Simultaneous Stoquasticity

Jacob Bringewatt \& Lucas T. Brady

KBR, Inc. at NASA Quantum Artificial Intelligence Lab (QuAIL)

June 19, 2023
Presented at AQC 2023

Based on arXiv:2202.08863
Phys. Rev. A 105, 062601

Stoquastic Hamiltonians

Stoquastic Hamiltonian

A Hamiltonian whose off-diagonal entries are all real and non-positive.

- This is a basis dependent property
- In mathematics these are known as Z-matrices or negative Metzler matrices

$$
\left(\begin{array}{cccc}
\mathrm{d}_{1} & & & \\
& \ddots & & \\
& & \ddots & \\
& & & \mathrm{~d}_{\mathrm{N}}
\end{array}\right)
$$

- By the Perron-Frobenius theorem, the ground state is entirely real

The Sign Problem (Using Path-Integral Quantum Monte Carlo as an example)

Consider a Partition Function

$$
z=\sum_{x}\langle x| e^{-\beta\left(\hat{H}_{d}+\hat{H}_{o}\right)}|x\rangle
$$

Use a Suzuki-Trotter expansion in diagonal basis

$$
z=\lim _{T \rightarrow \infty} \sum_{\left\{x_{i}\right\}} \prod_{i=1}^{T}\left\langle x_{i+1}\right| e^{-\frac{\beta}{T}\left(\hat{H}_{o}+\hat{H}_{d}\right)}\left|x_{i}\right\rangle
$$

The Sign Problem (Using Path-Integral Quantum Monte Carlo as an example)

Consider a Partition Function

$$
z=\sum_{x}\langle x| e^{-\beta\left(\hat{H}_{d}+\hat{H}_{o}\right)}|x\rangle
$$

Use a Suzuki-Trotter expansion in diagonal basis

$$
z=\lim _{T \rightarrow \infty} \sum_{\left\{x_{i}\right\}} \prod_{i=1}^{T}\left\langle x_{i+1}\right| e^{-\frac{\beta}{T} \hat{H}_{o}} e^{-\frac{\beta}{T} \hat{H}_{d}}\left|x_{i}\right\rangle
$$

The Sign Problem (Using Path-Integral Quantum Monte Carlo as an example)

Consider a Partition Function

$$
z=\sum_{x}\langle x| e^{-\beta\left(\hat{H}_{d}+\hat{H}_{o}\right)}|x\rangle
$$

Use a Suzuki-Trotter expansion in diagonal basis

$$
z=\lim _{T \rightarrow \infty} \sum_{\left\{x_{i}\right\}} \prod_{i=1}^{T} e^{-\frac{\beta}{T} H_{d}\left(x_{i}\right)}\left\langle x_{i+1}\right| e^{-\frac{\beta}{T} \hat{H}_{o}}\left|x_{i}\right\rangle
$$

The Sign Problem (Using Path-Integral Quantum Monte Carlo as an example)

Consider a Partition Function

$$
z=\sum_{x}\langle x| e^{-\beta\left(\hat{H}_{d}+\hat{H}_{o}\right)}|x\rangle
$$

Use a Suzuki-Trotter expansion in diagonal basis

$$
z=\lim _{T \rightarrow \infty} \sum_{\left\{x_{i}\right\}} \prod_{i=1}^{T} e^{-\frac{\beta}{T} H_{d}\left(x_{i}\right)}\left\langle x_{i+1}\right| e^{-\frac{\beta}{T} \hat{H}_{o}}\left|x_{i}\right\rangle
$$

We want to interpret these as classical Boltzmann probabilities

$$
p\left(\left\{x_{i}\right\}\right)=\frac{1}{Z} \prod_{i=1}^{T} e^{-\frac{\beta}{T} H_{d}\left(x_{i}\right)}\left\langle x_{i+1}\right| e^{-\frac{\beta}{T} \hat{H}_{o}}\left|x_{i}\right\rangle
$$

For stoquastic Hamiltonians, the $p\left(\left\{x_{i}\right\}\right)$ are positive

