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Electric Aircraft Propulsion
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Technology Readiness Levels (Aeronautics)

Generally served by industry

#Actual system completed and “flight qualified” through test and
demonstration {ground or space)

— TRL7 J

»System prototype demonstration in a space environment

— TRL6 J‘

=System/subsystem model or prototype demonstration in a relevant
environment {ground or space)

__| TRLS )

*Component andfor breadboard validation in relevant environment

NASA research

WWww.nasa.gov
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NASA EAP REPRESENTATIVE ACTIVITIES

NASA has executed a plethora of EAP activities over the last 10 years and is in the process of advancing
the future of sustainable flight. Work spans from fundamental research to flight demonstrations.

X-57, 100kW class
flight demo of all
electric distributed
propulsion.

ELECTRIFIED AIRCRAFT PROPULSION

Revolutionary Vertical
Lift Technology Studies
of Electric, Hybrid,
Turboelectric Concepts
and Technology.

Electrified Powertrain
Flight Demo — ground
& flight
demonstration of
integrated MW-class
powertrain.

Advanced Air Transport
Technology/Propulsion
& Power Subproject -
powertrain technology

Transformational Tools
& Technology — EAP
materials & modeling.

Hybrid Thermally
Efficient Core
(HyTEC)

Advanced turbine
engine technologies in
a high-power-density
core.

________________________

SUSAN - A 20 MW

hybrid-electric aircraft
concept study
featuring a single aft
engine with distributed
wing-mounted
propulsors.

WWww.nasa.gov
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Sustainable Flight National Partnership

https://www.nasa.gov/aeroresearch/sustainable-aviation-np/

FY20  Fy21  FY22 = FY23 = FY24 | FY25 = FY26 | _FY27 . FY28 | FY29

Model Based Systems Analysis & Engineering L Ree—
) Leverage
Sustainable Flight Demonstrator (SFD) Flight Test | the Asset
\_/ —
................................. Future
AATT - Transonic Truss Braced Wing  Technical Challenge (TC) Completion Spirals
Hi-Rate Composite Aircraft Manufacturing Mfg Demo & Structural Test
¥R (HiCAM) O
Core Demonstration &
_ Hybrid Thermally Efficient Core (HyTEC) T%gt_ —anned
2% Notional
A Electrified Powertrain Flight Demonstration (EPFD) 77
Flight Test
O—O—

@ AATT - Electrified Aircraft

Completion Achieve TRL 6 to support

Industry Product Decisions

Advance Air Transport Technology Project (AATT)
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Hybrid Thermally Efficient Core @

Requirement
 Achieve a 5 to 10% fuel burn reduction versus 2020

Combustor & Sustainable Aircraft Fuel best in class.
» Achieve up to 20% power extraction (2 to 4 times
current state of the art) at altitude.

HPT/LPT Rationale/Impact
* Reduce engine core size and facilitate hybridization.

* Lower environmental impact and reduce end-user cost.

* Invest in aggressive, impactful small core turbofan
technologies with development risk.

HPT » Technology improvements for efficiency, durability,

performance, and hybridization.

% H TEC Approach
o dyyc » Partner with industry to mature and demonstrate

promising technologies

Accelerate development and demonstration of next generation small-core turbofan engine technologies

POC : Tony Nerone (anthony.l.nerone@nasa.gov) WWW.nasa.gov
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NASA Electrified Powertrain Flight Demonstration

Electrified Powertrain Flight Demonstration (EPFD)

project:
« Partnership with U.S. industry to establish and demonstrate T
iIntegrated megawatt-class powertrain systems.

EPFD Goals:

* Accelerate US industry technology readiness and competitiveness

» Facilitate new aviation industry S — Curve for electrification

« 2030-2035 Entry Into Service: Next generation thin haul, regional and

S|ng|e -Aisle markets ' { Thermal Control

System

Motor/
Generator

Regulations and Standards will play a large role: | o™ mow

« NASA s partnering with industry to identify the regulatory and | EED Disvbution
standards gaps that may exist for the highest priority electric - S I

technologies and gather data to support future regulations and

standards development.

