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Gas turbine engines are the primary power plants for modern commercial aircraft. 

Transients prompted by significant changes in thrust or power demand are common and 

unavoidable. Extreme transient scenarios such as those associated with a go-around during a 

landing attempt are possible and must be accounted for in the design of the engine and its 

controller. Engine transients tend to cause a reduction in compressor operability margin, 

which must be addressed by the engine control system and accounted for in the engine design 

to prevent events such as compressor stall/surge and combustor blow out. Transient 

operability concerns typically lead to compromises in the engine design that sacrifice efficiency 

and/or limit responsiveness. Transient operability is typically managed by logic that limits the 

fuel flow command. If this logic is not optimized, then the potential for valuable performance 

could be lost. This study presents a strategy for optimizing the transient limit logic and 

proposes a strategy for updating the control logic over the lifespan of the engine. The results 

demonstrate significant improvements in transient operability. For example, of the results at 

sea level static conditions demonstrated a 31% reduction in the usage of the high pressure 

compressor operability stack during a snap acceleration transient. Furthermore, a 

reinforcement learning algorithm is demonstrated to modify the transient logic as the engine 

degrades to minimize response time while respecting a prescribed compressor operability 

margin limit. A simple demonstration of the reinforcement learning algorithm resulted in a 

thrust response time reduction of ~11.8%.  

I. Introduction 

Most modern commercial aircraft are powered and propelled by gas turbine engines. These workhorses of the aviation 

industry will remain crucial components of aircraft propulsion systems, even as new concepts such as electrified 

aircraft propulsion (EAP) are pursued. Many EAP concepts, particularly large aircraft concepts, retain the use of gas 

turbine engines through hybrid gas-electric propulsion. The point is that gas turbine engines will remain the 

predominate powerplant of the aviation industry for many years to come. 

 One challenge of gas turbine engines is maintaining operability during engine power transients and throughout a 

vast operating envelope. The design of transient control logic takes up nearly 75% of the total time dedicated to engine 

control system development [1]. Engine power transients occur when there is a change in thrust or power demand, 

often associated with movement of the throttle position by the pilot. Transients result in a change in the shaft speeds 

of the gas turbine engine. Gas turbine engines often have two shafts that are referred to as the low-pressure shaft (LPS) 

and high-pressure shaft (HPS). Each shaft is attached to a compressor and a turbine that apply opposing torques. 

During an acceleration or deceleration, there is a temporary imbalance in torques. This is the result of a change in fuel 

flow that increases or decreases the amount of energy in the flow path of the turbine and the amount of power that it 

extracts from the flow to drive the compressor. The non-zero net torque causes a change in shaft speeds. However, 

the shafts have a considerable amount of inertia, and thus the change in speed is not instantaneous. A mismatch in the 

internal engine air flow and shaft speeds results in off-incidence flow impinging on the compressor blades. If the off-

incidence flow is severe enough, compressor stall or surge can occur. For a two-spool engine, the tendency is for the 

high-pressure compressor (HPC) operability to degrade during accelerations and the low-pressure compressor (LPC) 

operability to degrade during decelerations. 
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 In theory, the transient operability issue could be mitigated by changing the throttle very slowly such that a 

quasi-steady-state condition is maintained. However, this is not possible from a practical perspective. Aero-engines 

must be able to accelerate and decelerate relatively quickly to meet Federal Aviation Administration (FAA) and user 

requirements. FAA regulations state that a commercial engine must be able to accelerate from 15% thrust to 95% 

thrust within 5 seconds for relevant flight conditions [2]. For some aircraft, especially military aircraft, there are 

user-imposed requirements to respond even faster. Operability issues must be dealt with through the engine design 

and its control logic. The transient control logic is typically found in the form of a fuel flow rate limiter the enforces 

a shaft acceleration/deceleration (Ṅ) limit or a ratio unit (RU) limit in a max-min switch logic structure [3] or command 

governor (CG) logic [4]. The ratio unit is the ratio of the fuel flow rate and the HPC static discharge pressure (wf/ps3). 

Additionally, more advanced control schemes have been studied, including the use of Model Predictive Control (MPC) 

[5,6] and Linear Parameter Varying control [7].  

 Regardless of the controls approach, the control logic can only manage the issue, not eliminate it. As a result, the 

engine must be designed to account for some degree of variability in operability as the engine goes through transients. 

Thus, transient operability places constraints on the engine design that forces compromises in engine performance. 

For applications that desire fast responsiveness, this can limit acceleration and deceleration rates. In addition, 

constraints placed on the engine design can impact efficiency metrics such as fuel burn. Ref. [8] states that roughly 

one third of the compressor operability allowance can be attributed to transient operation while Ref. [9] states that 

about half of the stall margin can be devoted to transient operations. Furthermore, high duty compressors tend to 

achieve maximum efficiency close to the stall line [8]. The highest efficiency of an LPC may occur near or below 

10% stall margin (SM) and the shifting of the operating line demanded to maintain compressor stability during 

transients could cost more than 3% in compressor efficiency [8]. The ability to operate closer to stall could influence 

the design itself, resulting in different performance maps and a lighter design. Ref. [10] discusses trades between a 

traditional optimal design and a robust optimal design, which must account for various uncertainties and a wide range 

of operation that includes transients. Inevitably, sacrifices are made in the design to assure safe and reliable operability.  

 The methodology for control design could be inherently sub-optimal in application. The NASA-developed Tool 

for Turbine Engine Closed-loop Transient Analysis (TTECTrA) [11] is a nice tool for preliminary transient control 

design and dynamic system analysis. It can be used to design transient control schedules. However, it does so assuming 

a fixed fuel flow input profile, which happens to be a linear ramp. The software utilizes an iterative solver to adjust 

the slope of the ramp until stall margin and response time constraints are met. The fixed form of the fuel flow input 

will almost certainly result in a sub-optimal solution. There is plenty of literature and patents related to optimizing the 

transient control logic. Much of the focus of the literature is on military applications for which engine responsiveness 

is of great importance. Ref. [12] and [13] are examples of patents in this subject area. The former adapts bleed valve 

and Ṅ schedules based upon estimated combustor discharge temperature to minimize engine response time without 

stalling the engine. The latter has the same goal but utilizes a simulated compressor stall limit signal that is converted 

to a desired burner pressure limit. That limit is regulated via control either directly or through a proxy measurement. 

