 major cities (the ten 162 
most populous cities in each country with a population greater than 1 million) for the month with the 163 
greatest monthly mean lockdown stringency index, compared with expected changes due to 164 
meteorology and long-term trends (Supplemental Table 1). Most cities have TROPOMI-derived NO2 165 
decreases that cannot be explained by changes due to meteorology alone. For example, satellite derived 166 
NO2 concentrations in Beijing decreased by 45% in March, despite meteorological conditions favorable 167 
to increased NO2. Jakarta, Manila, Istanbul, Los Angeles, and Buenos Aires among others had decreased 168 
NO2 despite similarly unfavorable meteorological conditions. Some cities, including Moscow, Tokyo, 169 
London, New York, Toronto, and Delhi had meteorological conditions that would have led to NO2 170 
decreases regardless of emission changes, but observed concentration changes exceeded the expected 171 
meteorological change.  172 
 173 
Consistent analysis of individual cities as enabled by this dataset reveals a mean observed decrease of 174 
32±2% for these 215 cities. The mean expected meteorologically driven change was -1±1% and the 175 
mean expected change due to long-term trends was a decrease of 1.4±0.4%. Supplemental Figure 12 176 
shows these reductions to be consistent with those found in 381 ground monitor values from 79 177 
studies34 (32±2%). Of the 215 cities included here, 65 are in countries that did not have ground 178 
monitoring data available for previous studies. Notably, the 65 cities without monitors are largely in 179 
lower income countries of Africa and southeast Asia. Average gross national income per capita for 180 
unmonitored countries is $7100 USD compared to $25000 USD for monitored countries, illustrating the 181 
potential of satellite-derived ground level concentrations for providing information about lower income 182 
regions. In summary, the observed decreases in NO2 across more than 200 cities worldwide were 183 
generally driven by COVID-19 lockdowns, with locally varying modulation by meteorology and business-184 
as-usual changes.   185 
 186 
Table 1 shows monthly mean country-level population-weighted NO2 concentrations, changes during 187 

COVID-19 lockdown restrictions, meteorological effects, and long-term trends for the month with the 188 

greatest 2020-2019 change. Meteorological effects were generally minor at the national and regional 189 

scale. Multi-year trends provide context for the scale of the changes observed during COVID-19 190 

lockdowns. The decrease in March NO2 concentrations in the United States from 2019 to 2020 was 191 

equivalent to 4 years of long-term NO2 reductions. Similarly, changes in NO2 during COVID-19 lockdowns 192 

were equivalent to >3 years of reductions in China, and up to 23 years in Germany. Globally, the April 193 

2020 population weighted NO2 concentration was 0.53 ± 0.06 ppbv lower than in April 2019, equivalent 194 

to 15±4 years of global NO2 reductions. 195 

NO2 as a lockdown indicator 196 

 197 

The relationship between this satellite-derived ground-level NO2 dataset and lockdown stringency 198 

provides supporting evidence for the impact of travel restrictions (Supplemental Figure 13). The ratio of 199 

population-weighted mean observed NO2 in 2020 to 2019 was calculated for each country and each 200 

month from January to June. The 2020/2019 NO2 ratio in countries with the strictest lockdown (monthly 201 

minimum stringency indices greater than the 75th percentile) was 29±3% lower than for countries with 202 



 

 

the weakest lockdowns (monthly median stringency indices less than the 25th percentile). Maximum and 203 

median ratios were also lower for countries with strict lockdowns. Both distributions have similar 204 

variability (standard deviations 0.02 and 0.03) which demonstrates similar interannual variability due to 205 

meteorology for both sets. When focusing on only the month with the strictest lockdown for each 206 

country, changes in population-weighted NO2 are correlated with lockdown intensity, with changes in 207 

countries with strict lockdowns (average decrease 43% if lockdown index>80) more than three times as 208 

large as in those with weaker lockdowns (12% if lockdown index <40).  209 

This relationship suggests that changes in satellite-derived NO2 concentrations offer observational 210 

information on the spatial distribution of lockdown effects that is not available through policy-based 211 

stringency indices. For example, while the policy-based stringency index in most cases provides a single 212 

value for a country, city-level NO2 concentration decreases in India range 30-84%, reflecting variability in 213 

local mobility restrictions, emissions sources, and their sensitivity to lockdowns. Supplemental Figure 14 214 

explores the sensitivity of NO2 concentrations to emissions from the transportation and electricity 215 

sectors in India, China, and the US by examining the distribution of changes in NO2 concentration at the 216 

20 largest population centers and 20 largest fossil fuel burning power plants in each country. All 217 

countries have significant NO2 decreases in cities but sensitivities in areas associated with the electricity 218 

sector vary, with decreasing concentrations near power plants in India (mean change -35±4%) and China 219 