Project Manager, Gaudy Bezos-Oconnor (gaudy.m.bezos-oconnor@nasa.gov)
Deputy Project Manager for Technology, Ralph Jansen (ralph.h.jansen@nasa.gov). WWW.Nasa.gov

1
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EPFD Industry Partners

NASA has selected two U.S. companies to that will rapidly mature Electrified Aircraft Propulsion
technologies through ground and flight demonstrations. [Information from linked news articles below]

GE Aviation, $179 million. magniX, $74.3million.
» Partnered with Boeing to modify Saab 340B « Partnered with Air Tindi and AeroTEC
powered by GE CT7-9B turboprop engines « Aims to demonstrate electric propulsion
 Megawatt-class and multi-kilovolt hybrid- technology to power a hybrid De Havilland
electric propulsion system tested in simulated Canada Dash 7 aircraft, with first flight planned
altitude conditions at NASA NEAT facility for mid-2020’s
« Ground tests are a key step in technology * The retrofitted aircraft will be powered by two
development for a hybrid electric propulsion PT6 engines and two magni650 electric
system for flight tests later this decade. propulsion units (EPUs)
» Link to cited news article GE 1 » Link to cited news article magniX 1
» Link to cited news article GE 2 » Link to cited new article magniX 2

POCs::
Project Manager, Gaudy Bezos-Oconnor (gaudy.m.bezos-oconnor@nasa.gov)
Deputy Project Manager for Technology, Ralph Jansen (ralph.h.jansen@nasa.gov)

www.nasa.gov


https://fl360aero.com/detail/canadian-air-tindi-and-seattle-based-aerotec-joined-hands-with-magnix-for-nasa-s-electrified-powertrain-flight-demonstration-epfd-project/917
https://aviationweek.com/aerospace/advanced-air-mobility/magnix-selects-dash-7-nasa-electric-propulsion-testbed
https://blog.geaviation.com/sustainability/electric-skies-boeing-joins-ge-and-nasas-hybrid-electric-flight-project/
https://aviationweek.com/shownews/farnborough-airshow/ge-claims-world-first-high-voltage-high-altitude-power-demo
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EPFD Power System Technical Performance Objectives
Demonstrators are working at relevant operating points

Key Key Performance Parameter Full Success Minimum Success Technical Technical Performance Parameter Full Success Minimum
FORDAIINGD | ([KCHE) Single Aisle Part 25 19 PAX Thin Haul Part] Performance (TPM) S
Parameter 23 Parameter
(KPP)# (TPM)#
KPP-1 Total Power level of the Integrated | 2MW 500kW TPM-1 Total Power level of the Integrated MW- 1.5MW 500kW
MW-Class Powertrain System Class Powertrain System
KPP-2 Power Level of individual IMW 250kW TPM-2 Power level of individual electrical IMW 250kW
electrical components components
KPP-3 Operating Voltage of the 1000V 500V TPM-3 Operating Voltage of the Integrated MW- | 1000V 500V
Integrated MW-Class Powertrain Class Powertrain System
System TPM-4 Altitude Capability of the Integrated MW- | 30,000 ft. 15,000 ft.
KPP-4 Altitude Capability of the 40,000 ft. 20,000 ft. Class Powertrain System
ISntetgrated MW-Class Powertrain TPM-5 Specific Power of the Integrated MW- 1.25 kW/kg 0.5 kW/kg
ystem Class Powertrain System
KPP-5 Specific Power of th§ Integrated 1.25 kW/kg 0.5 kW/kg TPM-6 End to End loss of the Integrated MW- 20% 259,
MW-Class Powertrain System Class Powertrain System
KPP-6 End to End loss of the Integrated 20%
MW-Class Powertrain System Will be collecting relevant sets of data
KPP-7 Mission Fuel Burn/Energy Reduction | 4% for Part 25 Transport | 10% for Part 23 Transport )
Aircraft Aircraft * Integrated Ground System Development, Integration and Test
POCs :

Project Manager, Gaudy Bezos-Oconnor (gaudy.m.bezos-oconnor@nasa.gov) ’ Integrated F“ght SyStemS Development ’ Integratlon and Test

Deputy Project Manager for Technology, Ralph Jansen (ralph.h.jansen@nasa.gov) . FIight Airworthiness/Safety and Mission Assurance

Demonstration of MW scale EAP that will help enable the next generation of arcraft
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University Leadership Initiative

