Regional Air Mobility Market Demand Study

ARMD Systems Analysis Symposium

Jacob Wishart

Economist, Economic Analysis Division, Volpe Center November 2, 2022

Introduction – Volpe Research

 Research objective to identify and measure potential demand for regional air mobility (RAM), in addition to providing emission profiles of competing transportation modes.

Initial research steps:

- Define the RAM market space and drivers of demand based on economic theory
- 2. Analyze existing aviation and long distance trip data to determine current scope and size of the RAM market across all modes
- 3. Estimate aircraft and vehicle emissions profiles by source
- 4. Leverage existing datasets to empirically model potential RAM demand

Regional Air Mobility Market Background

• RAM Market Objective: utilize the supply of under-served regional airports with regional traffic demand from multiple modal sources.

Regional Air Mobility

- Small (<20 seats) electric aircraft (Part 23)
- Average trips around 200 miles (range from 50 to 350-500 miles)
- Multiple markets: leisure, commuter, business, feeder service to larger airports, cargo
- Substitute for cars and bus/train service

Supply: Utilize Smaller Regional Airports

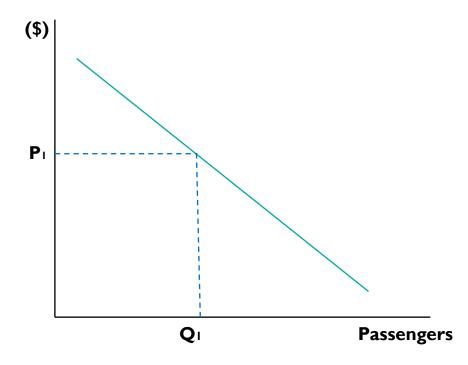
- Local access
- Limited security/less congestion
- Aircraft on demand

Demand: Regional Air Mobility Traffic

- Type: Passenger (business/household), cargo
- Location: region, corridor
- Drivers of demand economic/demographic/spatial
- Existing regional demand (car/bus/train) or new/latent demand

Defining Traffic Demand

Demand


- Willingness to pay for a good/service and quantity purchased at given price (ceteris paribus)
- Lower operating costs (price) can open new markets

Generalized Cost of Travel

- **Personal:** fuel, maintenance, operating costs, value of driver/passenger time, time cushion (for variability), other non-price attributes (service frequency, schedules)
- Cargo: fuel, crew, vehicle depreciation, maintenance, loading/unloading, inventory cost (time), service frequency, schedules, etc.

Derived Demand

- Demand for travel derived from households/businesses consuming another good/service (holiday, conference, etc.)
- Travelers do not directly demand travel will select mode that provides highest utility (price, service, schedule, time, comfort, etc.) to meet primary demand

RAM Data Review – Understanding the Current RAM Market

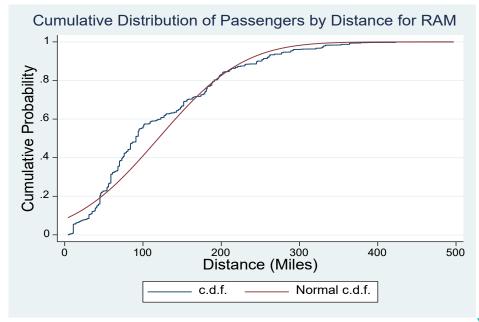
RAM Data Requirements for Demand
Analysis