(-28±8%) but insignificant changes in the US (-4±8%). Observed NO2 changes at these power plants 220 

exceed expected changes from meteorology alone (-8±2%, -1±4%, -1±3% in India, China, and the US 221 

respectively). Although variability between power plants reflects a mix of regionally varying factors, 222 

including meteorology, electricity demand, fuel type, and plant-specific emission controls, as well as 223 

changes in nearby emissions from other sectors including transportation, these differences indicate a 224 

sensitivity of local air quality to activity restrictions affecting the energy sector.  225 

Examining geographic differences in satellite-derived NO2 concentrations within metropolitan regions is 226 

also informative. For example, variability between emission sources is apparent around the city of 227 

Atlanta, USA (Supplemental Figure 15). The population-weighted NO2 concentration in Atlanta and the 228 

surrounding region dropped by 28% from April 2019 to 2020, but with significant spatial variability in the 229 

observed change. The greatest NO2 decreases are found near a large coal-powered electricity plant to 230 

the southeast of the city, with significant changes near another plant to the northwest. Decreases were 231 

also larger near the Hartsfield-Jackson International Airport, reflecting the dramatic slowdown in air 232 

travel, and over suburban regions to the west and northeast of the city center, than in the downtown 233 

core. Supplemental Figure 15 also demonstrates the range of NO2 changes experienced by the local 234 

population. Over 1.2 million people live in regions where NO2 decreases exceeded 40%, while nearly 1 235 

million people experienced decreases of 10% or less. Similar heterogeneity in population exposure exists 236 

in other major cities, as demonstrated by Supplemental Figure 16. For example, a subset of over 1 237 

million people in the Paris metropolitan area experienced NO2 decreases of 75% (4.5 ppbv) or more (10th 238 

percentile exposure), while another similar sized subset experienced changes of 23% (0.6 ppbv) or less 239 

(90th percentile exposure). Of the cities examined here, 68 had an interquartile range in population 240 

exposure change during lockdowns of 20 percentage points or larger, 22 of which were unmonitored 241 

cities. Studies have found that NO2 changes during lockdowns varied among socioeconomic, ethnic, and 242 

racial groups in US cities46, and thus the variability in other major cities observed here suggest similar 243 

disparities may occur elsewhere. The heterogeneity of NO2 changes demonstrates the need for the 244 

finely resolved information on lockdown effects offered by satellite observations. 245 



 

 

We find that using this satellite-derived NO2 dataset as an observational proxy for lockdown conditions 246 

is also useful for identifying links between lockdown-driven emission changes and secondary pollutants. 247 

For example, several studies have found little to no change in fine particulate matter (PM2.5) during 248 

lockdowns as meteorology, long-range transport, and nonlinear chemistry complicate the relationship 249 

between PM2.5 and NOx emissions47,48. A challenge in these studies has been limited observational 250 

information on the local lockdown intensity. Recent work examining 2020-2019 changes in satellite-251 

derived PM2.5 concentrations found that lockdown-driven decreases in PM2.5 concentration can be 252 

identified by separating the meteorological effects from emissions effects using chemical transport 253 

modeling and focusing on regions with the greatest sensitivity to emission reductions49. Here we 254 

examine that same satellite-derived PM2.5 data set using TROPOMI-derived ground-level NO2 255 

concentrations to identify the regions where PM2.5 concentrations are most likely associated with 256 

lockdowns or sensitive to NOx emissions. Supplemental Figure 17 shows the distribution of changes in 257 

monthly mean PM2.5 concentrations from 2020-2019 for China in February and North America and 258 

Europe in April. Regions with the largest 2020-2019 NO2 concentration decreases (90th percentile) are 259 

considered to be those with significant NOx emission reductions. Population-weighted mean PM2.5 260 

concentrations decreased overall, however regions with the largest NO2 decreases experienced greater 261 

local changes in PM2.5 concentration in China and to a lesser extent in North America, indicating the 262 

sensitivity of PM2.5 to changing NOx emissions that can be inferred. Year-to-year variability in PM2.5 263 

concentrations in Europe are similar regardless of changes in NO2, indicating a greater role of 264 

meteorology or transport on PM2.5 in this region and period. These results are consistent with previous 265 

findings when using chemical transport modeling to identify regions where local emissions are 266 

important49. Thus the observational proxy on lockdown conditions offered by these satellite-derived 267 

surface NO2 concentrations offers novel spatially resolved information to identify where PM2.5 and NO2 268 

(and by proxy, NOx emissions) are most strongly coupled. 269 

 270 

Implications 271 

 272 

The pronounced decreases in ground-level NO2 found here for over 200 cities worldwide during COVID-273 