The Sign Problem (Using Path-Integral Quantum Monte Carlo as an example)

Consider a Partition Function

$$
z=\sum_{x}\langle x| e^{-\beta\left(\hat{H}_{d}+\hat{H}_{o}\right)}|x\rangle
$$

Use a Suzuki-Trotter expansion in diagonal basis

$$
z=\lim _{T \rightarrow \infty} \sum_{\left\{x_{i}\right\}} \prod_{i=1}^{T} e^{-\frac{\beta}{T} H_{d}\left(x_{i}\right)}\left\langle x_{i+1}\right| e^{-\frac{\beta}{T} \hat{H}_{o}}\left|x_{i}\right\rangle
$$

We want to interpret these as classical Boltzmann probabilities

$$
p\left(\left\{x_{i}\right\}\right)=\frac{1}{z} \prod_{i=1}^{T} e^{-\frac{\beta}{T} H_{d}\left(x_{i}\right)}\left\langle x_{i+1}\right|\left(I-\frac{\beta}{T} \hat{H}_{o}\right)\left|x_{i}\right\rangle
$$

For stoquastic Hamiltonians, the $p\left(\left\{x_{i}\right\}\right)$ are positive

Implications of the Sign Problem

Statistical Mechanics of a Quantum Mechanical State

```
1000110
```

$\begin{array}{ccc}1000110 & 1010110 & \\ 0111 & 1010110 & \text { Statistical Mechanics of a } \\ 0000111 & 0010110 & \text { Lattice of Classical States }\end{array}$

- Simulating sign-problem Hamiltonians requires exponential slow-downs
- Non-stoquastic \neq Sign Problem
- Mostly ${ }^{12}$, simulating stoquastic Hamiltonians is classically efficient
- Stoquasticity is tied into computational complexity

[^0]
Curing Non-Stoquasticity

Curing

Finding a (local) basis in which the sign problem does not exist.

- Such a basis always exists (the eigenbasis)
- A local stoquastic basis might not exist
- Curing the sign problem is NP-Hard
- Mitigation and Avoidance algorithms exist

Quantum Annealing with Stoquasticity

Quantum Annealing

Adiabatic Quantum Annealing with a local stoquastic basis is no more powerful than classical computing

There are some caveats here
(1) Adiabatic - Diabatic annealing can get around this
(2) Local-Hastings has one example with a non-local basis
(3) Basis - Annealing takes place in the same basis throughout

The Quantum Advantage rests either with locality or the basis interaction between the annealing Hamiltonians

Core Question

Simultaneous Stoquasticity

Assume I have a set of Hamiltonians

$$
\mathrm{S}=\left\{\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots \mathrm{H}_{\mathrm{m}}\right\}
$$

- m - Number of Hamiltonians in set
- d - Dimension of Hamiltonians

Does there exist a basis in which all $\mathrm{H}_{\mathrm{j}} \in \mathrm{S}$ are stoquastic

$$
\mathrm{UH}_{\mathrm{j}} \mathrm{u}^{\dagger}=\mathrm{H}_{\mathrm{j}}^{*}
$$

Analogy to Simultaneous Diagonalizability

Our problem is analogous to simultaneous Diagonalizability

$$
\left[\mathrm{H}_{\mathrm{i}}, \mathrm{H}_{\mathrm{j}}\right]=0 \quad \forall \mathrm{H}_{\mathrm{i}}, \mathrm{H}_{\mathrm{j}} \in \mathrm{~S}
$$

- Shared Eigenbasis
- No quantum advantage
- We want a condition like this
- Anything we do can apply to this similarity setting as well

Why is This Useful

Quantum Annealing

- Can the entire anneal be stoquastic
- Quantum annealing with stoquastic Hamiltonians seemingly lacks advantage*
- This can be useful in Monte Carlo simulation
- The question came up in some optimal control work

