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Abstract
NASA tracks over 16,000 technology projects across the
Agency, from propulsion systems to software. These projects
are classified according to NASA’s Technology Taxonomy to
facilitate data search, extraction, and application. In 2020, the
Taxonomy was revised to better align strategic goals with
project technical disciplines. Manual re-classification of cur-
rent and historical projects was estimated to take thousands
of technologist labor hours.
Instead of manual classification, our team developed T-

Rex, a recommender engine, trained on just a small set of
manually classified projects. T-Rex was used to classify the
projects and then integrate the data into TechPort to recom-
mend classes to users when updating projects. The system
andmethodology are used in other NASA projects, and T-Rex
has achieved 95% accepted accuracy overall.

CCS Concepts: • Information systems→Recommender
systems.

Keywords: Space Technology, Portfolio Management, Tech-
Port, Taxonomy, Machine-Learning, Classification, Ontology,
Recommender Systems, NASA

1 Introduction and Overview
In recent years there has been an astronomical increase in the
amount of worldwide data. Some studies estimate worldwide
data will increase to 175 ZB in 2025 [20], doubling from 2022
levels [22]. With rapid data growth, there is an increased
need for ways to determine what data exists, where to find
data, how to access the data, and how to determine the value
of the data to an organization.

To address these data challenges, many organizations de-
termine common features in collected data and use those
features as properties in creating a classification system.
Mankind has created classification systems across all do-
mains: biology, with the universal biological Taxonomy in-
troduced by Carl Linnaeus in the 18th century [5], books
with the Dewey Decimal Classification System [25], tech-
nology in the US patent classification system [4, 13], movies
through the Internet Movie Database (IMDB) [16], websites
on the Internet in the early Yahoo! website ontology [11],
Directory Mozilla (DMOZ), and the Open Directory Project
[18], and in specialized technical systems. For instance, the

ACM uses the Computing Classification System as a hierar-
chical ontolgy for classifications in the field of computing
[21] which is used to classify this research.

Another example of a technology classification system is
the NASA Technology Taxonomy [19]. The taxonomy is
comprised of three hierarchical levels with 17 distinct Level
1 Taxonomy Areas encompassing a broad range of tech-
nologies from propulsion to information processing. The
sub-areas in Level 2 are further refined into 387 Level 3 de-
scriptions encompassing specific types of technologies, as
shown in Figure 1. NASA uses this new system to align long-
term strategic goals, such as goals in aerospace and environ-
ment, with technology projects and investments. Classifying
technologies according to a common taxonomy provides a
means to efficiently find technologies of interest and corre-
late investments to avoid duplication of effort and improve
existing technology. As new Agency goals and objectives
emerge, the Taxonomy is periodically revised, with the most
recent edition published in 2020.
NASA currently tracks over 16,000 applied research and

experimental development projects developed in the last
decade, collecting project data and metadata in NASA’s of-
ficial technology portfolio system known as TechPort [3].
TechPort was tasked with applying the new NASA Technol-
ogy Taxonomy to project records, requesting that managers

Figure 1. The 2020 NASA Technology Taxonomy
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classify their projects accurately and quickly. Requiring over
10,000 project managers to familiarize themselves with 387
classification possibilities would require extensive training
and verification, estimated in thousands of hours. Instead of
a manual approach, the team recommended the development
of a technology that would automatically classify the 16,000
existing projects, and provide a future-proof solution that
recommends taxonomy classifications to managers when
new records are added to TechPort.
However, development of the classification and recom-

mendation system for the new taxonomy was non-trivial.
The prior version of the Technology Taxonomy used to clas-
sify records in older NASA systems could not be used reliably.
Many projects were missing information and lacked classi-
fication altogether. NASA awards short-term projects that
span industry, academia, and other agencies, meaning some
managers no longer had access or a means to update project
data. Even when a classification was available in project
metadata, in several cases it was recorded incorrectly or not
at a sufficient level of detail.
Additionally, many technology classifications at Level 3

can lead to seemingly ambiguous choices for even a skilled
technologist. For instance, class TX4.5.7 is titled "Modeling,
Simulation, Analysis, and Test of Rendezvous, Proximity Op-
erations, and Capture" and TX17.3.2 is "Dynamics Analysis,
Modeling, and Simulation Tools." Both areas discuss model-
ing and simulation and responses to forces by aerospace vehi-
cles. However, the first class is in a robotic systems sub-tree,
whereas the later is under a generic guidance, navigation,
and control tree.

