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Abstract: In recent years, analysis of abrupt and non-abrupt changes in precipitation has received 14 
much attention due to the importance of climate change-related issues (e.g., extreme climate 15 
events). In this study, we used a novel segmentation algorithm, DBEST (Detecting Breakpoints and 16 
Estimating Segments in Trend), to analyze the greatest changes in precipitation using a monthly 17 
pixel-based satellite precipitation dataset (TRMM 3B43) at three different scales (i) global, (ii) con- 18 
tinental, and (iii) climate zone during the 1998-2019 period. We found significant breakpoints, 19 
14.1%, both in the form of abrupt and non-abrupt changes, in the global scale precipitation at 0.05 20 
significance level. Most of the abrupt changes were observed near the Equator in the Pacific Ocean 21 
and Asian continent relative to the rest of the globe. Most detected breakpoints occurred during 22 
1998-1999 and 2009-2011 on the global scale. The average precipitation change for the detected 23 
breakpoint was ±100 mm with some regions reaching ±3000 mm. For instance, most portions of 24 
Northern Africa and Asia experienced major changes of about +100 mm. In contrast, most of the 25 
South Pacific and South Atlantic Ocean experienced changes by −100 mm during the studied pe- 26 
riod. Our findings indicated that the larger areas of Africa (23.9%), Asia (22.9%), and Australia 27 
(15.4%) experienced significant precipitation breakpoints compared to North America (11.6%), 28 
South America (9.3%), Europe (8.3%), and Oceania (9.6%). Furthermore, we found that the majority 29 
of detected significant breakpoints occurred in the arid (31.6%) and polar (24.1%) climate zones, 30 
while the least significant breakpoints were found for snow-covered (11.5%), equatorial (7.5%), and 31 
warm temperate (7.7%) climate zones. Positive breakpoints´ temporal coverage in the arid (54.0%) 32 
and equatorial (51.9%) climates were more than those in other climates zones. Here, the findings 33 
indicated that large areas of Africa and Asia experienced significant changes in precipitation (– 250 34 
to + 250 mm). Compared to the average state (trend during a specific period), the greatest changes 35 
in precipitation were more abrupt and unpredictable, which might impose a severe threat to the 36 
ecology, environment, and natural resources. 37 

Keywords: Breakpoint; DBEST; Global; Precipitation; TRMM satellite  38 
 39 

1. Introduction 40 
Precipitation change analysis is of great importance on different temporal and spa- 41 

tial scales given the global climate change [1]. Precipitation directly affects society and 42 
the environment, and varies spatiotemporally from region to region, year to year, and 43 
over decades in frequency, amount, intensity, and type, i.e., rain vs. snow [2]. Global 44 
assessment of precipitation changes provides insight into Earth's climatology over land 45 
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areas, especially populated regions, as well as over water bodies [3]. On regional and 46 
global scales, changes in precipitation characteristics are the most relevant aspects of 47 
climate change in a warming world. Yet, there is little consensus on the expected and 48 
observed changes in spatiotemporal precipitation patterns [4]. While no significant 49 
change in total precipitation has been detected globally [2], a notable increase in precip- 50 
itation extremes, wet and drought periods, has been observed (e.g., [5-6]) with projected 51 
increases in future extremes (e.g., [7-8]).  52 

The spatial pattern of precipitation changes is heterogeneous, with different regions 53 
depicting opposing trends at the global scale [4, 9]. Changes in precipitation at different 54 
temporal and spatial scales include not only continuous or gradual changes, which can be 55 
investigated by conventional trend analysis methods (e.g., ordinary linear regression, 56 
Mann-Kendall, and Mann-Whitney), but also discontinuous or abrupt changes in pre- 57 
cipitation amount [10]. Further, a practical problem in analyzing precipitation time series 58 
is that such data are not always homogeneous and include abrupt changes in the mean 59 
[11]. Abrupt changes referred to as breakpoints, or inhomogeneities, are periods of dis- 60 
continuity in the time series caused by sudden changes in the climate, environment, 61 
measurement techniques, observation locations, or equipment. It is noteworthy that 62 
many breakpoints occur without documentation, while a breakpoint-free precipitation 63 
record is less likely to occur. Therefore, before investigating the precipitation variation 64 
and trends, the relative homogeneity in abrupt changes in the time series should be as- 65 
sessed [12].  66 

Effective identification of breakpoints in precipitation records is crucial for under- 67 
standing the changes over a short period as well as detecting the causal relationships 68 
between climate and environment [13]. The breakpoint detection can be conducted using 69 
online (or sequential) or offline (or retrospective) approaches. A sequential approach is 70 
used when it is necessary to detect the changes in real time. The retrospective breakpoint 71 
detection approach is commonly used in meteorology and hydrological applications us- 72 
ing a classical statistical test to detect slope changes in the precipitation time series 73 
[14-16].  74 

Several techniques have been used for testing homogeneity concerning breakpoints 75 
in precipitation data [11]. The Worsley's likelihood ratio test [17], cumulative deviations 76 
[18], Von Neumann ratio test [18], Pettitt test [19], standard normal homogeneity test, 77 
SNHT [20], and clustering approach [21] are the commonly applied techniques in the 78 
precipitation breakpoint detection studies. Moreover, Vincent [22] introduced a method 79 
based on the classical F and Durbin-Watson tests to detect a breakpoint in time series. 80 
Seidou and Ouarda [15] proposed a Bayesian change point method to evaluate abrupt 81 
changes in hydro-climatic variables.  82 

Due to the large number of available statistical breakpoint detection tests, under- 83 
standing the sensitivities to changes (e.g., changes in mean, median, or standard devia- 84 
tion of time series) and characteristics of alternative tests is crucial to arrive at a valid in- 85 
terpretation of the precipitation time series analysis. The classical statistical abrupt 86 
change detection tests are sensitive to specific features such as time series mean and de- 87 
viation. Thus, a statistical test that is only sensitive to a particular type of homogeneity or 88 
abrupt change might not provide a comprehensive detection of abrupt changes [23-24]. 89 
For instance, the SNHT usually has higher sensitivity to breaks near the start and end 90 
portions of the time series, while the Pettitt test is suitable to detect breaks near the mid- 91 
dle part of the time series [19-20, 23]. Recently, Jamali et al. [25] developed a user-friendly 92 
algorithm for the time series analysis, with two main application domains: (i) detecting 93 
and characterizing trend changes and (ii) generalizing trends for main features. The 94 
method in the present study, Detecting Breakpoints and Estimating Segments in Trend 95 
(DBEST), uses a novel segmentation algorithm that simplifies the trend into linear seg- 96 
ments with one of three user-defined parameters: the m largest changes, a generaliza- 97 
tion-threshold parameter δ, or a threshold β for the magnitude of changes of interest for 98 
detection. DBEST is based on Bayesian Information Criterion (BIM) [26] and statistical 99 
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tests [27] to detect statistically significant breakpoints. DBEST outputs are change type 100 
(non-abrupt or abrupt), simplified trend, and estimates for the change characteristics 101 
(magnitude and timing). DBEST is a flexible, fast, and accurate tool that is applicable to 102 
global change studies using time series of remotely sensed datasets [25].  103 