Electric Propulsion: Challenges and Opportunities /ed by Ohio State University
o « Design, build and test 1 MW electric machine and thermal management system
—— Fuel Cell * 14 kW/kg (active mass), 99% efficient
::;Er"yk * Integrated 2 kV DC power electronics drive
e erment e Alrplane system and battery studies
CHEETA led by University of lllinois
» Center for High-Efficiency Electrical Technologies for Aircraft
« Distributed propulsion architectures
« Energy conversion, generation and storage
« Superconducting machines
IZEA (Integrated Zero-Emission Avation) led by Florida State University
* Fuel cell technology
* Cryogenic liquid hydrogen fuel
« Electric machine, drive, power controls and thermal management
« Superconducting power transmission
- Zero Emissions
MW Machine (U. Wisconsin) and « Program is gearing up for alternative solutions and energy sources

Power Electronics (OSU) « Solicitation coming 2023

|||||||
GGGGGG
¢\

Diverse teams advancing NASA goals with highly innovative solutions

www.nasa.gov
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Take away

« Broad portfolio of work spread across many programs
* Relevant research from system to components to integration
* Engaged with both industry and academia

www.nasa.gov
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Advanced Air Transport Technology (AATT) Project
Propulsion & Power Subproject -powertrain technology
Advanced Air Vehicle Program

Electric Aircraft Portfolio
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Mass is a problem
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Note: Thermal systems also add mass along with energy storage

Haran, K. Electrified Aircraft Propulsion: Powering the Future of Air Transportation: Cambridge University Press, 2021.

WWww.nasa.gov
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High-Efficiency Megawatt Motor Electric Machines @

Housing for coolant jacket & torque load path

Field Windings Housed in Laminated Core
Produce Rotating Magnetic Fiel

Fluid Outlet

Ambient >13 kW/kg, 96% efficient
« Ohio State University: Induction
« University of lllinois and Hinetics: Permanent Magnet
e  University of Wisconsin (OSU-led ULI): Permanent Magnet

superconductors on rotor

Vacuum Tube on LD of
Power Faadthroughs\ A5
Coolant flows between i

vacuum tube and stator
coils (in air gap)

Fluid Inlet

Partially Superconducting >76 kW/kg, 98% efficient
« NASA High Efficiency Megawatt Motor Wound Field
Superconducting Coil
Testbed .\lb Superconducting >16 kW/kg, 99% efficient
=10  NASA addressing challenges for fully superconducting
machines
* AC loss studies
 University of lllinois CHEETA program (ULI program)

A
!,l.|!!\!l

W

L

Still pursuing key performance parameters laid out in 2015-16 system studies

Super Conducting POCs: Mr. Gerry Brown (gerald.v.brown@nasa.gov) and Dr. Justin Scheidler (justin.j.scheidler@nasa.gov)

www.nasa.gov
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Power Converters @

Advanced Power Converters
» Past efforts
« Cryogenic
« Ambient (silicon carbide — silicon/SiC hybrid and gallium
nitride HEMT)
« Current efforts move toward altitude-capable:
« GE flight-ready SiC inverter (SLIM) (719kW/kg, 99%
efficiency)
 NASA 250 kW low total harmonic distortion™
controller/inverter (10 kW/kg, 99% efficient)

* Addresses a sensitivity for high power density machines

NASA 250 kW Inverter
Rendering

Flightweight DC power conversion key to many aircraft concepts

« POC: Mr. Dave Avanesian (david.avanesian@nasa.qgov)

WWww.nasa.gov
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Fault Management and Safety

Circuit Breaker (MW scale, ~1kV, 1000A)
« Pratt and Whitney (P&W, RTX, and Collins Aerospace)
« General Electric Avation (GEA and GE Research)

Gate Drive Boards

CTs integrated into bus bar

% 5 Raytheon « Naval Post-Graduate School-POC: Dr. Rodger Dyson
Wy Circuit Breaker (rodger.w.dyson@nasa.gov)
7anuia A Materials Studies
Flid ports « Custom devices from NASA soft magnetic materials

TVS Board
Power Modules

Credit: Raytheon Technologies o | jfetime modeling for insulations system

Power Quality Filtering

« Basic material to component

« Designed for advanced use with advanced
power devices

. \ o \
Y - AR -\)
Ly \ t i

Addresses key requirements for megawatt, kilovolt systems at altitude

Dr. Alex Leary-Magnetic Passive Components (alex.m.leary@nasa.gov),
Dr. Andrew Woodworth-Electric Machine Fault Management work (andrew.a.woodworth@nasa.gov) WWW.nasa.gov
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Thermal Management Do o

Locatigr—Acoustic Cooling .