Quantum Complexity

- Stoquasticity plays into several complexity classes

What are the Limitations

Locality

- Our work currently doesn't consider locality
- Locality could be spatial or connectivity
- Monte Carlo and complexity results require locality
- Locality is the next extension

Feasibility
Geometricity

Results

$$
\mathrm{S}=\left\{\mathrm{H}_{1}, \cdots, \mathrm{H}_{\mathrm{m}}\right\} \quad \& \quad \mathrm{~S}^{\prime}=\left\{\mathrm{H}_{1}^{\prime}, \cdots, \mathrm{H}_{\mathrm{m}}^{\prime}\right\}
$$

Theorem (Existence)
The ordered sets S and S^{\prime} are simultaneously unitarily similar iff $\operatorname{Tr}[w(S)]=\operatorname{Tr}\left[w\left(S^{\prime}\right)\right]$ for all words w in S, S^{\prime}.

Theorem (Quick No-Go)
Every eigenvalue $\lambda \neq 0$ of $i\left[\mathrm{H}_{\mathrm{i}}, \mathrm{H}_{\mathrm{j}}\right]$ there is another eigenvalue $-\lambda$ of $\mathfrak{i}\left[\mathrm{H}_{i}, \mathrm{H}_{j}\right]$ (paired eigenvalue condition) for all $\mathrm{H}_{\mathrm{i}} \neq \mathrm{H}_{\mathrm{j}} \in \mathrm{S}$.

Theorem (Frequency)

For almost every S with $\mathrm{m} \geqslant 2, \mathrm{~d} \geqslant 3, \mathrm{~S}$ is not simultaneously stoquasticizable.

Table of Contents

(1) Stoquasticity
(2) Core Question
(3) Lie Algebras

4 Complete Conditions
(5) Simplified Condition
(6) Frequency of Satisfying Conditions
(7) Conclusion

Lie Algebras

Structure of $\mathfrak{s u}(\mathrm{d})$

Generalized Gell-Mann Basis

$$
\begin{aligned}
\hat{\lambda}_{j k}^{(x)} & =|\mathfrak{j}\rangle\langle k|+|k\rangle\langle j|, \quad(1 \leqslant \mathfrak{j}<k \leqslant d) \\
\hat{\lambda}_{j k}^{(y)} & =-\mathfrak{i}|j\rangle\langle k|+\mathfrak{i}|k\rangle\langle j|, \quad(1 \leqslant \mathfrak{j}<k \leqslant d) \\
\hat{\lambda}_{j}^{(\text {diag })} & =\sqrt{\frac{2}{\mathfrak{j}(j+1)}} \operatorname{diag}(\underbrace{1, \cdots, 1}_{j},-\mathfrak{j}, 0, \cdots, 0)
\end{aligned}
$$

Generalized Bloch Vectors

$$
\mathrm{H}=\overrightarrow{\mathrm{b}} \cdot \vec{\lambda}
$$

Stoquastic:

$$
\left\{\mathbf{b}^{(y)}=0, \boldsymbol{b}^{(x)} \leqslant 0\right\}
$$

Simultaneous Stoquasticity in $\mathfrak{s u}(2)$

$\mathrm{Su}(2)$ is a double-cover of $\mathrm{SO}(3)$

- Stoquasticity is the negative half-xz-plane
- It is always possible to rotate two vectors into a half-plane
- Simultaneous stoquasticity is always possible with $m=2$

The Bloch Sphere is Misleading

SU(d) does not have nice relationships with SO

- Normal rotations do not apply
- Structure constants mix weirdly

$\lambda_{x j}$	$\lambda_{y j}$	$\lambda_{z j}$
$\lambda_{x j}$	$\lambda_{y j}$	$\lambda_{z k}$
$\lambda_{x j}$	$\lambda_{x k}$	$\lambda_{y i}$
$\lambda_{y j}$	$\lambda_{y k}$	$\lambda_{y i}$

Complete Conditions

Words and Invariants

A word is some product of operators

$$
w=\hat{\mathrm{B}}^{3} \hat{\mathrm{C}} \hat{\mathrm{~B}} \hat{\mathrm{C}}^{2} \quad \ell=7
$$