19 lockdowns are a culmination of recent advancements in techniques for estimating ground-level NO2 274 

from satellite observations27 alongside higher resolution satellite observations from TROPOMI that allow 275 

for estimating high spatial resolution, short-term changes in NO2 exposure. This method bridges the gap 276 

between monitor data (which measure ground level air quality but have poor spatial 277 

representativeness) and satellite column data (which provides spatial distributions but are less 278 

representative of ground level air quality). The ability to infer global ground-level NO2 concentrations 279 

with sufficient resolution to assess individual cities and even within-city gradients is a breakthrough in 280 

satellite remote sensing instrumentation and algorithms. Additionally, these satellite-derived ground-281 

level NO2 concentrations offer information about unmonitored communities and populations that are 282 

underrepresented in studies focused on ground monitor data. These cities are found to have different 283 

characteristics of NO2 concentrations and changes during lockdowns that motivate the need for satellite 284 

observations in the absence of local ground monitoring. The changes in ground-level NO2 due to COVID-285 

19 lockdown restrictions, which exceed recent long-term trends and expected meteorologically-driven 286 

changes, demonstrate the impact that policies that limit emissions can have on NO2 exposure. This 287 



 

 

information has relevance to health impact assessment; For example, studies focused on ground 288 

monitor data have indicated improvements in health outcomes related to improved air quality during 289 

lockdowns, including an estimated 780,000 fewer deaths and 1.6 million fewer pediatric asthma cases 290 

worldwide due to decreased NO2 exposure21. Our study demonstrates significant spatial variability in 291 

lockdown-driven ground level NO2 changes that does not necessarily correlate with population density, 292 

demonstrating likely uncertainties arising from extrapolating changes observed by ground monitors to 293 

estimate broad changes in population NO2 exposure. Satellite-based ground-level NO2 estimates provide 294 

high-resolution information on the spatial distribution of NO2 changes in 2020 that cannot be achieved 295 

through ground monitoring, particularly in regions without adequate ground monitoring, and should 296 

improve exposure estimates in future health studies. Additionally, ground-level concentrations from 297 

downscaled OMI observations provide the opportunity to contrast effects of past mitigation efforts on 298 

long-term NO2 trends against the short-term changes resulting from more dramatic regulations, and a 299 

chance to improve studies of health outcomes related to long-term NO2 exposure. 300 

The strength of links between observed changes in NO2 concentration and lockdown stringency indicate 301 

that satellite-based ground-level NO2 concentrations offer useful observational, spatially-resolved 302 

information about lockdown conditions. This provides an observational metric for examining the efficacy 303 

of lockdown restrictions on restricting mobility for studies examining the spread of COVID-19. Here we 304 

exploited this information to illustrate the differing sensitivity of NO2 concentrations to changes in 305 

various emission sources to lockdown restrictions. Future applications of this data could include 306 

examining socioeconomic drivers that impact this variability within and between countries. Comparisons 307 

between satellite-derived ground-level NO2 and PM2.5 also indicate the utility of these data as an 308 

observational proxy for identifying regions where secondary pollutants such as PM2.5 or ozone are more 309 

likely to be sensitive to NOx emissions, whereas these links are otherwise difficult to trace without the 310 

use of chemical transport models50. 311 

These data offer information to improve NO2 exposure estimates, to examine exposure trends, and 312 

subsequently estimate changes in health burden. These developments provide an unprecedented 313 

opportunity for advances in air quality health assessment in relation to NO2 and its combustion-related 314 

air pollutant mixture. 315 

 316 
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Figure Captions 442 

 443 
Figure 1: Satellite-derived ground-level NO2 concentrations. (a) TROPOMI-derived 2019 annual mean 444 

ground-level NO2 concentrations at ~1x1 km2 resolution. (b) Trend in OMI and TROPOMI-derived annual 445 

mean ground-level concentrations from 2005-2019. Color intensity represents the statistical significance 446 

of the trend. (c-e) Population-weighted mean NO2 from ground monitors and from satellite-derived NO2 447 

sampled at ground monitor locations in North America, Europe, and China, normalized by the mean 448 

concentration during the period where ground monitor data is available. Trends during the period 449 

where ground monitor data are available are inset. Only monitors with data available over the entire 450 

time period are included. Error bars represent population-weighted standard deviations. (f) Population-451 

weighted mean satellite-inferred ground-level NO2 concentrations in South America, Africa/Middle East, 452 

and Oceania. Trends during the given time periods are inset. Time periods were chosen to reflect the 453 

most recent years where a consistent trend is observed. Error bars represent uncertainties in 454 

population-weighted means using a bootstrapping method.455 



 