R i
.m_u!""*.
Tre h‘m
sk o TTTR TP
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« Solid-State Exergy Amplification | SN

— Heat Pipe Wing

" De-icin
g Red Embedded

Branched Heat Pipes

P 4 -

o [
Rkl
Blue Embedded "':‘g:-{" w‘

Acoustic Tubes

Waste Heat

— No moving parts
— No pumped fluids

— No increased drag

— Maximize specific power

— Improve powertrain efficiency

Thermal Transport

Exhaust Flow High-temperature
heat pipes

* Areas of Development
— Turbofan WHR HX
— Acoustic Heat Pump
— Oscillating Heat Pump (OHP)
— Thermal Transport
— Thermal Recycling
— Dynamic Thermal Redirection
— Gradient-based System Optimization

Acoustic
energy

OHP Heat Collection

Waste Heat Recovery

Simple, unique solutions for solving a complex distributed problem

« POC: Dr. Rodger Dyson (rodger.w.dyson@nasa.gov)
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NASA Electric Aircraft Testbed (NEAT) @

« Can test megawatt (MW) systems test electrical systems at altitude
« Can test MW scale power systems, controls and in a variety of configurations:
« MW scale power levels complicates test run at kW or lower levels

NEAT Configured to Test a Lightly
Distributed Turboelectric Aircraft

- = Electric machine pairs to act
. as electrical motor driving a
[, boundary layer ingesting fan

Altitude chamber to/test at

l‘:
¥ : high voltage in a realistic
\ flight environment

Electric'machine pairs to act as; turbofans
Up to 24 Megawatt, high- with' integrated electrical generators to
voltage airplane power: grid produce thrust plus electrical power:

WWww.nasa.gov
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NEAT Tests

NEAT
* Turbine Electric Energy Management (TEEM): Real-time demonstration of a control
concept of optimizing the energy usage of a hybrid-electric propulsion system during

transient operation.
* Demonstrated the ability of TEEM to dynamically alter shaft speed to maintain

the designed operating line performance during engine transient operations.

* Demonstrated Adaptive Sliding Mode Inertia Controller and Scaling (ASMICS) 250K Motor & Inverter x 8
algorithm. . High Spool
* STARC-ABL Controls Test: Test of a control system design for the Single-aisle oovee | > ‘ @
e | T
Turboelectric Aircraft with Aft Boundary Layer Propulsion (STARC-ABL), a partially T“:_Ibs;a" I\I-/|I7(83 I
turboelectric Electrified EAP aircraft concept developed by NASA % = = % -
* NEAT MW EAP Power System Impedance Modelling: Determining EAP system @' @ @
T i Low Spool
stability and transient response, providing guidance on power quality, providing insight | Turbofan LPS
_ LPS M/G
into future standards development
NEAT TEEM Hardware Configuration

Answering questions about the utilization megawatts of electric power for propulsion
Dr. Joe Connolly (joseph.w.connolly@nasa.gov), Dr. Don Simon (donald.l.simon@nasa.gov), Dr. Tim Dever (tdever@nasa.gov)
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OBJECTIVES

Meet energy density requirements
needed to enable electric aircraft,

Optimize recharge speed for efficient
turnaround time.

Avoid parasitic weight from excess
packaging and cooling.

Increase safety with fully-solid design
eliminating use of flammable liquids.

Combine materials technologies to
achieve scalability.

NASA ADVANTAGES

Bi-polar stack design
Reduces safety containment weight and improves
specific energy and power,

Patented holey graphene
I[mproves cathade electrical conductivity and the
initial discharge capacity of the cell,

New sulfur-selenium combination
[mproves cathode performance, reduces impedance,
and creates a more stable discharge profile.

Computational modeling
Guides experiments to accelerate development time,

Collaboration
Engages expertise of mutliple NASA centers and
industry partners,

SOLID-STATE DESIGN

-— N —

A
Charge . Discharge

-

1 Unit cell Li-metal anode ﬂ
Solid electrolyte

S/Se cathode

GOALS

Optimize composition ratio of solid-state
electrolyte, active material, and conductive agent
to significantly improve battery performance,

Electric e
aircraft T soclors

Pack
Specific Energy
(Whikg)

SABERS

(Transformative Tools and Technology (TTT) Project/Transformative Aeronautics Concepts Program)