While there are numerous studies on breakpoint detection, using standard statistical 104 
tests (e.g., Von Neumann ratio test, SNHT, and Pettitt test) in precipitation data at local 105 
and regional scales [4, 28-29], there is no comprehensive study, to the best of our 106 
knowledge, on the detection of both abrupt and non-abrupt changes at the global scale. 107 
This study focused on analyzing abrupt and non-abrupt changes at a quasi-global scale 108 
representing different climatological characteristics of precipitation of the world's wet 109 
and dry regions [4]. We applied the DBEST algorithm to detect significant breakpoints 110 
(statistically), investigate their type (non-abrupt or abrupt), and estimate their character- 111 
istics (timing and magnitude) in a quasi-global monthly satellite-based precipitation da- 112 
taset over the 1998-2019 period. While evaluating abrupt and non-abrupt precipitation 113 
changes at a quasi-global scale, we investigated continental changes and their associa- 114 
tions depending on climate zones.  115 

2. Materials and Methods 116 
2.1. Data sources 117 

We used the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipita- 118 
tion Analysis (TMPA) product, in which the National Aeronautics and Space Admin- 119 
istration (NASA) estimates quasi-global precipitation. TRMM TMPA data are produced 120 
based on the constellation of passive microwave and infrared sensors onboard multiple 121 
partners’ satellites [30-31]. The core observatory, TRMM, was a collaboration between the 122 
Japan Aerospace Exploration Agency (JAXA) and NASA; it was launched in November 123 
1997 and ended its mission in April 2015. However, the TMPA algorithm continued 124 
producing precipitation data using the partner satellites through the end of 2019. TMPA 125 
Version 7 provides products at 3-hourly (3B42), daily (3B42-derived), and monthly (3B43) 126 
temporal resolutions, in the latitude band 50°N-S at 0.25°×0.25° spatial resolution [30, 32] 127 
for the period of 1998-2019. Monthly TMPA-3B43 v7.0 is one of the most widely used 128 
products for climate and research purposes [30, 33]. It is noteworthy that the transition 129 
from TMPA to Integrated Multi-satellite Retrievals for Global Precipitation Measurement 130 
(GPM) mission (IMERG) began in 2015, and the IMERG data are now available for the 131 
2000-present period. While IMERG provides a more detailed precipitation dataset (tem- 132 
porally and spatially), a thorough validation of its products continues to be conducted for 133 
use in global-scale analyses. A detailed description of the TMPA and IMERG algorithms 134 
and input data can be found in Huffman et al. [34], as well as Huffman et al. [30], Huff- 135 
man and Bolvin [35], and Huffman [36].  136 

The TRMM products have been used extensively in many regions around the world. 137 
Their spatiotemporal performance has been thoroughly validated by ground-based 138 
measurements all over the globe [37], such as in the United States [38-42], India [43-45], 139 
China [46-47], Iran [48-50], the Philippines [51], Eastern Africa [52], and Malaysia [53], to 140 
mention a few. In this study, we used the TMPA 3B43 research product at a monthly time 141 
scale from January 1998 to December 2019. The TMPA 3B43 product used in this study 142 
incorporates bias-corrected surface precipitation gauge analyses. Thus, it takes ad- 143 
vantage of gauge information, where available, and the multi-satellite scheme every- 144 
where. 145 

 146 
2.2. Methods 147 
2.2.1. Breakpoint detection   148 
The DBEST algorithm has two main application domains: trend generalization and 149 

change detection. We used the change detection method, which a novel segmentation 150 
algorithm that simplifies the trend into linear segments using the m largest changes or a 151 
threshold β for detection’s magnitude of change of interest (Table 1).  152 
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Here, we briefly describe the DBEST’s change detection workflow along with the 153 
threshold values used in this study. DBEST starts with testing the existence of significant 154 
discontinuities (or level-shift) in the precipitation input time-series. To do so, the absolute 155 
difference in precipitation between each pair of consecutive data points is compared with 156 
a user-defined first level-shift-threshold (θ1=10 mm in this study). If the absolute difference 157 
is greater than the threshold value θ1, a second criterion test whether the change led to a 158 
considerable shift in the precipitation mean level and persisted throughout the us- 159 
er-defined period, the duration-threshold (ϕ=1 year). If the absolute difference in the mean 160 
of the precipitation data, computed over a period ϕ before and after the current data 161 
point, is greater than a user-defined second level-shift-threshold (θ2=40 mm), the second 162 
criterion is valid. The current data point is defined as a candidate level-shift point if both 163 
tests are valid. This repeats for every data point in the precipitation time series until all 164 
candidate points are identified. The identified points are then sorted into descending 165 
order according to the absolute value of the shift in the precipitation mean. The first point 166 
in the sorted list is listed as the most critical level-shift point. In addition to the two crite- 167 
ria mentioned, a third criterion should be fulfilled for the second and subsequent candi- 168 
date points to be detected as the next critical level-shift point. The third criterion test is 169 
performed if the spacing between the candidate point and each previously detected lev- 170 
el-shift point is at least the duration-threshold ϕ. 171 
After examining the existence of the level-shift points, DBEST proceeds with detecting 172 

major breakpoints. To do so, for the precipitation input time series (P) with several ob- 173 
servations N (N>2), single time-step differences in the forward and backward directions 174 
are computed at every time-point i (2≤i≤N-1) as:  175 
P(i-1,i)=P(i)–P(i-1)                                                                    (1) 176 
∆P(i,i+1)=P(i+1)–P(i)                                                                  (2) 177 
For each point i, the peak/valley detector function (f) is then calculated based on the 178 

continuity of the sign of two differences:  179 

                      (3) 180 
 181 

 182 
Table 1. User-defined thresholds in the DBEST’s change detection algorithm [25]. 183 
 184 
 185 
 186 
 187 
 188 
 189 
 190 
 191 
 192 
 193 
 194 
 195 
 196 
 197 
 198 
 199 
 200 
 201 
 202 
The trend direction changes for time points at which the valley/peak detector function 203 

equals one. These are called valley and peak points. For all data points, a second turning 204 

Threshold                                                    Description 

First level-shift-threshold (θ1)    The lowest absolute difference in input data 
(Precipitation) between the level-shift point 
and next data point 

Duration-threshold (ϕ) The lowest period (time steps) within which 
the shift in the mean of the data level, before 
and after the level-shift point, persists; and 
the lowest spacing (time steps) between suc-
cessive level-shift points. 