Ref. [14] applies a method referred to as an extrapolation approach to design the transient limit schedule. This method 

does not require a dynamic model, in contrary to most other methods, but it is known to be less accurate. Ref. [15] 

performs an optimization of the transients to reduce response time under operability constraints. It also avoids the 

need for a transient model but tends to be more accurate than the prior mentioned method. It utilizes a noteworthy 

method referred to as the virtual power extraction method (VPEM) that applies power extraction to the engine via 

steady-state simulations to shift the operation of the engine and emulate transient conditions. Reference [16] proposes 

the use of a variable replacement method along with particle swarm optimization to improve transient control 

performance by modifying the gains of a proportional integral (PI) Ṅ transient controller. Ref. [17] applies a genetic 

algorithm to tune the gains of a max-min switch logic controller that includes transient limiters with an objective 

function that considers the thrust response time and transient fuel consumption. Both approaches are limited as they 

assume static Ṅ limit set-point determination. Ref. [18] uses a genetic algorithm to create open-loop fuel flow and 

nozzle area commands that minimize the thrust response time. The study covered in this paper has similarities to Ref. 

[18] but differs in several ways including differences in the problem formulation and details about the genetic 

algorithm, extension of the results to a traditional control schedule, application to a commercial engine, and extension 

of the strategy toward life-cycle optimization.  These are just some examples of the literature on this rich topic of 

research. 

 Even if an “optimal” acceleration/deceleration controller is developed and employed on a new engine, it will likely 

be or become sub-optimal. Reasons for this include factors such as engine-to-engine variations, differences in 

operation (e.g., varying levels of engine power extraction), secondary effects such as heat soakage, and shifts in 

performance as the engine ages. In addition, the logic is typically designed with worst case conditions in-mind, and 

therefore the potential for a faster response or better performance characteristics could be squandered for any given 
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transient that isn’t the worst case. The concept of digital twin could help to improve this situation in the future. A 

digital twin is a virtual representation of a connected physical asset [19], in this case a gas turbine engine. Gas turbine 

engines are prime candidates for digital twin given their abundance of data. Ref. [20] approximates that 20TB of data 

can be collected from an engine per hour. The definition provided by AIAA and the Aerospace Industries Association 

(AIA) in Ref. [19] is “A set of virtual information constructs that mimic the structure, context and behavior of an 

individual/unique physical asset, or a group of physical assets, is dynamically updated with data from its physical twin 

throughout its life cycle and informs decisions that realize value.” Numerous potential applications of a digital twin 

exist including enhancing operational performance through controls. This may include using the digital twin to update 

control schedules and tuning control gains. It can also extend to using the digital twin model within the control logic, 

otherwise referred to as model-based engine control (MBEC). Ref. [21], [22], [23] and [24] describe MBEC strategies 

that utilize a tracking filter for tuning the model to the real system and utilizing the model outputs for controls. Ref. 

[25] is an example of using machine learning to update the digital twin. A recent application of a digital twin is 

demonstrated by a software tool released by General Electric to optimize gas turbine operations [26]. The software 

utilizes artificial intelligence to build a machine learning digital twin model. The model is used to determine the 

optimal flame temperature and fuel splits that minimize emissions and acoustics. This technology along with the prior 

work mentioned above provides promising signs of the near-term technology readiness of digital twins to influence 

engine controls.   

 The application in this paper is for a commercial single-aisle engine, for which the operations are constrained and 

predictable compared to military applications, minimizing component life usage during takeoff and landing transients, 

and minimizing cruise fuel consumption are among the primary concerns [18]. Thus, the goal of this study is to 

optimize acceleration and deceleration control logic to minimize variations from the steady-state operating line such 

that the engine design can be improved to enhance efficiency and the transients will be less harsh in terms of the 

metrics such as compressor operability and peak temperatures. The study considers various optimizations and 

simulations to draw a variety of conclusions. The topics investigated include: the impact on compression system 

operability and peak operating temperatures that contribute to engine deterioration, and the ability to generalize the 

form of an optimal solution for a given flight condition to other flight conditions. A strategy for updating the transient 

limit logic throughout the engine lifespan is also explored. 

 The approach involves the use of a nonlinear model of a conceptual advanced geared turbofan and its controller to 

simulate various engine transients. A genetic algorithm optimizer is given control of the control inputs along with the 

objective to optimize a measure of compressor operability and to achieve a given response time. The results are used 

to derive an RU limit schedule. Assuming the model to be a digital twin of a specific physical engine, additional 

optimizations are conducted at different health states of the engine, and those results are used to guide a reinforcement 

learning algorithm to gradually update the control logic as the engine ages.  

 The rest of the paper is organized as follows. Section II provides a brief overview of the Advanced Geared 

Turbofan 30,000lbf (AGTF30) engine model [27], which is the plant considered in this study. Section III describes 

the genetic algorithm employed in the study and Section IV covers the transient optimization procedure and results. 

Section V comments on extending the optimization to updating the control schedules using a digital twin. Finally, 

Section VI provides a summary. 

II. The AGTF30 Propulsion System 

The AGTF30 is a model of a conceptual 

two-spool geared turbofan capable of 

producing ~30,000 lbf of thrust at sea level 

static (SLS) conditions. The engine is 

envisioned for a single-aisle commercial 

transport application. The AGTF30 is meant 

to be representative of technology available 

in 2035 and includes features such as a 

compact gas turbine core and a variable area 

fan nozzle. The engine model is coded in the 

MATLAB/Simulink® environment using 

the NASA-developed Toolbox for 

Modeling & Analysis of Thermodynamic 

Systems (T-MATS) [28]. T-MATS 

provides the building blocks for creating a 0-D (component level) model of a gas turbine engine utilizing 

 

Figure 1. Diagram of the AGTF30 conceptual engine 
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turbomachinery performance maps, thermodynamic relations, actuator models, and more. The AGTF30 is represented 

in Fig. 1. The model includes a realistically performing full-flight envelope controller that was developed in Ref. [27]. 