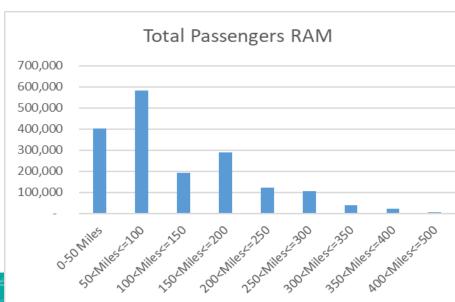
Aviation Market

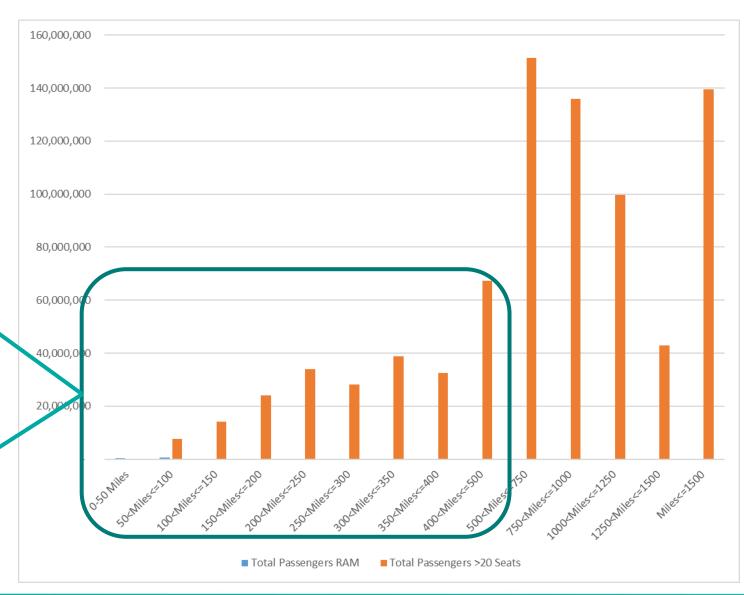
Details

Mode Choice

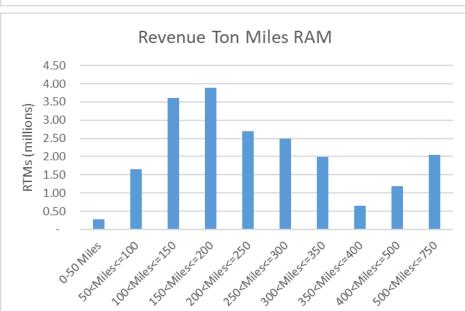
Long-Distance Trip
Data


Emission Profiles


RAM Data Sources


- Passenger and cargo network operations and fare data
- Source: BTS T-100 and DB1B
- Modal distribution of trips by distance
- Source: FHWA TAF
- National trip distance totals
- Source: BTS and FHWA NHTS NextGen
- Modal emission profiles and sources
- Source: GREET tool

Analysis of Aviation Passenger Market – RAM Market in 2019



Analysis of Aviation Cargo Market – RAM Market in 2019

Source: BTS T-100 Domestic Segments

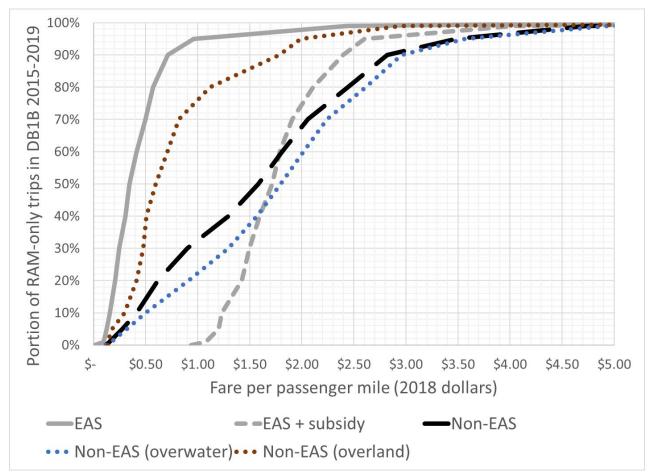
Passenger Aviation Network Review: Top OD Pairs for RAM Market by Distance Range in 2019

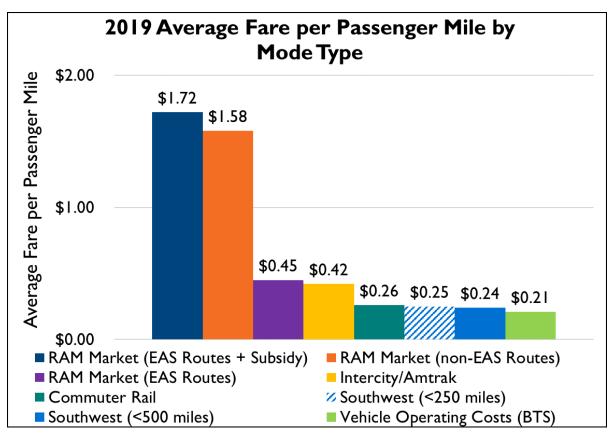
Top 10 OD Pairs Less than 50 Miles			
Origin	Destination	Total Passengers	
Nantucket, MA	Hyannis, MA	34,024	
Boston, MA	Provincetown, MA	19,592	
Friday Harbor, WA	Eastsound, WA	5,447	
Martha's Vineyard, MA	Nantucket, MA	1,325	
Martha's Vineyard, MA	Hyannis, MA	859	
Martha's Vineyard, MA	New Bedford, MA	476	
Block Island, RI	Westerly, RI	69	
Marble Canyon, AZ	Page, AZ	59	
Las Vegas, NV	Boulder City, NV	33	
Oakland, CA	Napa, CA	24	