Finally, there were limited data available for training and
testing. Only 1,200 projects were classified into the new tax-
onomy by hand by a group of data experts. These projects
mapped to only about 70% of the 387 Level 3 taxonomy
classes, leaving more than 100 classes with only a small de-
scription of text as one data point. Some categories had 30
projects mapped while others had none. With empty and im-
balanced class test and training data, developing any accurate
model is difficult. Many existing classification approaches
were investigated that resulted in < 50% accuracy.

To solve these challenges, we designed, built, and deployed
a system called T-Rex, or the NASA Technology Taxonomy
Recommender System. The contributions of T-Rex is notable
across multiple areas from model selection to optimization
and deployment. Our recommender is integrated into Tech-
Port in a novel, effective manner; and other groups at NASA
are now using T-Rex to programmatically classify technol-
ogy through an exposed API. The system has since been used
in other projects to train and build recommenders, such as
the NASA Technology Target Destination system. We found
our model achieves over 96% accuracy in k-fold training, and
over 97.5% accuracy in measured user updates.

2 T-Rex
T-Rex is an amalgamation of classifier models, custom mod-
els, and voting optimization and pruning methods for effi-
cient, accurate, deployed models. The system automatically
optimizes, selects, and combines multiple individual models.
It uses prior classification information only when accurate
to suggest a subset of classes as recommendations for other
models. Our training algorithm optimizes weighting from
individual models from a matrix of individual model outputs
to reduce training time.

The T-Rex Machine Learning model is shown in Figure 2.
Project metadata for the model includes five textual fields
including technology title, description, benefits, and a find-
ings closeout summary. A potential prior technology area
reference which may be absent or incorrect is also included
in the metadata.

The textual fields are pruned for stop words and punctua-
tion and word roots are utilized (not shown for space). Once
the word roots are determined, metadata on the words is
pulled from our model. This word metadata includes word
frequencies in each class, overall word frequencies, and word
weights for each class. Word weights are determined in our
training step, described below, using Neighborhood Compo-
nent Analysis.

Thewords and their correspondingmetadata are sent to an
array of optimized sub-models. As shown in the figure, these
models include a K-Nearest Neighbors (KNN), Support Vector
Machine (SVM), Hierarchical Decision Tree (Tree), Bag of
Words (Bag), and Naïve Bayes model. Tree and Bag did not
contribute to the overall accuracy and were removed during
optimization. The Map classifier takes a potentially empty
prior technology area classification and, if present, produces
a set of potential new taxonomy area classifications equally
weighted. This map of taxonomy classes for the project may
be large depending on the prior areas. For instance one area
might have up to 20 similar taxonomy classes, yielding a
map vector containing 367 zeros and twenty 0.05 entries.

Each sub-model produces a vector of probabilities, one for
each of the 387 output classes. We then multiply the weight
vector with a combined matrix of each sub-model output,
yielding a vector of 387 probabilities. The weight of the Map

Figure 2. The T-Rex Machine Learning Model Architecture
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Figure 3. The T-Rex Training and Optimization Process
is low enough such that incorrect priors are overridden by
high outputs on other closely matched sub-models. Any sub-
model that is weak in one set of class predictions may be
overcome by another sub-model.
The training process is shown in Figure 3. We only re-

ceived approximately 1,200 manually classified projects; that
effort alone took several weeks. Some classes did not have
any project data, therefore we also utilized the taxonomy
class title, description, and taxonomy node parents. We then
prepared the data for training by removing punctuation,
common or stop words such as a, at, the, etc., and split the
projects into train and test data sets. Due to some classes
only having one data point, e.g. the class description, we
preformed 10-fold cross-validation training, and only pulled
final test cases from classes with multiple projects.
In the Create Models step, we produce an array of sub-

models. In the Param Optimization step, each model was
individually optimized with its features, such as number of
neighbors K in KNN. Once the NCA model was optimized,
it produced word weights and feature sets which were used
in our training steps.
Once individual models were optimized, we combined

the sub-models in the final step. For each sub-model M, we
recorded the class probability output C for each project data
point N, producing an M x C x N matrix U. We then found
the weight vector W of size M, such that W times U, had the
closest match to the desired output C x N. To find W, we
searched the sub-space of combinations ofWwhose elements
summed to 1 for weighted probabilities at 0.01 granularity.