Second level-shift-threshold (θ2) The lowest absolute difference in the means 
of the data calculated over the period ϕ be-
fore and after the level-shift point 

Change number (m) Number of greatest breakpoints of interest 
for detection  

Statistical significance level (α) The statistical significance level used for 
testing the significance of detected changes 

Field Code Changed
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point detector function (g) is calculated based on the valley/peak detector function and an 205 
iterative criterion (refer to Jamali et al. [25]). Using this function, all potential turning 206 
points are identified (Fig. 1). The identified level-shift points are added to the turning 207 
points set. For valid turning points, a subset of turning points that significantly reduces 208 
the residual sum of squares of a least-square fits the precipitation time series and does 209 
not result in overfitting, are then determined using an iterative piecewise fitting method 210 
based on Bayesian Information Criterion (BIC) [26]. The significance of the valid turning 211 
points is tested using statistical tests (𝛼=0.05) for the corresponding segments in the ob- 212 
tained optimal model fit to the precipitation trend that minimizes the BIC [25]. The sig- 213 
nificant turning points are called breakpoints (Fig. 1). Note that a breakpoint can be abrupt 214 
or non-abrupt depending on whether it is a level-shift point or not, respectively. Finally, 215 
the magnitude and timing characteristics for the detected breakpoints are computed and 216 
reported as output for several greatest breakpoints of interest for detection set by the user 217 
(m=1). For any detected change, the corresponding breakpoint (break date) is the start 218 
time, and the next turning point is the end time. The change duration is the time between the 219 
start time and the end time. The change magnitude is calculated by subtracting the fitted 220 
precipitation value at the start time from the fitted value at the end time (Fig. 1). The sign 221 
of the obtained change value represents the change direction (whether the slope is de- 222 
creasing or increasing); for more details, see Jamali et al. [25].    223 
We used the DBEST algorithm for detecting and characterizing the greatest breakpoints 224 

in the TRMM TMPA 3B43 version 7 precipitation product, called “TRMM and Other Data 225 
Precipitation Data Set’’ at a monthly time scale during the 1998-2019 period.  226 
 227 
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Input precipitation time series (length N) 

Detect level-shifts (using θ1, θ2 and Ф) 

Find peak/valley points (using f function) 

Estimate the distance-threshold (ε) 

Find turning points (u points at which g=1) 

Compute the trend local change function (h) 

Sort the turning points into descending order according to their trend local change  

 Detect breakpoints: valid turning points (s) using BIC method (s ≤ u)  

Change detection algorithm = select all breakpoints (s) 

Compute a Least-Squares fit to the trend, either a straight-line or a composite 
line, considering corresponding breakpoints and the turning points immediately 
after them as the data points that adjoining linear segments share.  

Outputs: change characteristics 

- Type: abrupt or non-abrupt  

- Start time: time of the selected breakpoints 

- End time: time of the turning point immediately after the selected 
breakpoint  

- Duration: time between the start and end times 

- Change value: fit value at the end time minus fit value at the start time  

-  Direction: sign of the change value (increasing or decreasing) 

- Significance: statistical significance 

DBEST workflow 

Change detection algorithm outputs 

 228 
Figure 1. Flowchart of DBEST algorithm for detecting and characterizing changes in pixel-based 229 

precipitation dataset (after Jamali et al. [25]). 230 
 231 
2.2.2. Data preprocessing 232 
      Due to the large spatiotemporal variation in the global precipitation data 233 

(month-to-month and region-to-region), it is necessary to provide a meaningful measure 234 
of the interannual precipitation changes globally while preserving the relative difference 235 
of the observed precipitation at the pixel level. To remove erroneous effects of scale dif- 236 
ferences on the change detection computation, we applied a pixel-based precipitation 237 
time series filter that accounts for two conditions. These conditions disregard the precip- 238 
itation changes of less than 1mm and 0.05 median value over the study period. For ex- 239 
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ample, the precipitation changes of 10 to 20% for the recorded event of below 1 mm may 240 
mathematically be considered significant while in the conceptual interpretation this 241 
change does not represent a significant abrupt change or a breakpoint in the precipitation 242 
time series.  243 
Accordingly, the first filter (Eqn. (4)), detects pixels for which the precipitation range 244 

over the studied 22-year period is less than 1 mm. Using this filter, the detected pixels are 245 
automatically discarded from DBEST analysis using the below formula: 246 
 247 
 Ri = Pi max – Pi min           Ri <1 mm at each pixel                 (4) 248 
 249 
where P is precipitation (mm), R is the precipitation range during the 22 years 250 

(1998-2019), and i is the pixel number.  251 
The second filter (Eqn. (5)) discards the pixels having a precipitation range lower than 252 

0.05 of their median value during the period using the formula below:  253 
 254 
    Ri = Pi max - Pi min   Ri < 0.05 × Pi median                               (5) 255 
The 0.05 median value was selected based on the Intergovernmental Panel on Climate 256 

Change report [54] that suggests a precipitation change from −5 to +5% between succes- 257 
sive years can be classified as ‘No change’. Also, we used the median value instead of the 258 
average, as the median is less influenced by precipitation extremes.  259 
 260 
2.2.3. Precipitation changes at global, continental, and climate zone scales 261 
 262 
   We investigated the precipitation breakpoints and compared their characteristics at a 263 

quasi-global scale, i.e., start year, duration, magnitude, abrupt and gradual change type. 264 
We conducted breakpoint analysis at the continental vs. global scales to obtain insight 265 
regarding the change characteristics on land vs. ocean areas. As precipitation changes 266 
based on climate zone rather than depending on continental boundaries, we also evalu- 267 
ated our results associated with different climate zones. Here, we used the world map of 268 
Köppen–Geiger climate classification to explore the relationship between precipitation 269 
breakpoints features and different climate zones. The Köppen–Geiger climate classifica- 270 
tion was published in 1900 by Wladimir Köppen that was updated by Rudolf Geiger in 271 
1961. In the last version of this classification, five main climate zones at the global scale 272 
have been recognized, encompassing (i) warm temperate, (ii) equatorial, (iii) arid, (iv) 273 
snow, and (v) polar [55-56]. To find a likely relationship between precipitation variation 274 
and abrupt and non-abrupt changes, we also applied the coefficient of variation (CV) for 275 
each pixel during the 1998-2019 period. The CV is defined as the ratio of standard devia- 276 
tion and mean.  277 
Note that the greatest change is considered (both decreasing and increasing) in precipi- 278 

tation during the selected period (22 years). Although a longer-period dataset may pro- 279 
vide more insight concerning historical changes, we think it is interesting to focus on the 280 
recent greatest changes in precipitation over this period.  281 