 

Figure 2: Global change in ground-level NO2 from April 2020-2019. Difference in TROPOMI-derived April 456 

mean ground-level NO2 from 2020 to 2019 at ~1x1 km2.  457 

Figure 3: Changes in ground-level NO2 during lockdowns. (Left) TROPOMI-derived monthly mean NO2 458 

difference from 2020-2019 at ~1x1 km2 (Right) OMI+TROPOMI-derived NO2 trends. Annual mean long-459 

term trends are corrected for seasonal variation. Time periods for trend calculations were chosen to 460 

reflect the most recent years where a consistent trend is observed and are inset in the second row. Grey 461 

indicates ocean regions or areas with persistent cloud or snow cover. 462 
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 465 

Methods 466 

Data 467 

 468 

We use tropospheric NO2 columns from the OMI (NASA Standard Product version 4)51 and TROPOMI52,53 469 

satellite instruments. Both instruments measure solar backscatter radiation in the UV-Vis spectral bands 470 

on sun-synchronous orbits with local overpass times around 1:30 PM. TROPOMI observations from April 471 

2018-October 2020 are used to examine near-term NO2, and OMI observations from January 2005 – 472 

December 2019 are used to examine long-term trends. Observations with retrieved cloud fractions 473 

greater than 0.1 or flagged as poor quality or snow covered (i.e. TROPOMI quality assurance flag < 0.75) 474 

are excluded. While the resolution of TROPOMI observations is 3.5 x 5.5 km2, several studies have 475 

demonstrated that oversampling techniques can provide accurate NO2 maps at 1x1 km2 resolution when 476 

averaging over a one-month period 31,32,54. An area-weighted oversampling technique55,56 is used to map 477 

daily satellite NO2 column observations from TROPOMI onto a ~0.01°x0.01° (~1x1 km2) resolution grid 478 

and from OMI to a 0.1°x0.125° (~10x10 km2) grid, as these resolutions balance the need of fine 479 

resolution for observing fine-scale structure and of minimizing effects of sampling biases and noise in 480 

the observations. Supplemental Figure 8 provides further evidence that a one-month period provides 481 

sufficient observations for a 1x1 km2 map as the agreement between TROPOMI-derived surface 482 

concentrations and in situ observations does not deteriorate when the sampling period is reduced from 483 

one year to one month. Additionally, we compared 2019 monthly mean concentration estimates with 484 

the 2019 annual mean and find high correlation (r=0.90), indicating similar spatial variability. We correct 485 

for sampling biases in the satellite records due to persistent cloudy periods or surface snow cover using 486 

a correction factor calculated with the GEOS-Chem chemical transport model described below by 487 

sampling the GEOS-Chem-simulated monthly or annual mean column densities to match the satellite.  488 

We use hourly ground-level NO2 measurements from monitors to constrain and evaluate the satellite-489 

based estimates. Observations from the US Environmental Protection Agency Air Quality System 490 

(https://aqs.epa.gov/aqsweb/documents/data_mart_welcome.html) over the continental US from 491 

2005-2020, Environment and Climate Change Canada’s National Air Pollution Surveillance Program 492 

(http://maps-cartes.ec.gc.ca/rnspa-naps/data.aspx) from 2005-2019, European Environment Agency 493 

(https://aqportal.discomap.eea.europa.eu/products/data-download/) from 2005-2020, National Air 494 

Quality Monitoring Network in China from 2015-2020 were (obtained from https://quotsoft.net/air) 495 

were used. European monitors classified as near-road are excluded. Monthly and annual mean 496 

concentrations at each site are calculated by averaging hourly observations between 13:00-15:00 hours 497 

(corresponding to satellite overpass times) and corrected for the known overestimate in regulatory 498 

measurements due to interference of other reactive nitrogen species following Lamsal et al24.  499 

To examine the relationship between COVID-19 lockdown policies and ground-level NO2 concentrations, 500 

we use the Oxford COVID-19 Government Response Tracker (OxCGRT, 501 

https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker#data). 502 

OxCGRT provides a daily country-level policy “stringency index” ranging from 0-100 based on 503 

containment and closure policies (e.g., school and workplace closures, stay-at-home orders, gathering 504 



 

 

restrictions). We also use population density data from the Center for International Earth Science 505 