This controller includes schedules for the variable area fan nozzle and variable bleed valve. It also includes closed-loop 

gain-scheduled PI controllers for the fuel flow rate that include a nominal corrected fan speed controller and various 

limit controllers. Among the limit controllers are limiters for over-speed and over-temperature conditions. The model 

also includes acceleration and deceleration limit logic, which is employed as a maximum RU limit schedule for 

acceleration and a minimum RU limit schedule for deceleration. The various fuel flow rate commands go through a 

max-min decision tree to decide which command to use. Health parameters are used within the engine model to set 

the health state of the turbomachinery components. Health parameters are modifiers that shift the flow capacity and 

efficiency of the compressors and turbines based on degradation. The degradation model that relates the health 

parameters to engine life was taken from another engine model known as the Commercial Modular Aero-Propulsion 

System Simulation 40,000lbf engine model [29]. 

III. The Genetic Algorithm 

 Genetic algorithms are optimization schemes built upon the biological principles of natural selection and fitness 

[30]. Genetic algorithms tend to be less likely to get stuck at local minima/maxima than gradient based methods and 

are substantially more efficient than brute force methods. A population is comprised of numerous solution realizations, 

each with different parameters. Each individual solution is evaluated based upon a fitness function. The members of 

the population compete for survival into the next generation and for participation in reproduction. The genetic 

algorithm utilized in this study has the primary components of elitism, carry-over (replication), reproduction 

(crossover), and immigration. The primary sub-components of the genetic algorithm are selection, mutation, and 

duplication removal. Each of these components and sub-components will be described in the following paragraphs. 

The sub-components are described first to set the foundation for describing the components. 

 The two selection methods used in this application were random and rank-biased selection. In random selection, 

all members have the same probability of being chosen. Rank-based selection utilizes the pareto distribution [31] and 

allows the user to specify parameters that define the exact shape. For instance, the 80-20 rule [31] can be applied by 

specifying that the probability of selecting a member from the top 20% will be 80%.  

 Mutation creates a modified version of a member of the population. It will select the number of parameters to 

mutate based on specified probabilities and then will randomly select parameters to mutate. Finally, those parameters 

are mutated within specified bounds using a random distribution. 

 Duplicate removal applies whenever a duplicate shows up in the population. This feature will remove the duplicate 

and replace it with new member that is generated within the specified parameter bounds using a random number 

generator. 

 Elitism involves advancing a set number of the most fit individuals to the next generation. Elitism seeks to preserve 

the best solutions and enable them to take part in finding better solutions through the functions of reproduction and 

mutation.  In addition to advancing the elite, mutated variants of the elite may also be added to the next generation. 

This action promotes diversity but also exploits the high fitness of the elite. Inputs include the number of top members 

of the population to include in the elite, the number of the elite to mutate, the bounds for mutation, and the probability 

of mutating any number of parameters up to the full number of parameters. 

 The carry-over component of the algorithm selects members of the population, outside of the elite, to advance to 

the next generation. Mutation can apply as these members are carried to the next generation. The inputs include the 

number of members to carry-over, the method of selection, inputs associated with the method of selection, and inputs 

associated with mutation including the bounds of mutation, the probability of a mutation occurring, and the probability 

of any number of parameters being mutated. 

 Reproduction consists of the combining of two members of the population to produce one or more new members 

of the population in the next generation. The offspring will derive its parameters from its parents. There are 3 methods 

for assigning parameters. The first is to inherit the parameter from one of the parents. The second is to average the 

parameters of the parents. The final is to randomly select a value for the parameter between the values of the parameter 

for the two parents. The probability of each method being used can be specified. In this application, each method had 

an equal chance of use. The parents are chosen based on the specified selection method, as is the number of offspring 

that a pair of members will produce. The combined fitness of the parents can be utilized to determine the number of 

offspring. Limits can be set for the number of times a single member of the population can participate in reproduction. 

In this application the number of offspring is specified. After the reproduction function is carried out, the offspring 

can be mutated given inputs about the probability of mutation, the bounds of mutation, and the probability of mutating 

any number of parameters. 
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 Immigration refers to the introduction of new members to the population that will appear in the next generation. 

The new members are generated within the specified parameter bounds using a random number generator. This feature 

helps to explore the solution space more thoroughly. 

 In this application, the members of the population define a fuel flow command input profile for the transient. The 

profile is defined by 8 points between the minimum and maximum fuel flow rate. The time at each data point in the 

profile is constant. The variables in the optimizer include 9 values between 0 and 1, Y, that are used to define the 

change in fuel flow between each of the 8 data points. The fuel flow rate value is a function of Y.  

 

 𝑤𝑓,𝑖 = 𝑤𝑓,𝑖−1 +
𝑌𝑖

∑ 𝑌𝑗
9
𝑗=1

(𝑤𝑓,𝑚𝑎𝑥 − 𝑤𝑓,𝑚𝑖𝑛) (1) 

In the equation above, wf is the fuel flow rate, and i and j refer to the indices of the time interval that each fuel flow 

change occurs over. The variable i differs from j by referring only to the time interval for which the fuel flow rate 

change is being calculated in the equation. The subscripts “max” and “min” refer to maximum and minimum fuel flow 

rate. This approach guarantees the fuel flow rate input remains monotonically increasing or decreasing between the 

minimum and maximum fuel flow rate. The population was initialized using a random number generator for a 

population of 45 and the genetic algorithm was run for 50-200 generations. For each generation, the fitness of new 

members was evaluated. This entailed running a transient simulation and calculating fitness for each member. The 

fitness, f, is defined in Eq. (2) where TSU is the transient stack usage, tr is thrust response time, and tr,target, is the thrust 

response target value. 

 

 𝑓 =
1

𝑇𝑆𝑈
+

1

10 𝑚𝑎𝑥(𝑡𝑟 − 𝑡𝑟,𝑡𝑎𝑟𝑔𝑒𝑡 , 0) + 1
 (2) 

The thrust response time for an acceleration is the time to go from idle thrust to 95% thrust. The response time for a 

deceleration is the time to go from idle thrust to 20% thrust. The target thrust response time was chosen to match the 

response time of the engine with the baseline controller. The TSU is a metric developed by the author to quantify 

operability margin. The metric is a single value that quantifies the operability margin for a given transient. The metric 

is defined below: 

 

 𝑇𝑆𝑈 = 𝑚𝑎𝑥 (
𝑃𝑅 − 𝑃𝑅𝑆𝑆

𝑃𝑅𝑠𝑡𝑎𝑙𝑙 − 𝑃𝑅𝑆𝑆

) × 100% (3) 

PR is the pressure ratio, PRSS is the pressure 

ratio at the same corrected flow rate along the 

steady-state operating line, and PRstall is the 

pressure ratio at the same corrected flow rate 

along the stall line. Each variable is a vector 

that varies throughout the transient. The TSU 

metric quantifies what portion of the 

compressor operability stack is used during 

the transient. By quantifying the operability 

margin with a single value for the entire 

transient using map data that considers the 

stall line and steady-state operating line, this 

metric gives a decent summary of the 

compressor operability without some of the 

nuances of stall margin. Figure 2 illustrates 

these terms on a compressor map. Wc on the 

x-axis is the corrected flow rate at the inlet of 

the compressor. It is noteworthy that the 

fitness function could be modified to utilize other operability metrics, such as minimum stall margin, or combinations 

of various operability metrics. 