3. Results 282 

3.1. Global scale 283 
Figure 2 shows the annual 3B43 mean precipitation (mm) and coefficient of variation 284 

(CV%) in precipitation over the period studied. Precipitation at the global scale ranged 285 
from ~1 to more than 5,000 mm in a year. While some portions of North Africa, Central 286 
Asia, North and South Pacific Oceans, and the South Atlantic Ocean received less than 287 
100 mm over a year (Fig. 2a), these regions exhibited the highest CV (>25%), indicating a 288 
high rate of variability in the annual precipitation (Fig. 2b). 289 

 290 
 291 
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 292 
 293 

 294 
 Figure 2. (a) Mean annual precipitation and (b) coefficient of variation, CV, between 1998 and 2019 295 
in 3B43. 296 

 297 
Figure 3 depicts the greatest breakpoints detected over the studied period. We found 298 

that 14.8% (85,217 pixels) of the entire study area experienced significant changes (abrupt 299 
and non-abrupt) in the recorded precipitation (0.05 significance level). An example of a 300 
typical abrupt and non-abrupt change in the global precipitation time series is depicted 301 
in Fig. 4. In detail, we detected 9.4% non-abrupt changes of which 6.3% occurred over the 302 
ocean, 3.1% over land, and 5.4% abrupt changes of which 3.6% occurred over the ocean 303 
and 1.8% over land.  304 

The spatial coverage of non-abrupt changes for both ocean and land was considera- 305 
bly higher than abrupt changes (Fig. 3). Most abrupt changes were found near the equa- 306 
tor in the Pacific Ocean and Asia relative to other ocean and land regions. Asia, North 307 
Africa, South Atlantic, and South Pacific Oceans experienced the highest frequency of 308 
breakpoints (abrupt and non-abrupt) in precipitation during the study period compared 309 
to the detected breakpoints over Australia, North Pacific, and Atlantic Oceans. Most 310 
breakpoints occurred in areas showing high CV > 25% (Fig. 2b and Fig. 3). In contrast, we 311 
did not detect many breakpoints in regions with low CV, including regions with high 312 
precipitation amounts.  313 

 314 
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         315 
Figure 3. Abrupt and non-abrupt changes in the global precipitation time series, 1998-2019. 316 

 317 
 318 

 319 
Figure 4. An example of a typical (a) non-abrupt breakpoint with a three-year change duration and 320 
−180 mm change magnitude and (b) abrupt breakpoint with a one-year change duration and +247 321 
mm change magnitude in the global precipitation time series.  322 

 323 
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The majority of detected breakpoints, at a global scale, started during 1998, 1999, 324 
2009, 2010, and 2011. Breakpoints in the South Pacific were mainly detected for 1998 and 325 
1999, while in South Atlantic for 2010 and 2011 (Fig. 5). In overland areas, the breakpoints 326 
varied from 1998 to 2017.  327 

 328 

329 

                         Figure 5. Start time of the breakpoints in the pixel-based global precipitation time series (1998-2019). 330 

Figure 6 shows the change duration results (year) at the global scale. Most of the 331 
detected breakpoints, 73%, occurred during a relatively short (one-year) period. About 332 
16.8 and 7% of breakpoints occurred during a two- and three-year period, respectively. 333 
The remaining percentage, 3.2%, varied between four to nine years.  334 

 335 

336 
 337 

 Figure 6. Duration (year) of the abrupt and non-abrupt changes in the global precipita- 338 
tion time series (1998-2019).  339 

 340 
   341 
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The magnitude of precipitation changes varied from −3000 to +3000 mm across the 342 
globe (Fig. 7). The largest magnitudes were more related to ocean climate, especially near 343 
the equator of the Pacific Ocean (±2000 to ±3000 mm). Although the precipitation in some 344 
regions changed by ±3000 mm, most changes were about ±100 mm for the detected 345 
breakpoint duration. For instance, precipitation in most portions of Africa and Asia 346 
changed with a magnitude of +100 mm, including both abrupt and non-abrupt changes. 347 
In contrast, most changes over the South Pacific and South Atlantic Oceans occurred with 348 
a magnitude of −100 mm (Fig. 7). 349 

 350 

351 
    352 

Figure 7. The magnitude of abrupt and non-abrupt changes in the global precipitation 353 
time series (1998-2019). 354 

 355 
3.2. Continental scale 356 

Significant abrupt and non-abrupt changes over the continents are depicted in Fig. 357 
8a. More significant breakpoints occurred over Africa (23.9%), Asia (22.9%), and Aus- 358 
tralia (15.4%) as compared to North America (11.6%), South America (9.3%), Europe 359 
(8.3%), and Oceania (9.6%). Further, there were more non-abrupt changes in Asia (13.7%) 360 
and Africa (18.3%) were more than abrupt changes (Asia: 9.1% and Africa: 5.6%) (Fig. 3). 361 
Conversely, the percentage of abrupt changes occurring in Australia (10.4%) was more 362 
than that of non-abrupt changes (4.9%). In Africa, a majority of significant breakpoints 363 
occurred over the northern region of the continent while in Asia it occurred in the west- 364 
ern and central regions of the continent. In North and South America, significant break- 365 
points mainly extended over western regions of the continent (Fig. 3).  366 

Figure 8b shows the distribution of detected breakpoint occurrences for all conti- 367 
nents over the study period. The results indicated that all detected breakpoints extended 368 
from 1998 through 2017. This means that we observed no breakpoints for 2018 and 2019. 369 
The detected breakpoints only extended during less than 25% of each year except in 370 
Australia and Europe, where the breakpoints extended to 37.4 (during 2009) and 30.3% 371 
(during 2010), respectively. During 2009 and 2010, South America and Oceania also 372 
showed a high percentage of breakpoints relative to other continents. In the first year 373 
(1998), North America and Oceania had the highest proportion of breakpoints relative to 374 
other continents extending over 23.1 and 20.7% of the year, respectively.  375 