Information Network for the available years of 2005, 2010, 2015, and 2020, and linearly interpolate for 506 

other years (DOI: 10.7927/H4JW8BX5).  507 

 508 

Inferring ground-level concentrations from satellite column observations 509 

 510 

Ground-level NO2 concentrations are derived from TROPOMI NO2 columns following the method 511 

developed in Cooper et al 27. This algorithm builds upon the method first developed by Lamsal et al 24 512 

which uses the GEOS-Chem-simulated relationship between ground-level and tropospheric column NO2 513 

concentrations. The updated algorithm uses the satellite-observed column densities and ground 514 

monitor data as observational constraints on the shape of the boundary layer profile, reducing the 515 

sensitivity to model resolution and improving agreement between satellite-derived ground-level 516 

concentrations and in situ observations. Technical details on the application of this method as used here 517 

are available in the Supplemental Material.  518 

For long-term trend analysis, we use more recent TROPOMI observations to provide fine-resolution 519 

spatial structure to the OMI-observed NO2 columns following the method of Geddes et al 25. Annual 520 

mean OMI NO2 columns are gridded to 10x10 km2 resolution and a median-value filter is applied to 521 

reduce noise. We smooth the two-year (April 2018-April 2020) mean TROPOMI NO2 columns mapped at 522 

1x1 km2 resolution using a two-dimensional boxcar algorithm with an averaging window of 10x10 km2 to 523 

match the resolution of the gridded OMI NO2 columns. We then downscale the annual mean OMI NO2 524 

columns using the ratio of the 1x1 km2 TROPOMI columns to the smoothed TROPOMI columns. The 525 

downscaled columns are then used to infer ground-level concentrations following the method used for 526 

TROPOMI. Supplemental Figure 18 demonstrates the utility of this downscaling approach by comparing 527 

OMI-derived ground-level concentrations to those derived from the downscaled columns. When 528 

comparing 2020-2019 changes in monthly mean concentrations to long-term trends, trends in annual 529 

mean concentration are scaled by the ratio of the 2019 monthly mean to the 2019 annual mean to 530 

account for seasonality. 531 

The GEOS-Chem chemical transport model version 11-01 is used here (http://www.geos-chem.org/) for 532 

NO2 vertical profiles and to assess meteorological effects. GEOS-Chem simulates atmospheric chemistry 533 

and physics using a detailed HOx-NOx-VOC-O3-aerosol chemical mechanism 57,58 driven by meteorological 534 

data from the MERRA-2 Reanalysis of the NASA Global Modeling and Assimilation Office59. A detailed 535 

description of the simulation is provided in Hammer et al 60. We replace the a priori profile used in the 536 

retrieval with profiles simulated using the GEOS-Chem model to ensure consistency in vertical profile 537 

representation between TROPOMI, OMI, and GEOS-Chem. We simulate NO2 profiles from January 2005-538 

Junel 2020 at a horizontal resolution of 2°x2.5°. Supplemental Figure 19 shows results from tests using a 539 

simulation at 0.5°x0.625° which was available over North America, Europe, and Asia. Satellite-derived 540 

ground-level concentrations at ~1x1 km2 resolution were not sensitive to the resolution of the a priori 541 

information, consistent with Cooper et al27, and thus the 2°x2.5° was used here for consistency across all 542 

regions. 543 



 

 

Inferring country- and city-level NO2 changes during COVID lockdowns 544 

City-level monthly means are calculated from TROPOMI-derived concentrations at ~1x1 km2 resolution 545 

averaged over a 20x20 km2 region surrounding the city. Meteorological effects are estimated using 546 

GEOS-Chem simulations at 2°x2.5° resolution with consistent emissions in both years, downscaled to 547 

~1x1 km2 resolution using the horizontal variability of TROPOMI-derived ground-level concentrations. 548 

Supplemental Figure 20 demonstrates that GEOS-Chem simulations can represent meteorologically-549 

driven changes in NO2 in pre-lockdown periods. Trends are defined over 2005-2019 for North America, 550 

Europe, and Australia, 2015-2019 for Asia and Africa, and 2010-2019 for South America and scaled for 551 

seasonality.  552 

Country-level population-weighted means, used to represent population NO2 exposure, are calculated 553 

using concentrations at ~1x1 km2 resolution via: 554 

 555 

 
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑤𝑒𝑖𝑔ℎ𝑒𝑑 𝑚𝑒𝑎𝑛 =

∑ 𝑃𝑖∗𝑥𝑖
𝑔𝑟𝑖𝑑 𝑏𝑜𝑥𝑒𝑠 𝑖𝑛 𝑐𝑜𝑢𝑛𝑡𝑟𝑦
𝑖=1

∑ 𝑃𝑖
𝑔𝑟𝑖𝑑 𝑏𝑜𝑥𝑒𝑠 𝑖𝑛 𝑐𝑜𝑢𝑛𝑡𝑟𝑦
𝑖=1

  

 

(2) 

 556 

where xi is the NO2 concentration and Pi is the population within a ~1x1 km2 grid box.  557 