 

Figure 2. Illustration of TSU 
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IV. Transient Optimization 

The transient maneuvers evaluated will be full power range bursts and chops with a new undegraded engine. A 

burst is characterized by a rapid increase in power/thrust and a chop is characterized by a rapid decrease in 

power/thrust. Typically, a hot Bodie re-acceleration (hot re-slam) is considered the worst-case scenario [9]. In such a 

case, the heating of the metal engine components cause the steady-state gas path characteristics to change such that 

the operating line is shifted closer to the stall line. Given that the model used in this study did not readily capture 

engine heat soak effects, standard burst and chops were utilized. 

The results of the acceleration optimization at SLS conditions are shown for the HPC in Fig. 3 compared to results 

with the baseline acceleration schedule from Ref. [27]. Fig. 4 shows similar results for the LPC from the deceleration 

optimization. Referring to Fig. 3, the thrust response time with the optimized fuel flow input is the same as with the 

baseline schedule, but the TSU is reduced significantly from 38.4% to 20.5%, indicating an operability improvement 

along with observation of the flatter running line on the compressor map in Fig. 3c. Referring to Fig. 4, the response 

time is slightly faster for decelerations with the optimized schedule and the TSU was reduced from 9.1% to 7.4%. The 

optimized fuel flow input profile is also observed to result in a better trajectory for the LPC running line as it begins 

to decelerate. 

The optimization was conducted for accelerations and decelerations at other flight conditions. Included altitude 

(Alt), and Mach Number (MN) combinations were: 5000 ft at Mach 0.2, 15000 ft at Mach 0.3, 20000 ft at Mach 0.6, 

 

Figure 3. Optimized acceleration results at SLS conditions. HPC data shown in (c). 

 

 

Figure 4. Optimized deceleration results at SLS conditions. LPC data shown in (c) 
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30000 ft at Mach 0.7, and 35000 ft at Mach 0.8. It was observed that the fuel flow input profile was very similar for 

all cases. Figure 5 shows the normalized fuel flow input, where wf,norm and tnorm are defined below.  

 

 𝑤𝑓,𝑛𝑜𝑟𝑚 =
𝑤𝑓 − 𝑤𝑓,𝑚𝑖𝑛

𝑤𝑓,𝑚𝑎𝑥 − 𝑤𝑓,𝑚𝑖𝑛

 (4) 

 𝑡𝑛𝑜𝑟𝑚 =
𝑡

𝑡𝑟

 (5) 

In Eq. (5) t is the time vector during the transient and tr is the thrust response time. The acceleration fuel flow input 

profile tends to increase gradually before increasing more rapidly and sharply tapering to the maximum fuel flow rate 

value. The deceleration fuel flow input profile tends to decease relatively sharply in a nearly linear fashion and then 

change to a less aggressive trajectory that is nearly linear as the minimum fuel flow rate value is approached. This 

forms a “kink” in the profile that is associated with the inflection in the LPC running line (see Fig. 4c), which bends 

to run parallel to the stall line as the variable bleed valve begins to open to manage LPC operability. 

 It is hypothesized that the fuel flow input profile could be generalized across flight conditions and still achieve 

near optimal results. Alternatively, the fuel flow input profile could be a function of operating conditions that is derived 

from optimizations at select operating conditions, such as those listed above. The benefit of either of these choices is 

a reduction in the workload to perform optimization. With an approximation of the optimal fuel flow input profile an 

approach similar to that of TTECTrA can be applied throughout the flight envelope to produce acceleration and 

deceleration schedules. With the form of the fuel flow input profile constant, an iterative solver can be used to stretch 

or compress the profile to achieve a desired response time while respecting operability constraints. For demonstration, 

the average normalized fuel flow rate command profile from the optimizations was applied to the transient scenarios 

at each of the 6 operating conditions investigated prior. An iterative solver was used to achieve a similar thrust response 

time as the baseline controller.  

 Figure 6 shows the acceleration results on the HPC compressor map and Fig. 7 shows the deceleration results on 

the LPC compressor map. Fig. 8 shows a zoomed-in image of the results at 15,000 ft and Mach 0.3 to provide an 

example of how little variation is observed in the transient running lines. These plots compare the generalized profile 

to results with the optimized profile for each flight condition. Also present are results that implement 

acceleration/deceleration schedules that are derived from the generalized profile results. Following the logical and 

sequential steps laid out in the introduction, those results will be highlighted later in this section. Table 1 and 2 quantify 

the terms of tr and TSU for accelerations and decelerations respectively. These tables also include results with the 

derived schedules, which will be discussed later. Note that some of the “optimized” results did not fully converge 

upon the optimal solution (but are close), as is evidenced by some lower response times, particularly for the 

deceleration study. This was later improved in the optimization strategy by introducing an iterative solver to achieve 

the desired thrust response time, rather than incorporating it as a constraint in the fitness function. A slower response 

with the same fuel flow rate profile should produce more favorable operability results. Overall, the results are very 

 

Figure 5. Normalized fuel flow command profiles for burst (a) and chop (b) 
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similar and provide support for the theory that the optimal fuel flow input profile can be generalized across various 

operating conditions. However, it is noted that for the deceleration, the TSU with the generalized fuel flow profile is 

slightly higher than that with the baseline controller at the SLS and 15000 ft Mach 0.3 flight conditions. In general, 

the generalized input profile provides similar results to the optimized profile but tends to be slightly less optimal in 

terms of TSU. Given the relatively small deviation between the baseline transient running line and the steady-state 

operating line, the margin for improvement is very small and therefore very small deviations in the running line can 

make a significant enough change in TSU to explain this observation. Observation of the running lines in Fig. 7 provide 

assurance that the response with the generalized results is quite good, as it is nearly indistinguishable from the optimal 

solution. The HPC running line during accelerations naturally has much more deviation from the steady-state operating 

line and in all cases the generalized profile provides a significantly lower TSU than the response with the baseline 

schedule. The TSU results and the running lines plotted in Fig. 6 demonstrate similar performance of the optimal and 

generalized fuel flow input profiles. 