2.1 System Architecture and User Interface
The system architecture is shown in Figure 4. T-Rex was
deployed in Amazon SageMaker with staging and produc-
tion models. We create a REST-based API that is used by
the TechPort client application and other NASA users. The
client API can be configured to contact the T-Rex instance
via the Amazon API Gateway or through the TechPort ap-
plication server. We found that either method produces fast
recommendations for users.

The User Interface for recommendations is shown in Fig-
ure 5. When a user creates a project record in TechPort, or
edits the classification of an existing record, an asynchro-
nous call is made to T-Rex, returning an array of the top five
recommendations. Based on experimental thresholds and the
probabilities of the recommended classes, recommendations
are shown as High, Medium, or Low, or removed.

Figure 4. T-Rex System Architecture

Figure 5. Recommendations Highlighted with H, M, or L

3 Evaluation
Individual model performance was increased with the intro-
duction of the NCA word weighting, but was not sufficient.
Subsets of the Confusion Matrices are shown in Figure 6
for KNN and Figure 7 for Naïve Bayes. When these mod-
els are combined with the optimized weights, the best from
KNN can outweigh NB and vice-versa. Figure 8 shows the
accuracy versus the combined model with relative model
contributions in weights. With just one model, NB performs
best with only 47%. However, when combining two models,
Map which produces an even distribution favoring no class,
is weighted at 0.96 and is boosted by SVM at 0.04 to select
amongst the mapped classes. As more models are utilized,
a more even distribution of weights is observed; however,
there is no accuracy benefit after using 4 sub-models. The
overall experimental accuracy is measured over 96%.

For deployedmodel accuracy, wemeasure changed project
classifications on the deployed system. On May 22, 2020,
the remaining 14,800 non-manually classified projects were
analyzed by T-Rex. The top recommendation for each of
these projects was then uploaded into the TechPort database
as the primary class for each project. Almost 2.5 years later,
in October 2022, only 810 projects had been changed to a
different taxonomy class. It is important to note that NASA
policy requires project data in TechPort to be validated and
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Figure 6. Subset of Confusion Matrix for KNN Sub-Model

Figure 7. Subset of Confusion Matrix for Naïve Bayes

updated bi-annually, and the automatic classification by T-
Rex was communicated and reviewed by managers. The
small number of class changes for projects correlates to an
observed 94.5% acceptance accuracy.

Threshold selection for High, Medium, and Low is shown
in Figure 9. The cumulative distributions for each of primary,
secondary, tertiary, and quaternary selections were plotted.
To recommend approximately 4 classes with high probability,
maximum non-interfering thresholds were determined to
be 0.44, 0.24, and 0.5. The application uses the probabilities
returned from the API for highlighting in the UI.

4 Related Work
A survey of classification systems across various domains
was performed in [23]. For websites, a multi-agent recom-
mender system was developed [15, 17], and a categorization
engine with boosting was developed with 76% accuracy [10].
In video content, the Netflix recommender system is de-
scribed [6], IMDB recommendation using graphs [7], and

Figure 8. Combined Model Accuracy with Weights

Figure 9. Cumulative Dist of Recommendation Probabilities

custom models using a variety of methods [2] has been
explored. Deep learning has been used in patent classifica-
tion [12, 14], other technical document classification [9],
music features [8], and other recommender systems [28].
Patents have also been classified using a combination of SVM
and LDA [27] and NLP with NN [24]. Other recommender
systems have used Reinforcement Learning [1, 26, 29].

5 Summary
We presented and described T-Rex, the NASA Technology
Taxonomy Recommender System. The system is comprised
of a novel model selection, mapping, and optimization pro-
cess, maximizing performance and pruning unused models.
The system has been deployed for over two years and

recommended almost 40,000 classifications. It is used by mul-
tiple groups, and similar methods have been used in another
recommender system for technology target destinations. T-
Rex achieves high accuracy of almost 95% on both small sets
of training data and observations in practice.