Limitations and sources of uncertainty 558 

 559 

Uncertainty values for country- and region-level population-weighed means (σtotal) represent the sum in 560 

quadrature of three main error sources: 561 

 
𝜎𝑡𝑜𝑡𝑎𝑙 = √𝜎𝑝𝑜𝑝−𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑

2 + 𝜎Ω𝑚𝑎𝑥
2 + 𝜎𝐴𝑀𝐹2020

2 

 

(3) 

 562 

Uncertainty in population-weighted means (σpop-weighted) are estimated using a bootstrapping method61. 563 

Uncertainty in 2020 NO2 estimates (σAMF2020) arises from the use of simulated profiles as a priori 564 

information for calculating satellite air mass factors and for informing the column-to-ground-level 565 

relationship, as these simulations use emission inventories that do not reflect changes resulting from 566 

COVID-19-related travel restrictions. Such errors may result in overestimating the fraction of columnar 567 

NO2 near the surface, resulting in an overestimate in satellite-derived ground-level NO2 concentrations 568 

and an underestimate of the 2020-2019 difference. We estimate σAMF2020 by performing sensitivity 569 

studies where anthropogenic NOx emissions were uniformly reduced by 50% to assess the effect of such 570 

emission errors on ground-level NO2 estimates. Reducing anthropogenic NOx emissions by 50% led to a 571 

5% change in monthly mean population weighted NO2 concentrations in North America, Europe, and 572 

Asia for March 2020. Aerosols can also contribute to uncertainty in air mass factor calculations, as a 573 

reduction in anthropogenic scattering aerosols during lockdowns may reduce air mass factors leading an 574 

underestimation of the NO2 change 62,63. However, this is unlikely to be a significant source of 575 

uncertainty in estimated NO2 changes due to lockdown as aerosol concentration changes were small in 576 

most regions 49 and a reduction in aerosol concentration of 10% translates to an uncertainty in NO2 of 577 



 

 

less than 5%64. Additional uncertainty (σΩmax) may arise from the choice of the Ωmax parameter (described 578 

in the Supplement), particularly in regions where there are insufficient ground monitor data for 579 

constraining Ωmax. We estimate σΩmax by evaluating the sensitivity of mean population-weighted NO2 580 

concentrations to a 20% change in Ωmax. Median country-level σΩmax values are ~7%. Uncertainty values 581 

in trends are calculated by a weighted linear regression where annual mean concentrations are 582 

weighted by σtotal. 583 

While tests here indicate that satellite-derived ground-level NO2 concentrations are insensitive to the 584 

resolution of the simulated data used in the algorithm, discontinuities can occur at the edges of 585 

simulation grid boxes. To quantify this uncertainty, we calculate the difference across the grid box 586 

boundaries in each region. In most regions the discontinuity is small (<0.5 ppbv in 92% of total cases, 587 

and in 98% of cases where NO2 concentrations > 2 ppbv) although can be larger in some cases (>2 ppbv 588 

in 0.02% of cases where NO2 concentrations > 2 ppbv, maximum of 4.5 ppbv). 589 

The along-track resolution of TROPOMI observations changed from 7 km to 5.5 km in August 2019. This 590 

change may influence interannual comparisons, particularly with respect to the sub-grid downscaling of 591 

process which relies on the spatial structure observed by the satellite. To test the influence of this 592 

change, we perform a case study where annual mean surface concentrations over Asia are calculated 593 

using two different sub-grid scaling factors (ν in equation S1 in the Supplemental Material) determined 594 

from one year of observations before and after the resolution change, with other variables held 595 

constant. The mean relative difference between the two tests was 9% for grid boxes with annual mean 596 

concentrations greater than 1 ppbv, with a change in regional population-weighted NO2 concentrations 597 

of 3%. Greater sensitivity to observation resolution was evident in regions with larger NO2 598 

enhancements, although relative differences greater than 25% occur in fewer than 5% of grid boxes. 599 

These tests indicate that while the change in observation resolution may change some spatial gradients 600 

the overall impact on population exposure estimates is small. 601 

Uncertainty values presented above represent uncertainty in the conversion of satellite-observed slant 602 

columns into surface concentrations and do not represent systematic errors in the retrieval of slant 603 

columns from satellite-observed radiances (~10%), or errors in the air mass factor calculations (23-37%), 604 

both of which have been extensively examined in prior studies52,65. Errors related to air mass factor 605 

calculations can be reduced by using higher resolution inputs in air mass factor calculations66,67 and are 606 

partially mitigated here during the conversion of column densities to surface concentrations through the 607 

sub-grid parameterization27.  608 

While we apply a scaling factor to correct for sampling biases due to persistent cloud cover or surface 609 