 Once the fuel flow rate optimization simulation results are obtained, they need to be converted into acceleration 

and deceleration control schedules that are implementable in practice. To convert the generalized profile results into 

acceleration and deceleration limit schedules, data from the simulations are utilized. An RU limit approach is 

considered here, but the same idea is applicable to an Ṅ limit approach. Derived RU schedules are constructed as a 

function of corrected fan speed, Nc,Fan. To prevent the acceleration and deceleration limit schedules from limiting the 

fuel flow at the start of the transients, the RU limits for accelerations were increased by 3.5% to 5.5% and reduced by 

1.5% for decelerations. The resulting schedules are shown in Fig. 9. Figure 6 and 7 show the compressor running lines 

compared with the optimal and generalized optimal results. It is evident that the results are nearly identical, 

demonstrating that the limit schedules are working as intended. Table 1 and 2 provide the response time and operability 

metrics, which help to illustrate the similarity in performance of the engine with the schedule and with an optimized 

fuel flow input profile. Implementation of the schedule does result in some deviation of the fuel flow input from the 

data used to produce the schedule and this results in a slight increase in the TSU, which may also be affected by slight 

changes in the thrust response time. Still, the schedule appears to provide a near optimal solution and certainly an 

improvement over the baseline schedule.  

 

Figure 6. HPC running lines during accelerations transients at various flight conditions 
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 The next set of simulations demonstrate the impact of the acceleration limit schedule on peak temperatures, which 

can impact the lifespan and maintenance costs of engine components. These simulations consider an acceleration 

transient conducted at SLS conditions for a full power rapid burst take-off and a de-rated take-off in which the aircraft 

only needs ~80% of the maximum thrust. The first two rows of Table 3 compare the peak turbine inlet temperature, 

T4,peak, and T4 overshoot for the baseline control schedule and a schedule optimized for operability. While the new 

optimized schedule improves transient operability, peak T4 is higher. To strike a better balance between operability 

and peak T4, the optimization can be redone with a modified fitness function that penalizes T4 overshoot. An 

optimization was conducted with the fitness function in Eq. (6). 

 𝑓 =
3

𝑇𝑆𝑈
+

10

(𝑇4,𝑝𝑒𝑎𝑘 − 𝑇4,𝑆𝑆)/𝑇4,𝑆𝑆 + 1
 (6) 

 

Figure 7. LPC running lines during decelerations transients at various flight conditions 

 

 

Figure 8. Zoomed in plots of the transient running lines at 15,000 ft and Mach 0.3. (a) shows the HPC 

data for an acceleration and (b) shows the LPC data for a deceleration. 
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T4,SS is the final steady-state turbine inlet temperature after the acceleration. The algorithm was also modified with a 

root solver to stretch or contract the fuel flow input profile to achieve the desired response time, and therefore the 

response time term such as the one used in Eq. (2) becomes unnecessary. Using this fitness function, a new optimized 

 

Figure 9. Acceleration (a) and deceleration (b) derived schedules 

 

Table 1. Table of tr and TSU for accelerations 

Flight 

Condition 

Baseline Controller Optimized wf Input Generalized wf Input Derived RU Schedule 

tr, s TSU, % tr, s TSU, % tr, s TSU, % tr, s TSU, % 

SLS 4.98  38.4 4.96 20.5 4.98 23.0 4.93 25.8 

5000ft,  

Mach 0.2 

5.31  38.7 5.31 24.3 5.31 25.1 5.34 27.3 

15000ft, 

Mach 0.3 

5.50  39.6 5.50 33.5 5.50 33.8 5.56 35.4 

20000 ft, 

Mach 0.6 

6.01  39.5 6.01 33.0 6.01 33.0 6.07 35.1 

30000 ft, 

Mach 0.7 

8.56 46.7 8.53 32.8 8.56 33.9 8.50 37.4 

35000 ft, 

Mach 0.8 

10.17 49.5 10.15 31.6 10.17 39.9 10.09 42.7 

 

Table 2. Table of tr and TSU for decelerations 

Flight 

Condition 

Baseline Controller Optimized wf Input Generalized wf Input Derived RU Schedule 

tr, s TSU, % tr, s TSU, % tr, s TSU, % tr, s TSU, % 

SLS 11.61 8.41 10.86 6.67 11.61 8.85 11.10 9.24 

5000ft,  

Mach 0.2 

11.13 10.08 11.01 7.56 11.13 8.23 10.68 8.38 

15000ft, 

Mach 0.3 

11.02 12.74 10.71 9.99 11.02 15.10 10.63 15.33 

20000 ft, 

Mach 0.6 

10.27 15.18 10.17 11.38 10.27 12.61 9.99 13.52 

30000 ft, 

Mach 0.7 

10.27 19.56 10.15 15.75 10.27 16.47 10.06 17.17 

35000 ft, 

Mach 0.8 

10.11 23.97 10.11 21.69 10.11 21.58 9.97 22.06 
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fuel flow input profile shown in Fig. 10a was obtained for a derated takeoff and a new RU limit schedule was extracted. 

The schedule is plotted in Fig. 10b with reference to the previously optimized schedule. Figure 11 shows the HPC 

running lines during the acceleration transient. It is evident in these results that the new optimization leads the transient 

with more fuel flow input to sacrifice some operability such that the maximum fuel flow rate can be approached more 

gradually to reduce overshoot in T4. The last 

row of Table 3 includes the TSU and peak T4 

results for the new optimization. During the 

more common derated takeoff burst scenario, 

the peak T4 is reduced by 17°R when compared 

with the prior optimized schedule. It can also be 

noted that the while the peak T4 is still higher 

than that achieved with the baseline acceleration 

limit schedule, the transient operability margin 

is significantly better with a TSU of 29.76% vs. 

38.4%. 

 The conclusion of these analyses is: (1) 

optimized transient limit logic can have a 

significant impact on engine operation and 

influence system design, (2) a generalized or 

simplified fuel flow profile could be substituted 

in the control design process to simplify and 

expedite control design while achieving similar 

results to the optimal solution, and (3) the 

optimization objectives can be modified to 

achieve different goals or to strike a balance 

between competing goals.  