== Ulralightweight =
s Noley graphene

4 SEM of
. holey graphene
scaffolding &

a9 -

Performance Target: 500 Wh/kg battery

Current Li-ion Desired mission capability

stata-of-the-art for market expansion
to regional aircraft
|

8 § 8 8 g
) 1

Current R&D focus SABERS
for Automotive Sector

SABERS:

Solid-State Architecture
Batteries for Enhanced
Rechargeability and Safety

POCs:
Dr. Don Dombrush (donald.dornbusch@nasa.gov)
Dr. Rocky Viggiano (rocco.p.viggiano@nasa.gov)

WWww.nasa.gov
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HV Electrical Materials

(Transformative Tools and Technology Project/Transformative Aeronautics Concepts Program)

&

Cables and busbars are a primary focus, but may also apply to power electronics
packing for EAP applications

> 10kV, 51kft or higher (possible lunar applications)
NASA developed Micro-Multilayered-Multifunctional Electrical Insulation (MMEI)

Sustainable solutions
— Develop non-fluorinated insulation materials

— Boron nitride-polymer composites to create engineered material Other multifunctional layer
 Reduce mass/size of insulation S;h_ﬂ;itg?snsﬁggggg;|ayer e'g_'f g’rf'laibarrier;
« Boost thermal conductivity SE‘GLET"'L‘.'QE.',?? |C|$er
» Boost resilience to damage by partial discharge, corona etc. }Tgh';mitm e

— Developing compound conductors to reduce weight g P

“Bond 'Iayers, fuse-bondable
& as a moisture barrier
Conductor substrate e.g., PFA, PEEK, PET, PP, PE

Creating lightweight, sustainable options for power transmission

POC: Dr. Maricela Lizcano (maricela.lizcano@nasa.gov) Www.nasa.gov
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Take away

* Directly address the mass issue in many key areas
* Addressing technology operational issues as well

www.nasa.gov
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Electric Machine Insulation @

Electric machine key performance parameters
- >1 MW, >13 kW/kg, >96% Efficient (< 40kW of waste heat/MW)
- Significant thermal management problem

High Efficiency
Megawatt Motor
(HEMM)

Stator composition

- Thermally conductive electrical conductor
- Several nonthermally conducive potting and electrical insulation materials
- Multi-material systems is a composite material

Targets

- Slot/slot liner (high voltage separator)-extruded polymer composites
- Wire insulation-polyimide/BNNS composites

- Potting materials and methods

Limitation of cooling

- Dielectric fluids are a common way of cooling a stator, not good thermal fluids

- Good thermal fluids have low dielectric breakdown strength

- Enabling: Material that supports coolant flow, has significant dielectric strength and thermal conductivity

WWww.nasa.gov
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Extruded materials

« Extruded flexible polymer composite tapes have been demonstrated but other structures are possible
« Many different extrusion for possible including 3-D printer compatible filament extrusion possible

« 3-D printing of thermally conductive, electrically insulative heat exchanging stator teeth with integral
fluid channels maybe useful

25 20

£ R*=0.9791 é

£ 20 7 stdv.=2.13 =

< =

s =

2 2

5 S

w £

O O

2 o

£ £

L Hm R=038550 =

- . O St = 02339 — DS 2

Williams, T. S., et al. Polyphenylsulfone-hBN Composite 1 —TC =
Insulation, IEEE International Conference on Dielectrics 0 , , , , , 0.0

Conference Proceedings, Valencia, Spain, 5 —9 July 2020,. 0 4 g 12 16 20 24
Flexible extruded PPSU (polyphenylsulfone)-hBN composite hBNloading, wt%

Williams, T., S, et. al, "Fabrication of Extruded Polyphenylsulfone-Boron
Nitride Composite Tapes," Society for the Advancement of Material and
Process Engineering neXus, Virtural, 2021.

Flexible extruded polymer-nBN composites offer interesting solutions for electric machines

POC: Dr. Tiffany William (tiffany.s.williams@nasa.gov) and Baochau Nguyen (baochau.n.nguyen@nasa.gov) Www.nasa.gov
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Polyimide-BN Nano Sheet Composites

* Retention of flexibility is critical for wire coatings
* ~30% reduction in dielectric strength

* QOrder of magnitude increase in thermal conductivity

(73]

14 v,

12 175 kV/mm €25
S

10 | g_ > |

= 125 kV/mm Fy
. . . = 8} 3

Moving to coating wires and g -0 wt% BNNS Cis
twisted pair for electrical £ 6 [ A24WHBNNS T

characterization in a relevant = , _3 1
eometr E

g y ) Cos
a
=

0 —

0 10 20 30 0 10 20 30 40
- Time (seconds) BNNS loading, wt2%
> o \ Woodworth, et al. "Potential of Materials to Impact Megawatt-Scale Electric Machines," AIAA

Propulsion and Energy 2021 Forum. 2021, p. 3275.