snow cover, biases in monthly mean calculations may persist if the sampling rate is sufficiently low, 610 

particularly for city-level calculations. Most of the cities examined in Supplemental Table 1 had sufficient 611 

sampling to allow for a robust monthly mean calculation (median sampling rate of 14 days per month 612 

for the months indicated in the table), except for two cities for which fewer than 5 days of observations 613 

per month were available for the given month in either 2019 or 2020 (labeled * in the table). However, 614 

results from these cities were consistent with nearby, more frequently sampled cities, lending 615 

confidence to these results despite the lower sampling frequency. 616 

This data set represents significant improvement over past satellite-derived ground-level NO2 estimates, 617 

as the updated algorithm is less sensitive to model resolution and leverages higher resolution satellite 618 

observations than previous estimates. However, limitations remain. There can be significant fine-scale 619 



 

 

variability at scales finer than the 1x1 km2 resolution used here that cannot be captured by the satellite 620 

observations 68,69. Additionally, ground monitor data are used as a constraint in converting observed 621 

column densities to ground-level concentrations, and thus absolute concentration values are likely less 622 

accurate in time periods or regions where ground monitor data is unavailable. However, these data are 623 

still useful for examining relative interannual variability or trend analysis. In combining OMI and 624 

TROPOMI observations we assume that the spatial gradients observed by TROPOMI in 2018-2020 can be 625 

applied to OMI for the entire 2005-2019 time series. New or disappearing point emission sources with 626 

small plume footprints may affect this assumption, however past evaluations of similar assumptions 627 

have not found it to be a significant error source25. Additional errors in the column to ground-level 628 

conversion may occur in areas with significant free tropospheric NO2 sources like aircraft emissions or 629 

lightning. 630 

 631 
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Tables 682 

Country Month 
with 
greatest 
2020-
2019 
change 

Monthly 
Population
-weighted 
mean NO2 
2019 
(ppbv) 

Monthly 
Population-
weighted 
mean 2020 – 
2019 
difference 
(ppbv)  

Expected 
2020-2019 
change from 
meteorology 
(ppbv) 

Long-term 
trend in 
population-
weighted NO2 

(ppbv/year) 

Ratio of 
2020-2019 
difference 
to long-
term trend 
(years) 

China† Jan  9.5±0.3  -2.7±0.3 0.057±0.03  -0.8±0.1   3.4±0.6 
India† Jun  0.96±0.06  -0.29±0.03 -0.062±0.002  0.017±0.005  N/A 
United States Mar  3.0±0.1  -0.40±0.08 -0.12±0.01  -0.119±0.009   3.4±0.7 

Indonesia† Jun  1.24±0.04  -0.3±0.3 -0.031±0.007  -0.016±0.006   20±20 

Brazil* Apr  1.01±0.04  -0.3±0.3 -0.15±0.01  -0.064±0.007   5±4 

Bangladesh† Apr  0.82±0.05  -0.24±0.09 -0.18±0.01  0.026±0.006  N/A 

Mexico May  2.75±0.06  -0.68±0.07 0.01±0.01  0.095±0.006  N/A 
Russia Apr  4.18±0.07  -1.4±0.2 -0.39±0.02  -0.074±0.003   19±3 

Japan† Apr  4.0±0.3  -1.9±0.2 -0.19±0.02  -0.24±0.04   8±2 

Egypt# May  3.1±0.1  -0.4±0.2 -0.03±0.01  -0.25±0.09   1.4±0.9 
Iran# Apr  2.76±0.07  -0.5±0.7 0.080±0.008  -0.12±0.02   4±6 
Turkey# Apr  4.23±0.08  -1.5±0.7 0.17±0.03  0.135±0.007   N/A 
Germany Mar  7.95±0.3  -2.7±0.4 -0.77±0.01  -0.12±0.01   23±4 
Thailand† Mar  1.34±0.08  -0.25±0.03 -0.052±0.008  -0.003±0.008   100±200 
France Apr  4.76±0.03  -3.1±0.1 -0.117±0.008  -0.168±0.009   19±1 
United 
Kingdom 

Apr  6.42±0.03  -2.8±0.1 -0.19±0.02  -0.43±0.01   6.7±0.3 

Italy Feb  10.9±0.3  -2.8±0.3 -2.84±0.05  -0.37±0.02   8±1 
South Africa# May  7.7±0.1  -2.7±0.3 -0.06±0.02  -0.4±0.2   7±3 
Spain Apr  3.16±0.04  -2.1±0.1 -0.113±0.006  -0.169±0.009   12.6±0.9 
Argentina* Apr  1.63±0.07  -0.8±0.7 -0.32±0.02  -0.08±0.01   11±10 