- Words can be used to make up commutators
- $\operatorname{Tr}(w)$ is an invariant under unitary rotations
- Provably the traces of all words describe every invariant property of a matrix

Unitary Similarity

$$
S=\left\{H_{1}, \cdots, H_{m}\right\} \quad \& \quad S^{\prime}=\left\{H_{1}^{\prime}, \cdots, H_{m}^{\prime}\right\}
$$

Theorem (Existence)

The ordered sets S and S^{\prime} are simultaneously unitarily similar iff $\operatorname{Tr}[w(S)]=\operatorname{Tr}\left[w\left(S^{\prime}\right)\right]$ for all words w in S, S^{\prime}.

- This is the known foundation of unitary similarity
- We only need to check finitely many words

$$
\begin{array}{r}
\ell_{\max }=\mathrm{cd} \sqrt{\frac{2(c d)^{2}}{c d-1}+\frac{1}{4}}+\frac{c d}{2}-2 \in \mathcal{O}\left((\sqrt{m} d)^{3 / 2}\right) \\
w /\left(c^{2}-3 c+2 \geqslant 2 m\right)
\end{array}
$$

System of Equations

We get a system of conditions for simultaneous stoquasticity:

$$
\begin{array}{lr}
\operatorname{Tr}[w(S)]=\operatorname{Tr}\left[w\left(S^{\prime}\right)\right], & \forall|w| \leqslant \ell_{\max } \\
\operatorname{Re}\left(\mathrm{H}_{\mathrm{j} k}^{\prime}\right) \leqslant 0, & \forall j \neq k, \mathrm{H}^{\prime} \in S^{\prime} \\
\operatorname{Im}\left(\mathrm{H}_{\mathrm{jk}}^{\prime}\right)=0, & \forall j \neq \mathrm{k}, \mathrm{H}^{\prime} \in \mathrm{S}^{\prime}
\end{array}
$$

This has $\mathcal{O}\left(m^{\mathcal{O}\left((\sqrt{m} d)^{3 / 2}\right)}\right)$ equality constraints and $\operatorname{md}(d-1) / 2$ inequality constraints

- Many of these are redundant
- Determining if a solution exists is NP-Hard

Simplified Condition

Dynamical Lie Algebra (DLA)

Lie algebra generated from your Hamiltonians via nested commutation

$$
\begin{aligned}
& \hat{\mathrm{H}}_{x}-\hat{\mathrm{H}}_{z z} \\
& \hat{\mathrm{H}}_{x} \square \hat{\mathrm{H}}_{y z} \longrightarrow \hat{\mathrm{H}}_{z z} \\
& \left.\left.\hat{\mathrm{H}}_{x}\right\rceil-\frac{1}{2}\left(\hat{\mathrm{H}}_{z z}-\hat{\mathrm{H}}_{y y}\right)\right\rceil \hat{\mathrm{H}}_{z z} \quad \hat{\mathrm{H}}_{x}\left\lceil\frac{\mathrm{~J}^{2}}{2} \hat{\mathrm{H}}_{x}+\frac{\mathrm{I}}{2} \hat{\mathrm{H}}_{y y} \mp \hat{\mathrm{H}}_{z z}\right. \\
& -\hat{H}_{y z} \\
& -\frac{I}{2} \hat{H}_{y z} \\
& -\frac{\mathrm{I}}{2} \hat{H}_{y z} \\
& -J^{2} \hat{H}_{y z}
\end{aligned}
$$

For $n=3$ Transverse Field Ising model

- The relative tree structure is invariant
- Incredibly useful for control theory

One Step Up

Go one step up the DLA

$$
\left[\hat{\mathrm{H}}_{0}, \hat{\mathrm{H}}_{1}\right]=2 i \hat{\mathrm{H}}_{2}
$$

