Size Effects on laser powder bed fusion and laser powder directed energy deposition GRCop-42 alloy

Gabriel Demeneghi, NASA Marshall Space Flight Center
Paul Gradl, NASA Marshall Space Flight Center
Kavan Hazeli, University of Arizona

November 2nd, 2022
Gabriel Demeneghi

NASA – Marshal Space Flight Center (MSFC), Huntsville AL
- Materials and Processes Lab

Failure Analysis/Materials Engineer
- Work with government, commercial, and academic partners

Additive manufacturing alloy development and characterization
- Size effect characterization on AM components
Outline

• Background
 • Size effects
 • Applications of thin walls
 • GRCop-42 alloy
 • Deposition technology
• Comparison between L-PBF and DED
 • Tensile response
 o specimens with as-printed surface
 o Polished surface
 • Surface topography
 o Roughness vs waviness
• Porosity
• Microstructure/Crystallographic texture
• Summary
• Future work
As the thickness on a part decreases, the mechanical behavior is more greatly affected by AM features, such as:

- Surface topography (roughness and waviness)
- Internal/surface connected porosity
- Crystallographic texture
- Grain structure
- Number of grains across thickness
- Anisotropic properties

Bulk properties cannot be extrapolated to thin walls
Regeneratively cooled chambers are designed with internal coolant channels used to flow high pressure liquid or gaseous propellants to prevent overheating.

The Hotwall is a thin wall that separates the coolant from the combustion gases, experiencing a large thermal gradient and as a result, large strains.

Copper alloys are used sought after for applications that require **high conductivity and mechanical strength simultaneously**.

GRCop-42 (Cu – 4at%Cr – 2at%Nb) is **dispersion hardened** copper alloy developed for combustion chambers. Developed at NASA Glenn Research Center (GRC).

Cr2Nb low solubility in Cu increases strength while maintaining a high conductivity.

Cr2Nb is stable at high temperatures up to 800°C, allowing GRCop alloys to maintain a high strength for high performance chambers in high heat fluxes.
Deposition Methods

3D constraints - Solidifying material is constrained by material behind, under, sides of the melt pool since the melt pool penetrates the previous layers as well as adjacent spaces.

When compared to L-PBF, DED can deposit material at a faster rate, but at a lower resolution.

2D constraints - Solidifying material is constrained by material from the bottom of the melt pool and on the scanning direction behind the melt pool.

Outline

✓ Background
 ✓ Size effects
 ✓ Applications of thin walls
 ✓ GRCop-42 alloy
 ✓ Deposition technology

• Comparison between L-PBF and DED
 • Tensile response
 o specimens with as-printed surface
 o Polished surface
 • Surface topography
 o Roughness vs waviness
• Porosity
• Microstructure/Crystallographic texture

• Summary
• Future work
Tensile response – as printed surface

L-PBF

LP-DED

Vertical build, as-printed surface
Tensile response – Polished Surface

L-PBF

\[A_{\text{eff}} = \mu C T_{\text{area}} \]

Vertical, polished surface

LP-DED

\[A_{\text{eff}} = (t-S_p) \times W \]
Surface Topography

L-PBF

^ powder adhered to the surface
^ unmelted powder

Sa = 15.7±5.0µm

LP-DED

^ defined layers (interlayers)

Sa = 13.0 ±1.5µm
Microstructure - Voids

L-PBF

- 0.0833\% porosity
- Volume (µm³): 22,000
- 11.67mm
- 5.27mm

LP-DED

- 0.0008\% porosity
- Volume (µm³): 22,000
- 5.21mm
- 2.12mm

Pore Size Distribution

L-PBF

- Frequency (%)
- Pore Size (µm³)
- 0.7 HIP
- 1.0 HIP
- 1.7 HIP
- 2.0 HIP

LP-DED

- Percentage of porosity
- Pore Size (µm³)
- T1C1
- T1C2
- T2C1
- T2C2
Microstructure - Texture

L-PBF

- Weak texture

DED - Highly texture along build direction

LP-DED
Outline

✓ Background
 ✓ Size effects
 ✓ Applications of thin walls
 ✓ GRCop-42 alloy
 ✓ Deposition technology
✓ Comparison between L-PBF and DED
 ✓ Tensile response
 ✓ specimens with as-printed surface
 ✓ Polished surface
 ✓ Surface topography
 ✓ Roughness vs waviness
 ✓ Porosity
 ✓ Microstructure/Crystallographic texture

• Summary
• Future work
Summary

- L-PBF had a more dramatic difference in mechanical response with variation in thickness than LP-DED
 - Surface topography had little effect on the tensile response (<6%) of L-PBF specimens
- Surface topography was found to be the major contributor to the reduced elongation in LP-DED specimens
 - Porosity was found to be minimal in the DED specimens
- Internal and surface connected porosity was found to be the major contributor to the size effects in L-PBF specimens
- L-PBF specimens showed a large amount of powder adhered to the surface little waviness.
- LP-DED specimens had low powder adhesion to the surface, but high waviness
 - Waviness leads to a smaller load bearing areas and stress concentrations.
- Percent volume was higher in L-PBF than LP-DED
 - Thinner L-PBF specimens showed a higher porosity volume percentage than thicker specimens
- L-PBF specimens showed a week crystallographic texture along the build direction, independent of specimen thickness
- LP-DED showed highly textured specimens along the build direction, independent of specimen thickness
Future work

• Low cycle fatigue testing
• Characterization of microstructural damage accumulation during and post test
• Effects of cryogenic and elevated temperatures on the mechanical response
• Effects of various surface polishing methods and their impact on the mechanical behavior
• Influence of surface finish and temperature on mechanical behavior
• Similar characterization efforts are currently underway for several alloy systems, and the intention is to expand this to additional alloys.

Questions?

gabriel.demeneghi@nasa.gov