•			
Top 10 OD Pairs 50-100 Miles			
Origin	Destination	Total Passengers	
Boston, MA	Nantucket, MA	49,529	
Boulder City, NV	Peach Springs, AZ	30,158	
Boston, MA	Martha's Vineyard, MA	27,711	
Seattle, WA	Friday Harbor, WA	13,865	
Whitmore, AZ	Boulder City, NV	9,258	
Eastsound, WA	Seattle, WA	8,618	
New Bedford, MA	Nantucket, MA	7,917	
Johnstown, PA	Pittsburgh, PA	7,725	
Pittsburgh, PA	DuBois, PA	7,308	
Morgantown, WV	Pittsburgh, PA	6,696	

n 10 OD Daire 101 150 Miles	Top 10 OD Poirs 151 350 Mi

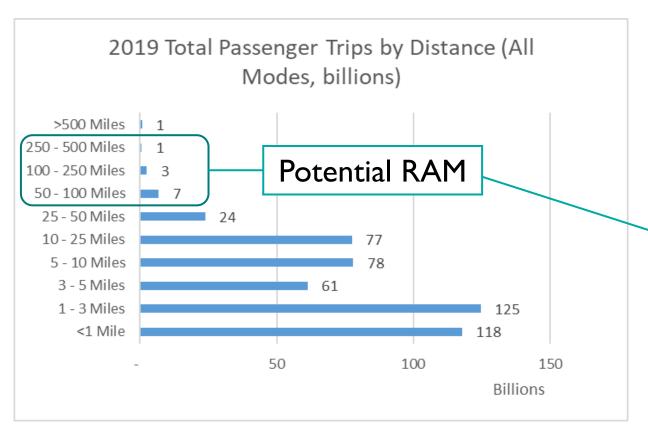
Top 10 OD Pairs 101-150 Miles		
Origin	Destination	Total Passengers
Marion/Herrin, IL	St. Louis, MO	19,751
Lebanon-Hanover, NH	Boston, MA	12,634
Boston, MA	Rutland, VT	10,966
Augusta/Waterville, ME	Boston, MA	10,820
St. Louis, MO	Kirksville, MO	10,261
Show Low, AZ	Phoenix, AZ	9,003
Bradford, PA	Pittsburgh, PA	8,266
Decatur, IL	St. Louis, MO	6,100
Burlington, IA	St. Louis, MO	4,891
Victoria, TX	Houston, TX	5,444

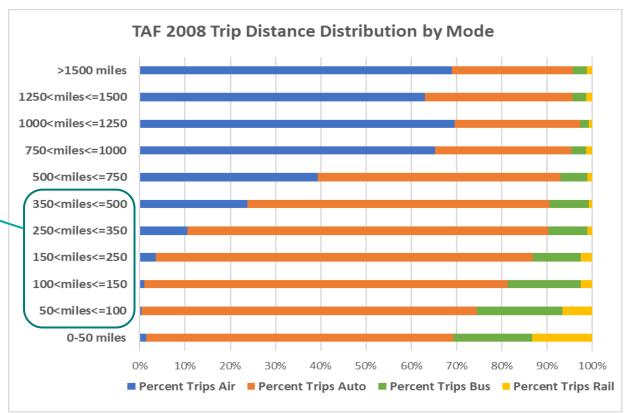

T - 40 OD D-' 454 OF0 84'		
Top 10 OD Pairs 151-250 Miles		
Origin	Destination	Total Passengers
Boulder City, NV	Grand Canyon, AZ	25,163
Billings, MT	Sidney, MT	18,908
Alamosa, CO	Denver, CO	15,116
Boston, MA	Rockland, ME	13,522
Pendleton, OR	Portland, OR	13,394
Muscle Shoals, AL	Atlanta, GA	11,236
El Centro, CA	Los Angeles, CA	10,756
Decatur, IL	Chicago, IL	10,546
Owensboro, KY	St. Louis, MO	10,156
Jonesboro, AR	St. Louis, MO	10,017