 376 
 377 
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(a) 

 378 

 379 
Figure 8. (a) Distribution of all significant breakpoints (column) and abrupt and 380 
non-abrupt changes (lines) over different continents and (b) distribution of all significant 381 
breakpoints over the 1998-2019 period.  382 

 383 
Results for significant positive and negative breakpoints over different continents 384 

are given in Table 2. The highest percentage of negative changes (abrupt and non-abrupt) 385 
was detected in Oceania (73.8%), Europe (61.8%), North America (56.2%), and South 386 
America (55.5%), while the lowest percentage was detected in Asia (41.7%) and Australia 387 
(46.9%). Asia, North Africa, and North and South America varied from −100 to +100 mm 388 
regarding the magnitude of change. The change value in Australia ranged from –1,000 to 389 
+500 mm over the study period (Fig. 7).  390 

 391 
 392 
 393 
 394 
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Table 2. Percentage of significant positive (Pos.) and negative (Neg.) breakpoints of precipitation on 395 
different continents. 396 

Continent Asia Africa  Europe  N. America S. America Australia Oceania 
Year Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. 
1998 7.1 0.8 3.5 2.5 0.0 1.1 20.5 0.2 6.0 5.1 0.1 2.0 13.8 9.2 
1999 1.3 1.1 6.2 1.7 1.6 0.4 0.6 0.2 2.4 1.5 1.8 2.3 4.6 3.1 
2000 0.9 3.4 1.8 1.1 0.4 2.6 0.9 1.6 4.0 1.3 8.9 0.0 13.8 0.0 
2001 0.4 5.3 1.3 3.3 8.1 3.2 2.6 2.5 2.7 0.8 18.5 0.0 0.0 0.0 
2002 1.3 5.3 1.2 2.8 9.8 0.7 0.6 3.5 4.8 1.7 0.0 0.3 0.0 0.0 
2003 4.2 0.3 1.6 5.2 0.0 5.1 0.1 7.1 0.4 1.9 0.0 0.1 0.0 1.5 
2004 1.7 2.7 2.3 4.5 3.0 0.0 2.9 2.6 0.4 0.4 0.4 0.0 6.2 0.0 
2005 2.8 1.3 2.1 3.2 1.2 6.0 7.4 2.0 0.2 3.5 1.3 3.6 0.0 1.5 
2006 0.9 1.7 4.3 0.8 0.7 0.0 1.8 5.1 2.2 0.4 1.3 1.3 1.5 0.0 
2007 2.3 1.0 3.3 3.9 0.0 0.2 1.2 1.8 1.7 1.8 0.1 1.2 0.0 0.0 
2008 1.4 4.1 3.4 2.4 0.0 1.8 1.9 0.4 5.6 1.2 0.0 0.5 3.1 0.0 
2009 1.2 4.5 2.8 1.6 0.5 0.9 1.9 3.1 8.1 8.4 0.1 37.4 0.0 1.5 
2010 2.5 1.5 3.2 2.4 30.4 0.0 3.2 1.9 0.4 2.5 1.6 2.9 9.2 1.5 
2011 0.8 3.0 1.1 4.7 0.4 3.3 5.8 1.0 4.6 1.6 11.1 0.0 15.4 0.0 
2012 2.4 3.4 3.8 0.7 1.8 1.6 1.3 5.0 3.0 1.3 0.6 0.1 1.5 0.0 
2013 2.7 3.2 1.3 2.6 0.2 0.2 0.1 2.3 1.9 2.3 0.0 1.3 1.5 0.0 
2014 0.9 3.5 4.4 3.0 1.6 0.2 0.2 2.2 4.1 1.4 0.0 0.0 3.1 1.5 
2015 1.8 2.9 1.7 0.7 0.0 4.2 0.8 0.7 1.3 3.1 0.0 0.0 0.0 0.0 
2016 5.1 0.6 0.5 1.3 2.3 0.0 1.9 0.3 0.4 3.3 0.7 0.1 0.0 3.1 
2017 0.3 8.8 0.2 1.7 0.0 7.0 0.4 0.3 1.2 0.8 0.4 0.0 0.0 3.1 
Total 41.7 58.3 50.0 50.0 61.8 38.2 56.2 43.8 55.5 44.5 46.9 53.1 73.8 26.2 
Average 2.1 2.9 2.5 2.5 3.1 1.9 2.8 2.2 2.8 2.2 2.3 2.7 3.7 1.3 

 397 
 398 

3.3. Climate zone scale 399 
We observed that the most significant breakpoints occurred in arid (31.6%) and polar 400 
(24.1%) climates while we found fewer breakpoints’ events in snow-covered areas 401 
(11.5%), equatorial (7.5%), and warm temperate (7.7%) climate zones (Fig. 9a). The results 402 
of the change type indicated that the non-abrupt changes in arid (abrupt: 9.8%; 403 
non-abrupt: 21.7%) and polar (abrupt: 10.2%; non-abrupt: 13.9%) climates extended over 404 
a larger area compared to snow-covered regions (abrupt: 5.1%; non-abrupt: 6.4%), equa- 405 
torial (abrupt: 4.4%; non-abrupt: 3.1%), and warm temperate (abrupt: 4.5%; non-abrupt: 406 
3.2%) climate zones (Fig. 9a). Figure 9b shows the breakpoint year for different climate 407 
zones. In principle, the results obtained for the start time indicated that breakpoints only 408 
occurred from 1998 to 2017 in different climate zones (Fig. 9b) with about 10% for each 409 
year in all climate zones except equatorial and snow climates, which indicated a higher 410 
percentage (~17.5%) in 1998 and 2009 (Figs. 10a and b). The results of durations revealed 411 
that most of the detected breakpoints (>85%) occurred over a one- to two-year period in 412 
different climate zones.  413 
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 415 
Figure 9. (a) Distribution of all significant breakpoints (column) and abrupt and 416 
non-abrupt changes (lines) in different climate zones and (b) distribution of all significant 417 
breakpoints over the 1988-2019 period.   418 

 419 
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 421 
Figure 10. (a) Abrupt and non-abrupt changes at 0.05% significance level and (b) their 422 
start time, in different climate zones over the 1998-2019 period.   423 

 424 
We detected higher percentages of positive breakpoints in arid (54%) and equatorial 425 

(51.9%) climates relative to those in other climate zones. Further, the highest percentage 426 
of negative breakpoints was found over the polar, snow-covered, and warm temperate 427 
climates with about 55% each relative to other climate zones (Table 3).   428 

