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Abstract 

        

         NASA’s Planetary Systems Laboratory (PSL) at the Goddard Spaceflight Center in Greenbelt, 

Maryland is tasked with the study of solar system objects. This work is frequently based on analysis of 

imagery from visiting spacecraft, orbiting telescopes, and ground-based sensors.  

        A consequence of this mission is the need to characterize features on the spherical surface of planets 

and moons, such characterization including the overall area of the feature, its center, its moments of inertia, 

its perimeter, its compactness, its major axis, its bounding box, its aspect ratio and its North-South 

orientation. Accurate assessment of these measures from a “flat” two-dimensional image is a challenge, 

since the scale of distance observed at the center of a spherical object distorts in any direction towards the 

object’s horizon. 

        PSL has developed a technique to guarantee accurate and automated measurement at any point on 

the visible surface, by overlaying an imaginary grid of equal-area cells onto the two-dimensional image of 

the sphere. The technique is named Grid-Oriented Normalization for Analysis of Spherical Areas 

(GONASA).  

         This paper discusses the construction of the normalization grid and describes specific algorithms 

for feature parameterization. The algorithms are implemented in an accompanying Excel spreadsheet, both 

for clarity and ease of adoption, and to emphasize their aptness for automation. Finally, a concrete use case 

is offered where the GONASA grid and algorithms are used to characterize methane clouds on the Saturnian 

moon Titan. 

 

 

 

 

 

 

 

 

  

The use of trademarks or names of manufacturers in this report is for accurate reporting and does 

not constitute an official endorsement, either expressed or implied, of such products or 

manufacturers by the National Aeronautics and Space Administration. 
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1.0  Introduction 

1.1  Objective  

The goal of this paper is to describe methods to enable the accurate and automated measurement of  

features on a spherical surface such as a planet or moon, given a two-dimensional representation of that 

surface in the form of a photograph or satellite image. The methods are collectively named Grid-

Oriented Normalization for Analysis of Spherical Areas (GONASA). Algorithms that embody these 

methods are implemented in the accompanying GONASA.xlsx Excel spreadsheet.      

 

1.2  Background  

Viewed in a photograph, a sphere appears as a two-dimensional disk. The perceived area of a surface 

feature, observed in terms of two-dimensional image pixels, becomes increasingly distorted as the 

feature extends in any direction from the center of the disk towards the disk horizon. In particular, the 

perceived area of the feature shrinks towards the horizon becoming zero at the edge or limb of the disk. 

For large-scale features on the surface of a sphere that extend across such an expanse of distortion,  

computing  area and other measurements can be difficult. 

 

1.3  Proposal  

If a grid of cells having equal surface area could be overlaid onto the two-dimensional image of the 

sphere, then any observed feature could be compared to the grid, the intersected grid cells counted, 

and the sum of the equal-area cells tallied to find the overall area of the feature. Other measures related 

to the dispersion of the area such as centroid, moments of inertia and perimeter could also be 

determined. With the perimeter of the feature defined, it would be straightforward to calculate the 

feature’s major axis, orientation, bounding box, and aspect ratio.     

If the grid were cartesian, consisting of rows with the same number of columns, the calculations would 

lend themselves to automated high-speed matrix computation. Automated feature analysis becomes 

increasingly important to planetary science as the number of missions and imaging capability grows, and 

as computation is moved to the spacecraft themselves to summarize results before transmission across 

limited bandwidth channels back to Earth.  

 

1.4  Why Longitude/Latitude is not the solution 

Longitude and latitude is a widely-used coordinate system for defining location on the surface of Earth 

and other astronomical bodies (Archinal, 2018). Equivalent coordinate systems (for example, right 

ascension and declination) are used from the inside of the sphere looking out, to define location on the 

celestial sphere (Capitaine, 1990). Longitude and latitude lines would seem to be a candidate for 

determining area, since they do form a  cartesian grid of cells across the entirety of a sphere’s surface. 