Africa# May  0.66±0.02  -0.15±0.02 -0.012±0.001  -0.051±0.007   2.9±0.6 
Asia† Mar  3.0±0.1  -0.70±0.05 0.002±0.001  -0.19±0.03   3.6±0.6 
  East Asia† Feb  6.4±0.1  -1.86±0.02 -0.068±0.001  -0.55±0.06   3.4±0.4 
  South Asia† Jun  0.98±0.06  -0.28±0.03 -0.044±0.001  0.015±0.006   N/A 



 

 

Europe Apr  3.87±0.02  -1.67±0.08 -0.096±0.001  -0.090±0.007   19±2 
  West Europe Apr  4.52±0.02  -2.08±0.07 -0.115±0.001  -0.163±0.009   12.8±0.9 
  Central 
Europe 

Apr  2.86±0.05  -1.0±0.2 0.013±0.001  0.053±0.005   N/A 

  East Europe Apr  3.43±0.03  -1.40±0.06 -0.167±0.001  -0.049±0.004   29±2 
North America Apr  2.41±0.07  -0.5±0.1 -0.105±0.001  -0.029±0.008   17±7 
Oceania May  1.59±0.09  -0.2±0.1 -0.024±0.001  -0.086±0.005   2±2 
South America* Apr  1.11±0.05  -0.4±0.4 -0.022±0.001  -0.056±0.007   8±7 

Global  
(country-level) 

Apr  1.5±0.2  -0.53±0.06 -0.050±0.010  -0.04±0.01   15±4 

Global 
(Population-
weighted) 

Apr  2.2±0.5  -0.52±0.08  -0.06±0.04  -0.10±0.05   5±3 

Table 1: TROPOMI-derived population-weighted monthly mean NO2 concentrations, difference between 683 

population-weighted mean ground-level NO2 in 2020 and 2019, expected change due to meteorology, 684 

and long-term satellite-inferred ground-level NO2 trends for months with greatest 2020-2019 difference 685 

and significant lockdown conditions (stringency index > 20). Countries with largest populations and 686 

annual mean population-weighted NO2 concentrations greater than 1 ppbv are shown, sorted by 687 

population. Long-term trends are scaled by the ratio of the 2019 monthly mean to annual mean to 688 

account for seasonality. Long-term country-level trends are calculated for 2005-2019, except for 689 

countries in South America (2011-2019, marked *), Africa/Middle East (2015-2019, marked #), and Asia 690 

(2013-2019, marked †) 691 
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 699 

TROPOMI-derived 2019 annual mean ground-level NO2 concentrations developed here are available at 700 

DOI: 10.5281/zenodo.5484305. TROPOMI-derived January-June 2019 and 2020 concentrations are 701 

available at DOI: 10.5281/zenodo.5484307. Satellite-derived ground-level NO2 concentrations for 2005-702 

2019 used for trend analysis are available at DOI: 10.5281/zenodo.5424752. 703 

Satellite column data used here are available from the NASA Goddard Earth Sciences Data and 704 

Information Services Center (TROPOMI DOI: 10.5270/S5Ps4ljg54; OMI DOI: 705 

10.567/Aura/OMI/DATA2017). The GEOS-Chem model version used here is available at DOI: 706 

10.5281/zenodo.2658178.  707 

Hourly ground-level NO2 measurements from ground monitors in the US are available from the US 708 

Environmental Protection Agency Air Quality System 709 



 

 

(https://aqs.epa.gov/aqsweb/documents/data_mart_welcome.html), in Canada from Environment and 710 

Climate Change Canada’s National Air Pollution Surveillance Program (http://maps-711 

cartes.ec.gc.ca/rnspa-naps/data.aspx), in Europe from the European Environment Agency 712 

(https://aqportal.discomap.eea.europa.eu/products/data-download/), and in China from 713 

https://quotsoft.net/air. 714 

COVID-19 lockdown policy information is provided by the Oxford COVID-19 Government Response 715 

Tracker (https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-716 

tracker#data). Population distribution data is available from the Center for International Earth Science 717 

Information Network, DOI:10.7927/H4JW8BX5. 718 

NO2 changes during COVID-19 lockdowns from previous studies used for comparison here were 719 

compiled by Gkatzelis et al34 and are available at https://covid-aqs.fz-juelich.de/ 720 

Gross National Income data provided by World Bank, available at 721 

https://data.worldbank.org/indicator/ny.gnp.pcap.cd?year_high_desc=true 722 
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Code used to calculate surface NO2 concentrations from satellite columns is available upon request. 725 

Some features in the displayed maps produced using “The Climate Data Toolbox for MATLAB” 726 

(doi:10.1029/2019gc008392). 727 
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