According to Table 4, positive changes ranged from 3 to 2,720 mm per year (on av- 429 
erage 164 mm), while negative changes varied from −2,114 to −3 mm per year (on average 430 
−174 mm) in the arid climate. The mean of positive and negative changes specified that 431 
most changes were lower than ±180 mm per year in the arid climate zone over the study 432 
period. Similarly, the average detected precipitation changes in the polar climate were 433 
194 mm and −159 mm per year for the positive and negative changes, respectively. We 434 
found the greatest change in the equatorial climate zone with a mean of 874 mm and −847 435 
mm per year (variation from 3,000 to −2,998 mm) for positive and negative changes, re- 436 
spectively. The mean change for the snowy climate zone was +326 mm and −324 mm for 437 
the positive and negative changes, respectively. We found 574 mm and −634 mm of pos- 438 
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itive and negative precipitation changes per year in the warm temperate climate zone, 439 
respectively (Table 4).   440 

 441 
 442 

Table 3. Percentage of significant positive (Pos.) and negative (Neg.) breakpoints in precipitation for 443 
different climate zones. 444 

Climate Arid (%) Equatorial (%) Polar (%) Snow (%) Warm Temperate (%) 
Year Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. 
1998 5.9 1.5 1.6 6.0 3.6 1.8 18.1 0.5 7.8 0.8 
1999 3.5 1.5 2.5 1.4 2.1 0.6 1.7 0.2 2.4 1.0 
2000 1.6 1.9 4.7 0.9 2.3 0.9 2.2 2.2 2.4 3.8 
2001 2.1 3.6 3.0 1.4 0.9 2.2 4.3 5.6 2.2 3.8 
2002 1.0 3.5 2.0 2.7 3.5 4.8 1.4 3.2 5.5 3.7 
2003 2.8 3.3 0.5 1.2 0.8 0.4 1.3 2.0 0.9 2.6 
2004 1.9 3.5 1.0 1.9 0.3 2.4 1.7 2.8 3.3 0.2 
2005 2.7 1.9 0.8 6.5 7.7 1.0 2.2 1.0 2.8 2.7 
2006 2.7 1.1 1.1 0.9 0.8 4.3 1.0 3.6 1.7 2.5 
2007 2.4 2.4 4.4 1.6 2.1 2.9 0.6 1.8 1.0 1.1 
2008 2.0 2.7 3.9 0.8 3.9 3.1 0.7 3.6 4.7 3.8 
2009 1.9 5.5 6.4 10.5 1.6 5.4 1.3 1.2 1.2 4.6 
2010 2.6 1.8 1.9 2.9 4.2 2.4 3.3 2.3 8.4 2.3 
2011 1.9 3.4 4.4 1.8 2.8 1.1 3.9 2.3 1.9 2.2 
2012 2.7 2.4 1.8 0.7 2.4 0.9 1.7 4.8 3.5 0.7 
2013 1.6 3.0 2.8 0.6 4.3 2.6 2.0 2.3 0.7 1.5 
2014 2.4 3.5 3.2 1.1 5.3 1.8 0.3 0.8 0.7 0.6 
2015 1.6 1.7 1.3 5.4 3.8 4.3 0.4 1.3 1.1 1.5 
2016 2.4 0.7 0.2 2.8 1.5 1.5 7.5 0.5 2.2 1.4 
2017 0.3 5.1 0.6 0.9 1.0 0.6 0.3 3.2 0.5 4.4 
Total 46.0 54.0 48.1 51.9 54.9 45.1 55.4 44.7 55.0 45.1 
Average  2.3 2.7 2.4 2.6 2.7 2.3 2.8 2.2 2.7 2.3 

 445 
Table 4. Statistical description of precipitation changes in different climate zones.  446 

 447 
 448 
 449 
 450 
 451 
 452 
 453 
 454 

4. Discussion 455 

4.1. Precipitation changes at global scale  456 
Due to the great loss of human lives and exponentially increasing damage costs as- 457 

sociated with extreme precipitation events, studying abrupt and non-abrupt changes in 458 
precipitation has received much attention in recent years [57] because they provide in- 459 
sight as to how climate extremes influence the ecosystem and society [57]. Also, as the 460 
spatial distribution of precipitation is not limited to a particular region with a defined 461 
geopolitical boundary such as cities, countries, and continents, it is necessary to conduct 462 
research considering spatial aggregation representing different climatological character- 463 
istics.  464 

Climate Arid Equatorial Polar Snow Warm Temperate 
Change (mm) Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. 
Mean 164.0 -174.3 874.4 -846.8 194.2 -159.5 326.4 -323.7 574.5 -634.3 
Max 2719.6 -2.9 3122.1 -223.0 1074.2 -57.4 981.9 -98.6 4967.6 -126.9 
Min 3.2 -2113.6 198.0 -2998.4 57.7 -1348.0 88.9 -1547.0 116.5 -2801.8 
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The CV is robust in detecting precipitation variability and changes [58]. Also, sig- 465 
nificant deviations from mean annual precipitation (i.e., high CV) can significantly stress 466 
to ecological and human systems [59]. Generally, high temporal variability in precipita- 467 
tion (month to month and year to year) is the leading cause of the detected changes. For 468 
instance, some portions of North Africa, Central Asia, the North and South Pacific 469 
Oceans, and the South Atlantic Ocean receive precipitation lower than 100 mm/year. At 470 
the same time, these regions have the highest CV (more than 25%). In addition, precipi- 471 
tation variability can increase over time. Dore [60] reported increased precipitation var- 472 
iance globally, with higher variability over the equatorial region.  473 

On the global scale, the detected breakpoints in precipitation can be derived from 474 
significant shift changes with decreasing light precipitation and increasing heavy pre- 475 
cipitation over time. Recently, researchers have reported that light precipitation events 476 
significantly decreased during past decades on regional and global scales (e.g., [61-64]). 477 
For instance, Ma et al. [62] reported that very heavy precipitation (P ≥ 50 mm day-1) 478 
events have increased significantly from 1960 to 2013, while light (0.1 ≤ P < 10 mm day−1) 479 
and moderate (10 ≤ P < 25 mm day−1) events have decreased significantly in China. This 480 
indicates a shift from light to intense precipitation, implying increased risks of drought 481 
and floods [62]. As well, increasing heavy precipitation events can cause significant ab- 482 
rupt and non-abrupt changes in precipitation. It is noteworthy to clarify that the abrupt 483 
and non-abrupt changes in precipitation can also be due to various local and regional 484 
natural and human impacts, including changes in the environment, measurement tech- 485 
niques, observation locations, and equipment [12].  486 