Table 3. Comparison of transient limit schedules on the basis of TSU and peak T4 

Transient Limit Logic Full Power Burst Derated Take-Off Burst 

TSU, % T4,peak, °R T4 Overshoot, % T4,peak, °R T4 Overshoot, % 

Baseline Schedule 38.4 3172 0.1 2951 3.0 

Schedule Optimized for 

Operability 

25.8 3181 0.4 2989 4.3 

Schedule Optimized with 

consideration of Operability 

and T4 

29.76 3182 0.4 2972 3.7 

 

 

Figure 10. Comparison of optimized fuel flow inputs (a) and acceleration schedules (b) 

 

 

Figure 11. Comparison of the transient running lines of the 

two optimized acceleration schedules 
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V. Engine Lifespan Optimization 

Since the controller is developed to handle engine deterioration, the transient limit logic is overly conservative 

until the engine is fully deteriorated. This means that the engine will tend to respond slower than it is able. While this 

may not be a concern for commercial aircraft engines, there are circumstances where better responsiveness is desirable, 

particularly during emergency scenarios where thrust is needed quickly. Military engine applications would benefit 

from the ability to improve thrust responsiveness over the lifespan of the engine more so than commercial engines. 

This goal is in the same spirit of the works referenced prior including Ref. [12], [13], [15], and [18]. In a similar spirit, 

the example presented in this paper will consider minimizing thrust responsiveness under operability constraints. 

However, it can be noted that the goals of the lifespan optimization problem formulation could be modified to achieve 

other goals more relevant to commercial engines. For instance, the objective could be to balance factors that contribute 

to engine deterioration, such as peak temperatures and pressures, with operability improvements that enable engine 

design benefits.  

MBEC enables the use of closed loop control on unmeasured parameters such as thrust and stall margin. MBEC 

could also eliminate the need to create extensive schedules for managing acceleration and deceleration. However, the 

schedule approach considered here is more traditional, and field-tested. Utilizing traditional methods could be argued 

as being advantageous in the certification process. It is thought that small and gradual updates to the schedule over 

time, and the ability to revert to the original generic and conservative schedule are favorable qualities with regard to 

certification and could be viewed as advantageous when compared with advanced MBEC approaches that heavily rely 

on a model. An optimization scheme with a digital twin will enable the schedule to be reassessed as the engine ages 

or after changes occur (e.g., performed maintenance and sensed shifts in performance). Coupling this with engine 

sensor data and a reinforcement learning (RL) strategy could offer a trusted means of maintaining a good balance 

between transient performance and operability as the engine ages. The RL would leverage the optimization results 

obtained using the digital twin but would not trust those results. The results would only be used to guide its decisions 

as it cautiously explores the solution space. The RL algorithm will limit changes to the schedules and penalize any 

observations of unexpected reductions in operability margin that could be the result of error between the model and 

physical system. In theory, it could also inform the updating of the digital twin. Figure 12 shows the proposed 

architecture. 

Since engine deterioration occurs gradually, the optimization could occur periodically and may even be conducted 

off-line with only the results of the optimization being supplied to the control system. The RL algorithm will attempt 

to adjust the schedule toward the optimal schedule but will limit how much the schedule can change. It will require 

feedback from the physical system and evaluation of the transient response characteristics prior to allowing further 

updates. If operability is observed to degrade too much, then the schedule will be shifted back toward the original 

conservative schedule.  

To demonstrate the concept, the genetic algorithm will be employed at four different times during the life span of 

the engine: new engine (NEW), mid-life engine (MID), three quarters of life engine (3Q), and end-of-life engine 

 

Figure 12. Schematic of the proposed transient control architecture and the iterative process to update it 
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(EOL). This will be simulated by modifying the health parameters for the turbomachinery components. The 

degradation states of the engine have been sparsely selected to demonstrate the concept. For the sake of demonstration, 

all the examples focus on sea level static operation. An RL algorithm is then used to modify the schedule with guidance 

from the optimization results. The rest of this section is broken into three sub-sections: (1) the RL algorithm, (2) the 

results of a demonstration, and (3) discussion of some related topics.  

A. Reinforcement Learning Algorithm 

A Q-learning RL algorithm [32] is utilized to update the schedule. Q-learning uses a quality function, Q(s,a), that 

describes the value or quality of being in a particular state, s, and taking a particular action, a. In this case, the state is 

the enforced limit schedule, and the action is the decision for how to modify it in the future. For demonstration, a 

discrete set of schedules are initialized and the RL algorithm will have the option to shift the schedule toward the 

“optimal” transient schedule, retain the same schedule, or shift the schedule toward the original conservative schedule. 

The quality of the state and action combination is based upon accumulated rewards, R, which are a function of the 

responsiveness and operability of the system. The reward will be the sum of response time and operability rewards 

(Rr and Ro). 

  

 

𝑅 =  𝑅𝑟 + 𝑅𝑜 

𝑅𝑟 =  {

1 𝑖𝑓 𝑡𝑟 − 𝑡𝑟,𝑜𝑙𝑑 < −𝑋

−0.1 𝑖𝑓 |𝑡𝑟 − 𝑡𝑟,𝑜𝑙𝑑| < 𝑋

−3 𝑖𝑓 𝑡𝑟 − 𝑡𝑟,𝑜𝑙𝑑 > 𝑋

,    𝑅𝑜 =  {

0 𝑖𝑓 𝛥𝑃𝑅 ≥ 0 

3 𝑖𝑓 𝛥𝑃𝑅 < 0 & (𝛥𝑃𝑅 − 𝛥𝑃𝑅𝑜𝑙𝑑)  >  0 

−5 𝑖𝑓 𝛥𝑃𝑅 < 0 & (𝛥𝑃𝑅 − 𝛥𝑃𝑅𝑜𝑙𝑑)  ≤  0
 

𝛥𝑃𝑅 = 𝑚𝑖𝑛(𝑃𝑅𝑚𝑎𝑥 − 𝑃𝑅) 

(7) 

The parameter tr is the response time. PR is the pressure ratio and PRmax is the maximum allowable pressure ratio 

given as a function of corrected speed Nc. PRmax effectively defines a “do not exceed” line on the compressor map. 