T-Rex

Acknowledgements
We would like to thank our sponsors, data providers, and
many technical assistants. Our sponsors at NASA include T-
Rex’s original sponsor, Patrick Murphy, and current sponsor
Alesyn Lowry. Training data were provided and analyzed
by Carie Mullins and Madeline Shaughnessy. Extensive test-
ing and evaluation was performed by Nathaniel Booth and
Stephanie Booth. User interface design was developed by
Paul Herzing, complex database queries and data gather-
ing by Christine Lehman, preliminary investigations Hristo
Iankov, and integration by Dillon Gresham.

References
[1] M. Mehdi Afsar, Trafford Crump, and Behrouz Far. 2022. Reinforce-

ment Learning Based Recommender Systems: A Survey. https:
//doi.org/10.1145/3543846 Just Accepted.

[2] Warda Ruheen Bristi, Zakia Zaman, and Nishat Sultana. 2019. Pre-
dicting IMDb Rating of Movies by Machine Learning Techniques. ,
5 pages. https://doi.org/10.1109/ICCCNT45670.2019.8944604

[3] NASA Space Technology Mission Directorate. 2022. TechPort. https:
//techport.nasa.gov

[4] Louis Falasco. 2002. United States patent classification: system or-
ganization. World Patent Information 24, 2 (2002), 111–117. https:
//doi.org/10.1016/S0172-2190(02)00007-8

[5] H Charles J Godfray. 2007. Linnaeus in the information age. Nature
446, 7133 (2007), 259–260.

[6] Carlos A. Gomez-Uribe andNeil Hunt. 2016. The Netflix Recommender
System: Algorithms, Business Value, and Innovation. ACM Trans.
Manage. Inf. Syst. 6, 4, Article 13 (dec 2016), 19 pages. https://doi.org/
10.1145/2843948

[7] Jelena Grujić. 2008. Movies recommendation networks as bipartite
graphs. , 576–583 pages.

[8] Aniket Jha, Sagar Gupta, Priyanshu Dubey, and Aditi Chhabria. 2022.
Music Feature Extraction And Recommendation Using CNN Algo-
rithm. , 03026 pages.

[9] Shuo Jiang, Jie Hu, Christopher L. Magee, and Jianxi Luo. 2022. Deep
Learning for Technical Document Classification. , 17 pages. https:
//doi.org/10.1109/TEM.2022.3152216

[10] Aldin Kovačević, Zerina Mašetić, and Dino Kečo. 2021. Naive Website
Categorization Based on Text Coverage. Springer International Publish-
ing, Cham, 435–448. https://doi.org/10.1007/978-3-030-54765-3{_}30

[11] Yannis Labrou and Tim Finin. 1999. Yahoo! As an Ontology: Using
Yahoo! Categories to Describe Documents. In Proceedings of the Eighth
International Conference on Information and Knowledge Management
(Kansas City, Missouri, USA) (CIKM ’99). Association for Computing
Machinery, New York, NY, USA, 180–187. https://doi.org/10.1145/
319950.319976

[12] Jieh-Sheng Lee and Jieh Hsiang. 2019. Patentbert: Patent classification
with fine-tuning a pre-trained bert model.

[13] Loet Leydesdorff. 2008. Patent classifications as indicators of intel-
lectual organization. Journal of the American Society for Information
Science and Technology 59, 10 (2008), 1582–1597.

[14] Shaobo Li, Jie Hu, Yuxin Cui, and Jianjun Hu. 2018. DeepPatent:
patent classification with convolutional neural networks and word

embedding. Scientometrics 117, 2 (2018), 721–744. https://doi.org/10.
1007/s11192-018-2905-5

[15] A. Jorge Morais, Eugénio Oliveira, and Alípio Mário Jorge. 2012. A
Multi-Agent Recommender System. In Distributed Computing and
Artificial Intelligence, Sigeru Omatu, Juan F. De Paz Santana, Sara Ro-
dríguez González, Jose M. Molina, Ana M. Bernardos, and Juan M. Cor-
chado Rodríguez (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
281–288.

[16] Col Needham. 1998. Internet movie database.
[17] Joaquim Neto and A. Jorge Morais. 2014. Multi-Agent Web Recom-

mendations. In Distributed Computing and Artificial Intelligence, 11th
International Conference, Sigeru Omatu, Hugues Bersini, Juan M. Cor-
chado, Sara Rodríguez, Paweł Pawlewski, and Edgardo Bucciarelli
(Eds.). Springer International Publishing, Cham, 235–242.