Our findings indicated that most of the detected breakpoints, abrupt and 487 
non-abrupt changes, occurred over the land area in the Northern Hemisphere. In con- 488 
trast, in the Southern Hemisphere, they occurred over the oceans. The most significant 489 
breakpoints in the Northern Hemisphere were found over Asia and North Africa (dry 490 
regions). In contrast, the highest percentage of breakpoints in the Southern Hemisphere 491 
was detected near the Equator in the South Pacific and South Atlantic, wet regions. Most 492 
breakpoints occurred in areas with low precipitation and high CV, which could be due to 493 
internal and external environmental factors. Conversely, we found no significant break- 494 
points in regions with low CV (including regions with high precipitation). This means 495 
that some dry regions (i.e., North Africa and Asia) and wet regions (i.e., South Pacific and 496 
South Atlantic) with high CV showed significant breakpoints in precipitation that can be 497 
expected to experience more extreme events due to climate change and this intensifica- 498 
tion can lead to increased risk of floods, soil erosion, and droughts [64].  499 

Although there is considerable variability in spatial trend patterns, observations 500 
suggest that the number of extreme precipitation events has increased globally (e.g., [4, 6, 501 
9, 65]), hence generating the greatest changes in precipitation. We found a high number 502 
of breakpoints during 1998-1999 and 2009-2011 across the globe. Over the South Pacific 503 
Ocean, we detected more breakpoints in 1998 and 1999 while in the South Atlantic similar 504 
number of breakpoints was found in 2010 and 2011. A warmer tropical Pacific in 1998 505 
was caused by a positive El Niño Southern Oscillation (ENSO) event [60]. ENSO influ- 506 
ences precipitation changes at the global scale [66-70] and is related to the variations of 507 
temperature and precipitation over much of the sub-tropics and tropics, as well as some 508 
mid-latitude regions [60]. In line with the detected breakpoint years related to ENSO, a 509 
global increase in surface temperature for El Niños (1998 and 2010) and negative global 510 
anomalies during La Niñas (1999–2001) have been reported. The maximum amplitude of 511 
surface temperature occurred during the 1998 El Nino (~ +0.15 ºC), with a lower ampli- 512 
tude (negative) during La Nina, 1999-2001. Moreover, during the cold (warm) phase of 513 
ENSO, La Niña (El Niño), most of the tropical ocean surfaces are cooler (warmer) than 514 
normal, and the atmosphere is charged with less (more) moisture, resulting in less (more) 515 
extreme precipitation events over the (combined ocean and land) tropical region [66, 69]. 516 
Higher surface temperature leads to a greater evaporation rate (especially over the ocean 517 
and overtime) and a greater instability; hence, impacting the variation of large-scale pre- 518 
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cipitation [3]. Lausier and Jain [59] reported that sea surface temperature variability pat- 519 
terns were strongly correlated with global precipitation patterns during 1951-2011 help- 520 
ing to drive variability in annual precipitation. Adler et al. [3] stated that the ocean shows 521 
the opposite anomaly compared to the land areas for ENSO.    522 

Regarding the large El Niño during 1998, positive and negative anomalies occurred 523 
over the ocean and land areas, respectively. This is due to the pattern of positive rainfall 524 
anomalies over the tropics, particularly the central and eastern Pacific Oceans, which 525 
could be a reason for the detected breakpoints in the land regions versus ocean areas in 526 
our study. These reported results, along with our findings have already been addressed 527 
in both climate simulations and satellite observations [66, 69], indicating that ENSO is a 528 
dominant driver of precipitation extremes in the tropics [69]. 529 

Our findings indicate that the change in magnitude of precipitation notably oc- 530 
curred over the oceans, especially near the Equator in the Pacific Ocean. Analyses of the 531 
Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) product [71] 532 
and the National Centers for Environmental Prediction (NCEP) reanalysis project [72] 533 
show that there have been substantial increases in average precipitation over the tropical 534 
oceans, related to increased intensity and frequency of ENSO during 1979-1998 [2]. Sim- 535 
ilarly, we found a substantial spatial coverage of breakpoints, abrupt and non-abrupt, 536 
occurring over Asia, North Africa, South Atlantic, and South Pacific Oceans. Moreover, 537 
the detected breakpoints revealed that a decreasing precipitation trend impacted some 538 
parts of the subtropics and tropics compared to other regions. Likewise, Trenberth et al. 539 
[73] reported a noticeable change in precipitation pattern in recent years, suggesting a 540 
wetter condition for the high latitudes and a drier condition for the subtropics and trop- 541 
ics, which is associated with the large-scale precipitation change influenced by ENSO 542 
[74]. Further, our findings indicated that the Indian and North Atlantic Oceans experi- 543 
enced the lowest number of breakpoint occurrences in precipitation over the study pe- 544 
riod. This is contrary to findings by Pokhrel et al. [75] who used Objectively Analyzed 545 
air-sea Fluxes (OAFlux) and the latest version of National Centers for Environment Pre- 546 
diction (NCEP) Climate Forecast System (CFS) version-2 products. They reported signif- 547 
icant precipitation variability and changes over the Indian Ocean affected by El Niño and 548 
La Niña signals during the earlier period 1979-2010, which partially overlaps the period 549 
of the current study. This contradiction could be due to the usage of several variables 550 
such as evaporation-precipitation (E-P), wind speed, air-sea humidity, and sea surface 551 
temperature (SST), which was different from the only precipitation variable used in this 552 
study. The past time series (<1998) were not available, but the changes in precipitation 553 
between 1998 and 1999 and subsequent years (>1999) were abrupt, which were consid- 554 
ered breakpoints in our study. More importantly, the detected breakpoints during 555 
1998-1999 were more reasonable than other years’ changes due to the reported substan- 556 
tial increases in average precipitation over the tropical oceans, related to increased in- 557 
tensity and frequency of ENSO during 1979-1998 [2]. 558 

 559 
4.2. Precipitation changes at the continental and climate scales  560 
We detected a higher frequency of breakpoints over Africa, Asia, and Australia relative 561 

to other continents. Not only the spatial coverage of non-abrupt changes for both ocean 562 
and land was considerably higher than abrupt changes but also the detected non-abrupt 563 
changes in Asia and Africa were more than that of abrupt changes. This means that the 564 
magnitude of precipitation changes in these regions was low. Although we found a large 565 
number of breakpoints over some regions of Asia and Africa, we detected the lowest 566 
changes in the magnitude of precipitation (±100 mm), which is due to the high CV in 567 
these regions (i.e., low precipitation amount but high precipitation variability). These 568 
breakpoints could be related to the observed extreme rainfall events, especially over 569 
north tropical Asia, around 10–20° N, [76].  570 

