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Stoquasticity

Stoquastic Hamiltonians

Stoquastic Hamiltonian

A Hamiltonian whose off-diagonal entries are all real and non-positive.

This is a basis dependent property

In mathematics these are known as
Z-matrices or negative Metzler
matrices

By the Perron-Frobenius theorem, the
ground state is entirely real
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Stoquasticity

The Sign Problem (Using Path-Integral Quantum Monte Carlo as an example)

Consider a Partition Function

Z =
∑
x

〈x| e−β(Ĥd+Ĥo) |x〉

Use a Suzuki-Trotter expansion in diagonal basis

Z = lim
T→∞

∑
{xi}

T∏
i=1

〈xi+1| e
−β
T (Ĥo+Ĥd) |xi〉

We want to interpret these as classical Boltzmann probabilities

p({xi}) =
1
Z

T∏
i=1

e−
β
THd(xi) 〈xi+1| e

−β
T Ĥo |xi〉

For stoquastic Hamiltonians, the p({xi}) are positive
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Stoquasticity

Implications of the Sign Problem

Simulating sign-problem
Hamiltonians requires
exponential slow-downs

Non-stoquastic , Sign Problem

Mostly12, simulating stoquastic Hamiltonians is classically
efficient

Stoquasticity is tied into computational complexity

1 M. B. Hastings, The power of adiabatic quantum computation with no sign problem,
Quantum 5, 597 (2021).

2 J. Bringewatt and M. Jarret, Effective gaps are not effective: Quasipolynomial classical
simulation of obstructed stoquastic Hamiltonians, Phys. Rev. Lett. 125, 170504 (2020).
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Stoquasticity

Curing Non-Stoquasticity

Curing

Finding a (local) basis in which the sign problem does not exist.

Such a basis always exists (the
eigenbasis)

A local stoquastic basis might not exist

Curing the sign problem is NP-Hard

Mitigation and Avoidance algorithms
exist

Lucas T. Brady (KBR at NASA) Simultaneous Stoquasticity June 19, 2023 5 / 32



Stoquasticity

Quantum Annealing with Stoquasticity

Quantum Annealing

Adiabatic Quantum Annealing with a local stoquastic basis is no more
powerful than classical computing

There are some caveats here
1 Adiabatic - Diabatic annealing can get around this

2 Local - Hastings has one example with a non-local basis

3 Basis - Annealing takes place in the same basis throughout

The Quantum Advantage rests either with locality or the basis
interaction between the annealing Hamiltonians
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Core Question

Simultaneous Stoquasticity

Assume I have a set of Hamiltonians

S = {H1,H2, . . .Hm}

m – Number of Hamiltonians in set
d – Dimension of Hamiltonians

Does there exist a basis in which all Hj ∈ S
are stoquastic

UHjU
† = H∗j


d∗1

. . .
−

−
. . .

d∗N
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Core Question

Analogy to Simultaneous Diagonalizability

Our problem is analogous to simultaneous Diagonalizability[
Hi,Hj

]
= 0 ∀ Hi,Hj ∈ S

Shared Eigenbasis

No quantum advantage

We want a condition like this

Anything we do can apply to this
similarity setting as well
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Core Question

Why is This Useful

Quantum Annealing

Can the entire anneal be stoquastic

Quantum annealing with stoquastic
Hamiltonians seemingly lacks
advantage*

This can be useful in Monte Carlo
simulation

The question came up in some optimal
control work
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Quantum Complexity

Stoquasticity plays into several complexity classes
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Core Question

What are the Limitations

Locality

Our work currently doesn’t consider
locality

Locality could be spatial or connectivity

Monte Carlo and complexity results
require locality

Locality is the next extension

Feasibility Geometricity
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Core Question

Results

S = {H1, · · · ,Hm} & S ′ = {H ′1, · · · ,H ′m}

Theorem (Existence)

The ordered sets S and S ′ are simultaneously unitarily similar iff
Tr[w(S)] = Tr[w(S ′)] for all words w in S,S ′.

Theorem (Quick No-Go)

Every eigenvalue λ , 0 of i[Hi,Hj] there is another eigenvalue −λ of
i[Hi,Hj] (paired eigenvalue condition) for all Hi , Hj ∈ S.

Theorem (Frequency)

For almost every S withm > 2, d > 3, S is not simultaneously
stoquasticizable.
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Core Question

Table of Contents
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Lie Algebras

Lie Algebras
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Lie Algebras

Structure of su(d)

Generalized Gell-Mann Basis

λ̂
(x)
jk = |j〉 〈k|+ |k〉 〈j| , (1 6 j < k 6 d)

λ̂
(y)
jk = −i |j〉 〈k|+ i |k〉 〈j| , (1 6 j < k 6 d)

λ̂
(diag)
j =

√
2

j(j+ 1)
diag(1, · · · , 1︸     ︷︷     ︸

j

,−j, 0, · · · , 0)

Generalized Bloch Vectors

H = ~b ·~λ

Stoquastic:

{b(y) = 0,b(x) 6 0}
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Lie Algebras

Simultaneous Stoquasticity in su(2)

SU(2) is a double-cover of SO(3)