[18] ODP. Last accessed on 2022-10-15. Web Directory of High-Quality
Resources: The Open Directory Project. https://odp.org

[19] Office of the Chief Technologist. 2020. NASA Technology Taxonomy.
https://www.nasa.gov/offices/oct/taxonomy/index.html

[20] David Reinsel, John F. Gantz, and John Rydning. 2020. The Digitiza-
tion of the World: From Edge to Core. Technical Report. Whitepaper,
International Data Corporation (IDC).

[21] Bernard Rous. 2012. Major update to ACM’s computing classification
system. Commun. ACM 55, 11 (2012), 12–12.

[22] John Rydning. 2022. Worldwide IDC Global DataSphere Forecast,
2022–2026: Enterprise Organizations Driving Most of the Data Growth.
Technical Report. Whitepaper, International Data Corporation (IDC).

[23] Carlos N. Silla and Alex A. Freitas. 2011. A survey of hierarchical
classification across different application domains. Data Mining and
Knowledge Discovery 22, 1 (2011), 31–72. https://doi.org/10.1007/
s10618-010-0175-9

[24] Amy Trappey, Charles V Trappey, and Alex Hsieh. 2021. An intelli-
gent patent recommender adopting machine learning approach for
natural language processing: A case study for smart machinery tech-
nology mining. Technological Forecasting and Social Change 164 (2021),
120511.

[25] Jun Wang. 2009. An extensive study on automated Dewey Decimal
Classification. Journal of the American Society for Information Science
and Technology 60, 11 (2009), 2269–2286.

[26] Xin Xin, Alexandros Karatzoglou, Ioannis Arapakis, and Joemon M.
Jose. 2020. Self-Supervised Reinforcement Learning for Recommender
Systems. In Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval (Virtual Event,
China) (SIGIR ’20). Association for Computing Machinery, New York,
NY, USA, 931–940. https://doi.org/10.1145/3397271.3401147

[27] Junghwan Yun and Youngjung Geum. 2020. Automated classification
of patents: A topic modeling approach. Computers & Industrial Engi-
neering 147 (2020), 106636. https://doi.org/10.1016/j.cie.2020.106636

[28] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep Learning
Based Recommender System: A Survey and New Perspectives. ACM
Comput. Surv. 52, 1, Article 5 (feb 2019), 38 pages. https://doi.org/10.
1145/3285029

[29] Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, and
Dawei Yin. 2019. Reinforcement Learning to Optimize Long-Term
User Engagement in Recommender Systems. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (Anchorage, AK, USA) (KDD ’19). Association for Computing
Machinery, New York, NY, USA, 2810–2818. https://doi.org/10.1145/
3292500.3330668

https://doi.org/10.1145/3543846
https://doi.org/10.1145/3543846
https://doi.org/10.1109/ICCCNT45670.2019.8944604
https://techport.nasa.gov
https://techport.nasa.gov
https://doi.org/10.1016/S0172-2190(02)00007-8
https://doi.org/10.1016/S0172-2190(02)00007-8
https://doi.org/10.1145/2843948
https://doi.org/10.1145/2843948
https://doi.org/10.1109/TEM.2022.3152216
https://doi.org/10.1109/TEM.2022.3152216
https://doi.org/10.1007/978-3-030-54765-3{_}30
https://doi.org/10.1145/319950.319976
https://doi.org/10.1145/319950.319976
https://doi.org/10.1007/s11192-018-2905-5
https://doi.org/10.1007/s11192-018-2905-5
https://odp.org
https://www.nasa.gov/offices/oct/taxonomy/index.html
https://doi.org/10.1007/s10618-010-0175-9
https://doi.org/10.1007/s10618-010-0175-9
https://doi.org/10.1145/3397271.3401147
https://doi.org/10.1016/j.cie.2020.106636
https://doi.org/10.1145/3285029
https://doi.org/10.1145/3285029
https://doi.org/10.1145/3292500.3330668
https://doi.org/10.1145/3292500.3330668

	Abstract
	1 Introduction and Overview
	2 T-Rex
	2.1 System Architecture and User Interface

	3 Evaluation
	4 Related Work
	5 Summary
	Acknowledgements
	References