The subscript “old” refers to quantities resulting from the prior action while variables without the subscript refers the 

current state and action pair. X is a threshold value below which the change in thrust response time is considered 

negligible. In the presented example X = 0, which takes advantage of the idealistic simulation conditions under which 

the RL is applied. However, it should be noted that variations and sources of uncertainty will be present in real world 

applications. For that reason, X would need to be non-zero. The idea is simple: reward reductions in response time, 

penalize increases in response time, and penalize reductions in operability beyond the prescribed limit. The second Ro 

condition shows that if the operability limit is in violation (i.e., 𝛥𝑃𝑅 < 0), an improvement in operability (i.e., 
(𝛥𝑃𝑅 − 𝛥𝑃𝑅𝑜𝑙𝑑)  >  0) is rewarded. To encourage the search for better solutions, a slight penalty is incurred by 

staying at the same schedule or achieving the same thrust response time. The relative magnitude of the values chosen 

in Eq. (7) should be considered to achieve efficient learning. 

 It is acknowledged that quantifying compressor operability with measurement data remains an open question. 

Ideally, this would be done without any reliance on a model. Ref. [12] proposes an approach to adapting acceleration 

schedules based on the combustor discharge gas temperature or an estimate of it. In any case, it is outside of the 

focused intent of this paper. For demonstration, the maximum pressure ratio constraint fills this role. The compressor 

pressure ratio will be measured via sensors, as will the corrected HPC speed. While the measurement is feasible, the 

practical viability of the approach is unknown and beyond the scope of this paper. 

 In RL terminology, a policy is enacted by an agent. The agent gathers information about the environment and the 

impact of its actions and uses that information to update the quality function and the policy used to determine future 

actions.  The quality function will be initialized and later updated as the agent applies actions and observes the rewards 

of those actions. Equation (8) is used to update the quality function at state s with action a. 

Qold is the quality function value from the previous update, R is the reward for the state and action pair, α is the learning 

rate, and γ is the discount factor. The learning rate is a value between 0 and 1 with higher values encouraging faster 

adoption of new data. Since the measured feedback data from the actual engine is assumed to be more accurate than 

the digital twin, the learning rate will be set to a relatively high value of 0.9. The discount factor is a value between 0 

and 1 with lower values favoring immediate rewards over long-term rewards. In the demonstration presented in the 

next sub-section, γ was set to 0.7. The term multiplied by the discount factor is an estimate of the optimal future value. 

 𝑄(𝑠, 𝑎) =  (1 − 𝛼)𝑄𝑜𝑙𝑑(𝑠, 𝑎) +  𝛼 (𝑅 + 𝛾 max
𝑎′

(𝑄(𝑠′, 𝑎′))) (8) 
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The quality function value for each state and action combination can be initialized using information from the genetic 

algorithm optimization.  

 A design consideration with any RL application is the trade-off between exploration and exploitation. Exploration 

refers to the tendency of the policy to explore new state and action pairs in search for a better solution, and exploitation 

is the tendency of the policy to use known information to maximize reward. Assuming the optimization is decent, 

initial quality approximations are relatively trustworthy and therefore the RL algorithm can favor exploitation. The 

epsilon greedy strategy [32] is employed for choosing which action to take. The parameter ε will be set at a value 

between 0 and 1. A random number generator will output a number between 0 and 1 and if the number is less than ε 

then the exploration method will be implemented. Otherwise, the exploitation method will be implemented. The 

exploration method will randomly choose which action to take while the exploitation option will choose the action 

with highest quality value. For the demonstration presented in the next sub-section, ε was chosen to be 0.05. 

 The nature of this application allows for some simplifications due to the limited number of action options and the 

ability to assume trends between action and impact. For instance, a more aggressive acceleration schedule will lead to 

a faster response time and reduced operability while a less aggressive schedule will lead to a slower response time and 

improved operability. When the quality function is updated, there are instances when the quality adjustment for other 

state and action pairs can be inferred. For example, if the schedule was shifted to be more aggressive and the operability 

was reduced such that R was significantly reduced, it can be assumed that any action to make the schedule more 

aggressive will make the issue worse and will result in more negative rewards. Therefore, the quality function can be 

updated to discourage such an action. 

B. Demonstration 

Optimizations were conducted for the NEW, MID, 3Q, and EOL engine. The optimization for the EOL utilized 

the fitness function provided by Eq. (2). These results were used to create the conservative schedule at which the limit 

controller will be initialized and will default to if the transient operability were to become a concern. The EOL results 

were also used to define a “do not exceed” HPC PR as a function of HPC corrected speed. This limit was set slightly 

above the EOL transient running line. Optimizations for the 3Q, MID, and NEW engine sought to minimize the 

response time while not exceeding the maximum PR limit. An iterative root solver was used to just meet the PR limit 

and the optimizer used the fitness function defined below: 

 

 𝑓 =  
1

𝑡𝑟

 (9) 

Results from the optimizations were used to create an RUmax schedule for each degradation level. The schedules are 

plotted in Fig. 13a while the transient running lines with the optimized fuel flow input are plotted in Fig. 13b along 

with a representation of the maximum HPC PR limit. It is noted that the normalized fuel flow input profiles have 

similar shape but do vary significantly when compared to each other in Fig. 14. A newer engine can lead more 

 

Figure 13. Schedules derived from the optimization results (a) and transient running lines with the 

optimized fuel flow inputs (b) 
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aggressively with fuel flow input. However, these profiles 

appear to collapse to a similar normalized fuel flow input 

profile if they are stretched or contracted. To demonstrate this 

Fig. 14 also shows the NEW, MID, and 3Q profiles stretched 

to better match the EOL profile. The profiles are stretched by 

factors of 1.2 and 1.15, and 1.1 respectively. Therefore, it is 

noted that near optimal results are expected by fixing a 

normalized fuel flow input profile which can be stretched or 

contracted to just meet the desired operability constraint. This 

approach would avoid the need to perform additional 

optimizations. 

 The RL algorithm was applied assuming the digital twin 

is an exact match to the physical system. Figure 15 shows the 

possible acceleration schedules as the controller attempts to 

adjust from the original conservative schedule to a schedule 

that minimizes response time for a new engine. Figure 16a 

shows the progression of the acceleration schedule, and the 

response time after each transient. Figure 16b shows the 

running lines for the first, last, and most severe transients 

during the training period. Since the implementation of the 

schedule does not perfectly match the optimal results used to 

derive it, the operability limit is hit prior to reaching the most 

aggressive schedule (schedule 10) and instead settles on 

schedule 7, which just meets the operability limit. The thrust 

response time was reduced from 3.82s to 3.37s, an 11.8% 

reduction.  

