

¹NASA Glenn Research Center, Cleveland, OH ²Blue Origin, Seattle, WA ³Wolf Creek Federal Services, Cleveland, OH ⁴University of Toledo, Toledo, OH

Introduction / Motivation • Enable reduced energy consumption, emissions, & noise of commercial transport aircraft via electrified aircraft propulsion NASA's High-Efficiency Megawatt Motor (HEMM) sized as generator for NASA's STARC-ABL concept **Performance impact of HEMM** Fuel burn with HEMM + Refined assessment [1] advanced power electronics (higher fidelity power system -2.5% to -2.8% & thermal management) 1.Schnulo, S.L. et al., Proc. of EATS, 2020. **Overview of HEMM** Copper stator (> 100 °C) Value Parameter Rated 1.42 MW Housing continuous power Nominal 6,800 rpm speed 107 m/s Tip speed (Mach 0.31) Rated 2 kNm torque Goal Value Electromagnetic specific power 16 kW/kg Efficiency > 98%

Overview of HEMM's Superconducting Rotor

Thermal design

- Conductively cooled by cryocooler inside rotor (goal: 50 W at 50 K with 1.8 kW input; approx. 25 kg)
- Reduce windage & convection: < 10⁻³ torr vacuum
- <u>Reduce radiation</u>: PVD gold on rotor components; low emissivity paint on interior of stator
- <u>Reduce heat leak</u>: optimal current lead length
- Improve conductive heat transfer path:
 - Cu thermal bridge for high thermal conductance connection to cryocooler & structural compliance

Electromagnetic design

- Solid Fe_{49.15}Co_{48.75}V₂ rotor core
- 22.5 mm air gap to stator iron
- Nominally 600 turns per coil

Parameter	Value
Superconductor	2G HTS
HTS temp. limit	62 K
DC operating current	57.2 A

poles (coils) Coil configuration No-insulation quadruple pancake

Thermal vacuum chamber demonstration of a cryocooled, HTS rotor for a 1.4 MW electric machine for electrified aircraft propulsion Scheidler, J.J.¹, Mulder, T.T.², Stalcup, E.J.¹, Tallerico, T.F.¹, Torres, W.³, and Duffy, K.P.⁴

Baseline **Refined STARC-ABL** rev. B2.0

Superconducting rotor coils & core (~ 60 K)

Rotating shaft with integrated cryocooler

12

Cryo-Vac Chamber Experimental Setup

- 10⁻⁶ to 10⁻³ torr vacuum
- Heaters at torque tube mount to mimic temperature of cryocooler's heat rejector
- Conduction from rig's cryocooler sufficient to maintain cold tip interface at \leq 50 K
- 16 negative temperature coefficient RTDs, 9 thermocouples

ICE-Box test rig

Thermal Response of Cryo-Vac Chamber Experiment

Predicted temperature distribution (K) of experiment

- In ICE-Box test, coils colder & less total heat
- Since ICE-Box test includes only 3 of 12 coils:
- End turn hoops hotter
- Larger temperature gradient in coils & between coils
- Heat load within capabilities of facility

Superconductor temperatures (K)				
	ICE-Box Test	HEMM		
Maximum	55.9	57.4		
Average	55.3	57.2		

Rotor heat sources	(W) at 50 K cold tip

	ICE-Box Test	HEMM
Shaft conduction	9.2	11.4
Current lead conduction	4.4	4.4
Windage & convection	0.0	5.0
Radiation	7.2	4.2
I ² R losses	3.3	3.3
Total cryocooler heat load	24.1	28.2

Experimental setup

Temperature distribution (K) of HEMM & ICE-Box test

Baseline testing of pancake coils in LN2