Polyimide-BNNS composites are a viable option for motor applications with improved thermal conductivity
POC: Dr. Marisabel Kelly (marisabel.kelly@nasa.gov) WWW.Nasa.gov
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Potting and Microthermal Analysis

* Vacuum-assisted axial injection potting
(VaAlP) process

qmag

— Allows epoxy to flow along wires instead of g2
through a bundle Ei

— POC: Eugene Shin (euy-sik.e.shin@nasa.gov) = §

- Thermal conductivity in potting materials § ©
— Usually achieved through micron sized fillers = £

— Drives up viscosity
* Microthermal Analysis (AATT/TTT co-funded)

— Thermal traps (no heat flow) between conductors

— Simple 2X improvement in trap aeras
significantly improves heat flow

Combination of ValP and low levels of nano Developing a multiscale modeling of Litz wires utilizing

HUETENNEVARE XS e aljile=Tal @ s Clin IR ool g le B[ (/WA NASMAT(NASA Multiscale Analysis Tool)
improvements POC: Dr. Paria Naghipour (paria.naghipourghezelieh@nasa.gov)

Woodworth, et al. "Potential of Materials to Impact Megawatt-Scale Electric Machines," AIAA Propulsion and Energy 2021 Forum. 2021, p. 3275. Www.nasa.gov
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System Study

« 3-D printed direct winding heat exchangers
« BNNS infiltrated potting

 BNNS improved polyimide

Winding Insulation Base Material SOA Material Composite Material
Component (W/m-K) (W/m-K)
Encapsulation (Potting) SOA Epoxy 1.3 1.7*

Wire Insulation Polyimide 0.1 2.5
Extruded 3D-DWHX** PPSU 0.4 1.8

Adiabatic wall  {Winding | Wall and coolant

Printed direct winding heat iﬂ B
exchangers (3D-DWHX 3-D) L
Thﬂtspﬂt "‘W_." q” T

*Shin, E. E., "Improved potting of Litz Wires for High Power Density Electric Motor," 2021 AIAA/IEEE EATS

**Sixel, W., Liu, M., Nellis, G., and Sarlioglu, B., "Cooling of Windings in Electric Machines via 3-D Printed Heat Exchanger," IEEE Transactions on
Industry Applications Vol. 56, No. 5, 2020, pp. 4718-4726.

Woodworth, et al. "Potential of Materials to Impact Megawatt-Scale Electric Machines," AIAA Propulsion and Energy 2021 Forum. 2021, p. 3275.

WWww.nasa.gov
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System Study

* Maximum current density was reached when the T, reached 220 °C

70 80%
60 F} . . . £70%
-»-SOA materials Composite materials Z
~ ()
© 0, 5
ESO - -'qc-: 60% -+Encapsulation
< = 50% F Conductor insulation
=40 | 3 ,
3 Sa0% | Extruded material
330 } ';C'; All materials enhanced
€ £30% |
£20 | 3
3 S 20% |
£
10 § 10% F
0 [ [ 1 1 [ 0% [ ] [ ] [ ] [ ] [ ] [ ] [ ]
0 5 10 15 20 25 30 2.5 5 7.5 10 125 15 175 20 225 25
Winding theraml width, mm Winding thermal width, mm

Woodworth, et al. "Potential of Materials to Impact Megawatt-Scale Electric Machines," AIAA Propulsion and Energy 2021 Forum. 2021, p. 3275.

Synergistic effects between the thermal conductivity individual components and system performance

POC: Mr. Will Sixel (William.sixel@nasa.gov) WWW.Nnasa.gov
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High Temperature RTM 3D Printing

3D printed laser Sintered RTM (AATT/TTT co-funded)

« High structural integrity

« Addition of BN increased thermal conductivity

« 3D printable opens many application

« (Good candidate for battery packaging

— Robust material that can survive thermal runaway events
— Good thermal conductivity for thermal management

— Requires nonflammable materials

3D printable battery packaging

concept
Credit SUSAN Electro-fan Activity

Additive manufacturing of high perfoamce materials is enabling

POC: Dr. Kathy Chuang (chun-hua.chuang-1@nasa.gov) www.nasa.gov
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Ageing analysis of high-temperature polymers - PPSU / A