 Next, the health state of the engine was set to a mid-life 

state to simulate aging of the engine without updating the 

optimal schedule solution. This scenario illustrates how the 

RL algorithm will adapt the schedule to assure adequate 

operability margin. This scenario could also be viewed as 

representing a mismatch in the actual system and the digital 

twin, for which the digital twin is optimistic about the engine’s 

health state. The results are shown in Fig. 17. The RL agent 

shifted from using schedule 7 to schedule 6 to meet the 

operability constraint while increasing the thrust response 

 

Figure 14. Normalized fuel flow command 

profiles from the optimizations 

 

 

Figure 15. Acceleration schedule options for 

the RL agent 

 

 

Figure 16. Training of the RL agent from an initialized conservative acceleration schedule to a more 

aggressive schedule that minimizes response time. (a) shows the schedule selection for each sequential 

transient and (b) shows the transient running lines 
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time from 3.68 s to 3.76 s. These results demonstrate the 

ability of the RL algorithm to learn that the existing 

schedule is too aggressive and needs to be shifted 

toward the more conservative original schedule.  

 The agent can learn and shift the schedule 

indefinitely as the engine ages, but some additional 

benefit could be possible if the “optimal” schedule were 

updated, and the schedule options were refined. To 

demonstrate this, the engine health state was changed to 

3Q and the option of acceleration schedules was refined 

to exist between the optimal 3Q schedule and the 

conservative EOL schedule. The Q values were reset, 

and the schedule was reinitialized on the conservative 

side of the prior used schedule. The RL agent was 

observed to shift toward the optimal schedule and settle 

around the schedule that just meets the imposed 

operability limit. For comparison, another set of 

simulations were conducted to observe results that 

would occur without making these updates. This 

resulted in shifting from the original schedule 6 to the 

original schedule 5. It was observed that refinement in the schedule options resulted in a thrust response time reduction 

of only 0.02 s, which suggests that performing optimizations and deriving new optimal schedules over the lifespan of 

the engine is unnecessary.  

 The results demonstrate the ability of the RL algorithm to minimize acceleration time while respecting operability 

limits. The RL was also able to slow the response down and prevent the schedule from becoming more aggressive 

when operability measures indicated an undesirable decrease in operability margin due to engine degradation. 

C. Discussion 

Results have suggested that a near optimal normalized fuel flow input profile can be used throughout the engine 

lifespan. Thus, the need to use the genetic algorithm or some other optimization scheme throughout the lifespan of the 

engine can be reduced or eliminated. However, if the genetic algorithm were employed as the engine ages, optimizer 

settings could be modified to strike a good balance between exploration and exploitation. For instance, at the beginning 

of the life of the engine when the controller is representative of the fleet of engines rather than the specific engine, or 

after maintenance and sensed anomalies, exploration is more favorable. Exploitation is more favorable as the engine 

slowly degrades.  

A benefit to using the RU limit approach over the Ṅ limiter approach is that it does not require the design of a 

closed loop controller. However, unlike an Ṅ limit schedule, an RU limit schedule will not produce a consistent 

response time as the engine ages. One benefit of updating the RU limit schedule is that it could be used to maintain 

similar thrust response times for engines on the same aircraft, thus minimizing undesirable asymmetric thrust. This 

could be done by modifying the acceleration schedule of the faster engine(s) to match the responsiveness of the slowest 

engine. The acceleration schedule of the slowest engine could be optimized for responsiveness while applying 

operability constraints, while the operability margin of the faster engine(s) is optimized using thrust responsiveness 

as a constraint.  

To implement the RL method presented here in any practical sense, additional factors will need to be considered. 

Among them will be strategies for considering variations in operation and secondary effects such as power extraction 

and heat soak. If the RL were to remain active while the engine is operating in the field, the agent would need to be 

able to recognize when a transient is occurring and how to characterize it, using sensor feedback to guide the learning 

process. A variety of factors could make each transient unique including the manner in which the throttle position is 

moved, the flight condition, the thermal state of the engine components, etc. These factors could become part of the 

state and accounted for in the quality function, thus allowing the schedule to adapt to these conditions. An alternative 

could be to build some conservativeness into the operability limit to ensure worst case transient scenarios are 

accommodated. Another approach could be to put the engine through a “training” period at various intervals within 

its lifespan so that the agent can adjust the schedule under controlled conditions.  

 

Figure 17. Actions of the RL agent when the engine 

help state is updated to a MID engine 
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VI. Summary 

To optimize engine performance, transient operability must be considered. The proper combination of 

responsiveness, operability, and efficiency should be sought. To do this, optimization techniques can be applied. A 

genetic algorithm has been employed to determine the optimal fuel flow input for extreme transient scenarios, and the 

data has been used to create transient limit schedules. Results have demonstrated significant improvements in 

operability margin over the original transient limit schedules. An example of this includes a 31% reduction in the 

amount of operability stack utilized during a snap acceleration at sea level static conditions. Studies have 

demonstrated, with some success, how the form of the fuel flow input profile can be generalized across various flight 

conditions to achieve near optimal results. Furthermore, it has been demonstrated how other objectives, such as the 

reduction of peak turbine inlet temperature, can be considered in the optimization to strike a balance between 

competing goals. Finally, a method has been proposed and demonstrated for updating engine acceleration limit logic 

to minimize response time under operability constraints. The method employs reinforcement learning techniques that 

leverage a digital twin to modify the acceleration schedule while protecting the engine by limiting the changes in the 

schedule and utilizing sensor feedback to assess the quality of each schedule modification and each action taken to 

adjust the schedule. A simple application illustrated the ability of the approach to (1) efficiently find the optimal 

acceleration schedule that minimized thrust response time while respecting operability constraints, and (2) to adapt to 

changes in engine operation due to component aging. The example illustrated a reduction in thrust response time of 

~11.8% compared to a schedule designed conservatively for an end-of-life engine. Results from the example also 

suggest that it is unnecessary to update the optimal schedule as the engine ages, thus reducing the workload for 

implementation. Topics for future investigation could include attempts to address the various challenges identified for 

practical implementation of the reinforced learning approach for updating transient limit schedules. In addition, the 

approach could be modified to achieve goals more aligned with commercial engine applications. 
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