Stoquasticity is the negative half-xz-plane

It is always possible to rotate two vectors into a half-plane

Simultaneous stoquasticity is always possible withm = 2
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Lie Algebras

The Bloch Sphere is Misleading

SU(d) does not have nice relationships with SO

Normal rotations
do not apply

Structure constants
mix weirdly

λxj λyj λzj
λxj λyj λzk
λxj λxk λyi
λyj λyk λyi

Lucas T. Brady (KBR at NASA) Simultaneous Stoquasticity June 19, 2023 17 / 32



Complete Conditions

Complete Conditions

Lucas T. Brady (KBR at NASA) Simultaneous Stoquasticity June 19, 2023 18 / 32



Complete Conditions

Words and Invariants

A word is some product of operators

w = B̂3 Ĉ B̂ Ĉ2 ` = 7

Words can be used to make up
commutators

Tr (w) is an invariant under unitary
rotations

Provably the traces of all words
describe every invariant property of a
matrix
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Complete Conditions

Unitary Similarity

S = {H1, · · · ,Hm} & S ′ = {H ′1, · · · ,H ′m}

Theorem (Existence)

The ordered sets S and S ′ are simultaneously unitarily similar iff
Tr[w(S)] = Tr[w(S ′)] for all words w in S,S ′.

This is the known foundation of unitary similarity

We only need to check finitely many words

`max = cd

√
2(cd)2

cd− 1
+

1
4
+
cd

2
− 2 ∈ O

(
(
√
md)3/2

)
w/ (c2 − 3c+ 2 > 2m)
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Complete Conditions

System of Equations

We get a system of conditions for simultaneous stoquasticity:

Tr[w(S)] = Tr[w(S ′)], ∀ |w| 6 `max

Re(H ′jk) 6 0, ∀j , k,H ′ ∈ S ′

Im(H ′jk) = 0, ∀j , k,H ′ ∈ S ′

This has O
(
mO((

√
md)3/2)

)
equality constraints

andmd(d− 1)/2 inequality constraints

Many of these are redundant

Determining if a solution exists is NP-Hard
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Simplified Condition

Dynamical Lie Algebra (DLA)

Lie algebra generated from your Hamiltonians via nested commutation

Ĥx Ĥzz

Ĥyz

−1
2(Ĥzz − Ĥyy)

−Ĥyz

Ĥx

−J2Ĥyz

Ĥzz

Ĥx

J2

2 Ĥx +
J
2Ĥyy

−J2Ĥyz

Ĥx

−J2Ĥyz

Ĥzz

Ĥzz

For n = 3 Transverse Field Ising model

The relative tree structure is invariant

Incredibly useful for control theory
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Simplified Condition

One Step Up

Go one step up the DLA [
Ĥ0, Ĥ1

]
= 2iĤ2

1 The eigenvalues are all invariant

2 If Ĥ0 and Ĥ1 can be simultaneously
stoquastic, Ĥ2 is composed only of λ(y) in
that basis

3 Then Ĥ2 is skew-symmetric and must have
paired eigenvalues

λ1 −a

λ2 −b

λ3 −c

λ4 0
λ5 c

λ6 b

λ7 a
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Simplified Condition

Limitations

This is a necessary but not sufficient
condition

This condition can be met by Hamiltonians
that are not Simultaneously stoquastic*

We are not looking at enough invariants

This would be equivalent to the words if we
looked at the entire DLA

Related to the Cartan decomposition of su(p)
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Frequency of Satisfying Conditions

Structure of su(d)

Generalized Gell-Mann Basis

λ̂
(x)
jk = |j〉 〈k|+ |k〉 〈j| , (1 6 j < k 6 d)

λ̂
(y)
jk = −i |j〉 〈k|+ i |k〉 〈j| , (1 6 j < k 6 d)

λ̂
(diag)
j =

√
2

j(j+ 1)
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j
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Frequency of Satisfying Conditions

Word Invariants with Bloch Vectors

We can express the trace invariants in terms of Bloch vectors

Tr[w(S)] = Tr

 |w|∏
j=1

d2−1∑
µj=1

b
(wj)
µj λ̂µj


This allows us to look at all possible invariants of a system in
terms of combinations of Bloch vectors.

All possible Bloch vectors generated by a set of Hamiltonians’
invariants is denoted by B

We can show that a necessary condition for simultaneous
stoquasticity is that dim(span(B)) 6 (d2 + d− 1)/2
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Frequency of Satisfying Conditions

Dimension of Full Space

We can show that for almost all pairs of Hamiltonians

dim(span(B)) = (d2 + d− 1)

So almost all pairs of Hamiltonians have spans larger than can fit into
simultaneous stoquasticizability

Cool ideas, but the proof is too
long

Equivalent to saying that
almost all pairs of
Hamiltonians have a DLA
= su(d) - full controllability

A similar proof can be made
for simultaneous
diagonalizability
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Conclusion

Summary

Simultaneous Stoquasticity is rare

Unpaired eigenvalues of
[
B̂, Ĉ

]
imply

no stoquasticity

Stoquasticity is basis dependent but
simultaneous stoquasticizability is
basis independent

Bloch vectors are a powerful
geometric tool
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