0.2

so PPV PPV PRSL  PPSU
- Z,Va.,.r; Fdoys s 2 owys 30 daus |
2007 C

200°C  Q00°C 200°C R60°C

4 \‘ [l 0.5 T T T T T
| I \ 1800 1600 1400 1200 1000 800
0 O | |

|——PPSuU 200 C 0 days \

o y | \ \ 0.04|—— PPSU 200 C 21 days 4 ﬁ )
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Understanding ageing is an critical part of materials development
Dr. Witold Fuchs (witold.k.fuchs@nasa.gov) www.nasa.gov 30
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Concluding thoughts @

« Wide range investments in different technologies
* Investments have significant depth to match the breadth

Please contact me If you have seen something in this presentation and you
want to know more!

Andrew Woodworth
Phone: 216-433-3544
Email: andrew.a.woodworth@nasa.gov

You can also follow our developments at:
https://www1.grc.nasa.gov/aeronautics/eap/

WWww.nasa.gov
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University/Higher Education Programs — Pathways for Collaboration

University / HE Programs Vanessa Webbs, PM-Internships &
University Affairs Officer, Scholarships
Dr. Mark (Dave) Kankam Lynne Sammon , Ed. Progs. Specialist

216-433-6143

fInternships N ¢/ Scholarships \ Fellowships
+ High School * Aero NASA Space NASA + Advanced STEM Training and
e UG/Grad Scholarshp Academy MARTI Research
+ Externally & Program at Glenn at Glenn « Jenkins Graduate Fellowship
Internally Funded (ASP) + Graduate Aeronautics
GRC Mentors | GRC Mentors l k GRC Advisors
\. GRCMentors  / WJ 2l AN
| ]\ J
Y Y
Interns/Research Associates (Undergraduates and Graduates) Graduates
/~ NASA Glenn "\ SGC/EPSCoR (" National T NASA )
Faculty (Experimental = sl Elell Postdoctoral
Fellowship Program to Stimulate College a_nd Program
Program Competitive Fellowship (NPP)
Research) FEE L
GRC GRC GRC
\_ Colleagues / k GRC Collaborators J Colleagues \_ Advisors /
Faculty ;/

MARTI — Multidisciplinary Aero Research Team Initiative

WWww.nasa.gov
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Contact Information

M. David Kankam, Ph.D., Dip. Bus. Admin.

University Affairs Officer — GRC

Director of NASA Space Academy & MARTI @ Glenn
NASA Glenn Research Center,
21000 Brookpark Rd., MS 7-4
Cleveland, OH 44135

Phone: Voice=>(216) 433-6143; Fax=>» (216) 433-3678

E-mail: Mark.D.Kankam@nasa.gov

* Glenn Office of Education Website (For Program Details):
http://www.nasa.gov/centers/glenn/education

WWww.nasa.gov
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Noteworthy Websites for Faculty/ Student Engagements @

*NIFS Application=> OSSI (One Stop Shopping Initiative)
« http://intern.nasa.gov/

*NASA Glenn STEM
 https://www.nasa.gov/centers/glenn/stem (One Stop)

*NASA Postdoctoral Program (NPP)
« https://npp.usra.edu/

*NASA Glenn Faculty Fellowship Program (NGFFP)
 https://www.nasa.qgov/centers/glenn/stem/nasa-glenn-faculty-fellowship-
program

*NASA Space Technology Graduate Research Opportunities (NSTGRO)
* https://www.nasa.gov/directorates/spacetech/strg/nstgro

WWww.nasa.gov
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Noteworthy Websites for Faculty/ Student Engagements @

*National Space Grant College & Fellowship Program /EPSCoR
 https://www.nasa.gov/stem/epscor/home/index.html

*NASA Solicitation & Proposal Integrated Review & Evaluation System
(NSPIRES)
» Includes information on:
o NASA MUREP Institutional Research Opportunity (MIRO)
* hitps://nspires.nasaprs.com/external/

* NASA Research Announcements (NRAS)
» Includes Education Opportunities in NASA STEM (EONS)
» https://Inspires.nasaprs.com/external/solicitations/solicitationAmmen
dments.do?method=init&solld={F257E429-24AC-EE13-09E6-
45812E0D1314}&path=open

WWww.nasa.gov
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