Source: BTS T-100

Note: Continental US OD pairs only

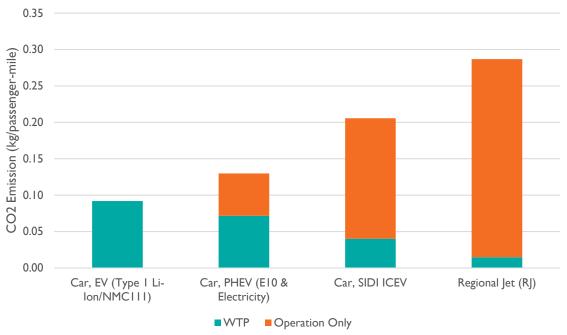
Analysis of Aviation Market – Passenger Fares



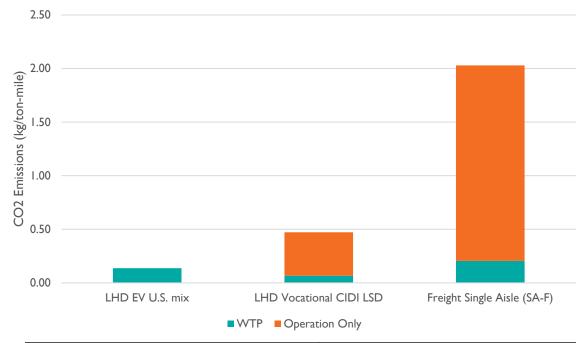


Source: BTS DB1B

Trip Distance by Mode Type



Source: BTS Daily Trips (2022) and FHWA TAF (2015)


Modal Emission Sources and Profiles

Passenger Well-to-Wheel/Wake CO2 Emissions per pax-mile

Passenger Vehicle Type	Fuel Type
Car, EV (Type 1 Li-lon/NMC111)	Electricity - U.S. Mix
Car, Plugin Hybrid Electric (PHEV)	E10 and Electricity
Car, SIDI ICEV (E10)	E10 gasoline with 10% ethanol blend
Regional Jet (RJ) (avg. 500 miles per op)	Conventional Jet Fuel from Crude Oil

Freight Well-to-Wheel/Wake CO2 Emissions per ton-mile

Freight Vehicle Type	Fuel Type
Light Heavy Duty (LHD) Electric Vehicle (EV)	Electricity - U.S. Mix
LHD Vocational CIDI LSD	Low-Sulfur Diesel (LSD)
Freight Single Aisle (SA-F) (avg. 643 miles per op)	Conventional Jet Fuel from Crude Oil

Key Takeaways

- Current RAM passenger market is small and fills a niche role serving leisure travel and subsidized routes through EAS.
- Current RAM cargo market predominately feeder operations served by FedEx and UPS.
- Costs per passenger-mile vary considerably by type of aviation RAM trip not currently cost competitive vs. vehicle travel on non-subsidized routes.
- Combining insights from modal trip distributions yields potentially large market; marginal mode shift away from surface travel would lead to dramatic expansion of the RAM market.
- Emissions from conventional jets currently exceed emissions from cars and trucks on a per passenger-mile or ton-mile basis.

Next Steps

- Continue investigation into the new FHWA NHTS NextGen data sources
- Formalize econometric study to measure potential demand
- Participation in upcoming AAM/RAM workshops

Q+A Session

Project Manager: Seamus M. McGovern, Ph.D. Aviation Systems Engineering Division 617-494-2054 | seamus.mcgovern@dot.gov

Presenter: Jacob Wishart Economic Analysis Division 617-494-2216 | jacob.wishart@dot.gov

John A. Volpe National Transportation Systems Center United States Department of Transportation 55 Broadway | Cambridge Massachusetts 02142 www.volpe.dot.gov

Our Purpose

Advancing transportation innovation for the public good.

OUR CORE VALUES

Public Service

Innovative Solutions

Collaboration and Partnering

Professional Excellence

Employee Well-Being