(1) The eigenvalues are all invariant
(2) If $\hat{\mathrm{H}}_{0}$ and $\hat{\mathrm{H}}_{1}$ can be simultaneously stoquastic, \hat{H}_{2} is composed only of $\lambda^{(y)}$ in that basis
(3) Then $\hat{\mathrm{H}}_{2}$ is skew-symmetric and must have paired eigenvalues

λ_{1}	$-a$
λ_{2}	$-b$
λ_{3}	$-c$
λ_{4}	0
λ_{5}	c
λ_{6}	b
λ_{7}	a

Limitations

- This is a necessary but not sufficient condition
- This condition can be met by Hamiltonians that are not Simultaneously stoquastic*
- We are not looking at enough invariants
- This would be equivalent to the words if we looked at the entire DLA
- Related to the Cartan decomposition of $\mathfrak{s u}(p)$

Frequency of Satisfying Conditions

Structure of $\mathfrak{s u}(\mathrm{d})$

Generalized Gell-Mann Basis

$$
\begin{aligned}
\hat{\lambda}_{j k}^{(x)} & =|\mathfrak{j}\rangle\langle k|+|k\rangle\langle j|, \quad(1 \leqslant \mathfrak{j}<k \leqslant d) \\
\hat{\lambda}_{j k}^{(y)} & =-\mathfrak{i}|j\rangle\langle k|+\mathfrak{i}|k\rangle\langle j|, \quad(1 \leqslant \mathfrak{j}<k \leqslant d) \\
\hat{\lambda}_{j}^{(\text {diag })} & =\sqrt{\frac{2}{\mathfrak{j}(j+1)}} \operatorname{diag}(\underbrace{1, \cdots, 1}_{j},-\mathfrak{j}, 0, \cdots, 0)
\end{aligned}
$$

Generalized Bloch Vectors

$$
\mathrm{H}=\overrightarrow{\mathrm{b}} \cdot \vec{\lambda}
$$

Stoquastic:

$$
\left\{\mathbf{b}^{(y)}=0, \boldsymbol{b}^{(x)} \leqslant 0\right\}
$$

Word Invariants with Bloch Vectors

We can express the trace invariants in terms of Bloch vectors

$$
\operatorname{Tr}[w(S)]=\operatorname{Tr}\left[\prod_{j=1}^{|w|} \sum_{\mu_{j}=1}^{d^{2}-1} b_{\mu_{j}}^{\left(w_{j}\right)} \hat{\lambda}_{\mu_{j}}\right]
$$

- This allows us to look at all possible invariants of a system in terms of combinations of Bloch vectors.
- All possible Bloch vectors generated by a set of Hamiltonians' invariants is denoted by \mathcal{B}
- We can show that a necessary condition for simultaneous stoquasticity is that $\operatorname{dim}(\operatorname{span}(\mathcal{B})) \leqslant\left(d^{2}+d-1\right) / 2$

Dimension of Full Space

We can show that for almost all pairs of Hamiltonians

$$
\operatorname{dim}(\operatorname{span}(\mathcal{B}))=\left(d^{2}+d-1\right)
$$

So almost all pairs of Hamiltonians have spans larger than can fit into simultaneous stoquasticizability

- Cool ideas, but the proof is too
 long
- Equivalent to saying that almost all pairs of Hamiltonians have a DLA
$=\mathfrak{s u}(\mathrm{d})$ - full controllability
- A similar proof can be made for simultaneous diagonalizability

Conclusion

Summary

- Simultaneous Stoquasticity is rare

- Unpaired eigenvalues of $[\hat{B}, \hat{C}]$ imply no stoquasticity
- Stoquasticity is basis dependent but simultaneous stoquasticizability is basis independent
- Bloch vectors are a powerful geometric tool

[^0]: ${ }^{1}$ M. B. Hastings, The power of adiabatic quantum computation with no sign problem, Quantum 5, 597 (2021).
 ${ }^{2}$ J. Bringewatt and M. Jarret, Effective gaps are not effective: Quasipolynomial classical simulation of obstructed stoquastic Hamiltonians, Phys. Rev. Lett. 125, 170504 (2020).