Major precipitation and severe drought occurrences can be related to positive and 571 
negative breakpoints, respectively. Frequent severe drought and flood events, especially 572 
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in the central region of Asia, during the past decades, have been reported [64, 67], which 573 
agrees with the spatial distribution of the detected breakpoints over Asia in this study. 574 
Moreover, an increase of 1.3°C in average temperature over Asia, particularly China, 575 
with increased evaporation has led to extreme regional precipitation and observed 576 
breakpoints (e.g., [77-80]). In North and South America, we found significant breakpoints 577 
extending over western regions of the continents. The changes in extreme precipitation 578 
and duration are likely to result from the combined effects of large-scale circulation 579 
changes and climate change. Climate change may affect the probability and intensity of 580 
extreme weather events [66, 78], as it can be the main reason for breakpoints in precipi- 581 
tation.  582 

Regarding climate zones, we found that the majority of significant breakpoints oc- 583 
curred over the arid and polar climates relative to other climate zones. Our findings in- 584 
dicate that detected breakpoints in precipitation over the arid climate were mainly posi- 585 
tive (upward) compared to other climate zones (i.e., Asia and Africa). To address this 586 
observation, it is noted that the arid climate is characterized by limited precipitation with 587 
a high spatial and temporal variation that explains the higher density of the detected 588 
breakpoints over this zone [81-83]. The change in the average precipitation in arid cli- 589 
mates specified that the majority of breakpoints were detected in the range between -180 590 
and +180 mm over the studied period. Conversely, we found minor breakpoints in the 591 
equatorial and warm temperate (<8%) climate zones. The equatorial climate mainly co- 592 
vers central Africa, northern regions of South America, southern India, Sri Lanka, 593 
northern Australia, Indonesia, Thailand, Vietnam, Malaysia, Laos, Philippines, Myan- 594 
mar, and most Pacific Island nations based on the climate classification scheme. It seems 595 
that the equatorial climate with a high humidity regime provides a low variability, which 596 
can be the main reason for detecting fewer breakpoints. For example, the equatorial cli- 597 
mate of Central Africa sustains tropical rainforests throughout the region and provides 598 
the excellent growing conditions needed for high-value crops [84].  599 

Our findings indicate that high precipitation variability is the leading cause of sig- 600 
nificant breakpoints. Precipitation variability is a crucial climatic factor for the environ- 601 
ment, agriculture, and society. Increased precipitation variability can reduce agricultural 602 
yield [85] and affect the development [86-87]. This connects extreme dry and wet events, 603 
droughts, and floods, posing threats to the society and environment [86, 88]. Much more 604 
attention needs to be given to regions with many abrupt changes to mitigate the impact 605 
of extreme natural events such as droughts and floods derived from climate extremes. 606 
Therefore, this study provides essential information to pinpoint the areas under frequent 607 
precipitation changes at the quasi-global and continental scales and their associations 608 
with the climate zones. Finally, theoretical and practical research is required to connect 609 
the understanding of changes in precipitation, and the threats they pose to the environ- 610 
ment and society.  611 

 612 

5. Conclusions 613 
To decrease the impacts of floods and droughts, there is a vital need to study his- 614 

torical events, i.e., breakpoints in precipitation, at the global scale. Although there are 615 
several studies concerning precipitation changes, breakpoints, and trends, on a regional 616 
scale using common statistical tests, conducting a comprehensive global investigation on 617 
the greatest changes in precipitation is of great importance. We used the DBEST algo- 618 
rithm for analyzing precipitation change and its characteristics in a monthly satel- 619 
lite-based precipitation dataset (TRMM 3B43) at three different scales (i) global, (ii) con- 620 
tinental, and (iii) climate zone over the 1998-2019 period. Unlike previous studies on 621 
precipitation changes at the local and regional scales, this study focused on quasi-global 622 
scale precipitation to detect general patterns of both abrupt and non-abrupt changes. This 623 
helps better understand the changes in overall precipitation patterns and adequately 624 
develop a mitigation strategy for future likely extreme event impacts. 625 
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The output of the DBEST algorithm captured the type (non-abrupt or abrupt) and 626 
characteristics (magnitude and time) of the significant breakpoints observed in satel- 627 
lite-based precipitation time series. We found 14.1% abrupt and non-abrupt significant 628 
breakpoints in the quasi-global precipitation dataset (0.05 significance level). The highest 629 
percentage of abrupt changes was found near the equator in the Pacific Ocean and Asia 630 
relative to other oceans and land regions. On the continental scale, the detected break- 631 
points in Africa (23.9%), Asia (22.9%), and Australia (15.4%) were more than those in 632 
North America (11.6%), South America (9.3%), Europe (8.3%) and Oceania (9.6%). The 633 
findings indicated that the most significant breakpoints were found in the arid (31.6%) 634 
and polar (24.1%) climates on the climate zone scale. The detected breakpoints in precip- 635 
itation are more likely to be related to the extreme wet and dry events associated with 636 
ENSO and high precipitation variability. However, these results indicated that abrupt 637 
changes in precipitation differ not only between regions but also in different aspects of 638 
precipitation, i.e., total and extreme. 639 

The consequences of precipitation variability and change, substantial changes, affect 640 
water resources at the local to regional scale where crops are grown, people live, and 641 
industrial and agricultural water requirements for production purposes exist. Our find- 642 
ings indicate that larger parts of Africa and Asia experienced a significant number of the 643 
most extensive changes in precipitation. Compared to the average state (trend during a 644 
specific period), the greatest changes in precipitation in these regions were more abrupt 645 
which may pose a severe threat to the ecology, environment, and natural resources 646 
causing a substantial loss in urban and rural areas. 647 

In conclusion, this study provides a large-scale comprehensive perspective of abrupt 648 
and non-abrupt precipitation changes over the global, continental, and climate zone 649 
during the 1998-2019 period. The monthly satellite pixel-based precipitation dataset 650 
(TRMM 3B43) provided valuable information to address the precipitation change char- 651 
acteristics during the last two decades. The DBEST algorithm detected and quantified the 652 
major changes in precipitation over large areas at continental and global scales. While 653 
applying this algorithm in the precipitation studies, it is suggested that this algorithm be 654 
implemented using other climate variables. It is a flexible, accurate, and fast tool for 655 
change detection, and is applicable to global change studies using time series of satel- 656 
lite-based datasets. 657 
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