However, as lines of longitude converge at the poles, the area inscribed by their approaching lines 

becomes increasingly smaller. Cells formed by equally-spaced lines of latitude and longitude do not have 

equal area across the sphere.  
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1.5  Thought Experiment - Why a grid of equal-area cells should be constructable  

1) Imagine a sphere marked with equally-spaced longitude lines. Choosing any two latitude 

boundaries will define a “ring” on the surface with the following characteristics:  

     a) The lines of latitude and longitude intersect locally at right angles on the surface.  

     b) The longitude-divided cells within the ring will all have equal area. 

 

2) For subsequent rings, it would be a simple matter to choose a latitude boundary that yields a 

ring of equal area. Then the longitude-divided cells of the next ring are also guaranteed to have 

the same area as the cells of the first ring.  

 

3) Some care must be taken to choose sets of latitude boundaries that cover the sphere 

contiguously and do not leave any overlapped or uncovered area.  

 

4) Note that cells toward the pole will be stretched vertically more than cells near the equator. By 

choosing the number of longitude and latitude divisions, approximately square cells may be 

positioned at any desired latitude. In general, the latitude of square cells may be moved towards 

or away from the equator by increasing or decreasing, respectively, the number of longitude 

divisions.     

 

5) Once defined, the lines of latitude and longitude are constant for all cells in a given row or 

column. The grid is considered to be iso-longitudinal and iso-latitudinal. The grid is also  

considered to be cartesian because the constructed grid is rectangular, with the same number 

of cells in each row.      

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 1.  Latitude divisions chosen to create a grid of equal-area cells 
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1.6  Properties of the GONASA Cartesian Iso-Long/Lat  Grid  

The GONASA approach produces a grid of cells with the following properties: 

Easy construction – The method is simple in concept and the grid is easy to construct without 

complicated formulae.  

Cartesian – The grid of cells is rectangular and easily adapted to matrix computations, for example 

Pandas data frames in Python, or the rows and columns of an Excel spreadsheet.  

Simple Cell indexing - Cells do not require a complicated numbering scheme and are simply indexed 

by their row and column. This reduces the complexity of heuristic analyses such as nearest-neighbor 

search.    

Longitude/latitude basis: Cell boundaries are based entirely on longitude (right ascension) and 

latitude (declination), which are the coordinate systems commonly used in astronomy and geodesy.   

Iso-longitudinal and iso-latitudinal – Once the longitude and latitude lines are defined, they are the 

same for all cells in a given row or column. Cell location values do not need to be computed on-the-

fly or taken from a look-up table. 

Single regime – The construction method is consistent across all points on the sphere, vs. for 

example, shifting methods between polar and equatorial regimes. 

Equal-area cells – All cells are constructed to have exactly the same area, not approximately equal 

areas.  

Variable grid resolution – Flexible construction allows easy rescaling in either the horizontal or 

vertical dimension (or both) to achieve varying cell granularity. This helps manage the tradeoff 

between model complexity and the desired level of measurement precision. Alternative methods 

that only allow successive doubling or halving of resolution are not considered flexible.     

Square cells at any latitude – By adjusting the number of divisions of longitude and latitude, a ring of 

approximately square cells can be created at any latitude. Positioning these cells at the latitude of 

interest can be useful to preserve shapes and better measure distances of unknown direction. 

Square cells can also provide denser granularity for analyses related to area.    

  

With these properties, the GONASA grid may be deployed to measure the following characteristics of 

surface features in an accurate and automated way:   

• Area 

• Centroid 

• Moments of Inertia 

• Perimeter and Compactness 

• Major Axis and Orientation 

• Bounding Boxes and Aspect Ratios 
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1.7  Literature Survey  

The field of cartography is a logical place to look for related ideas and techniques. Maps of the Earth’s 

spherical surface have a long history of importance to navigation and global trade. Since the time of 

Eratosthenes in the third century BC (Bunbury, 1883) many great thinkers have devoted time to this 

subject.  

Indeed, the concept of generating a cartesian grid from a spherical system of meridians and parallels is 

the central idea of a cylindrical projection [Britannica, 2007). The spherical coordinate system is 

projected onto a circumscribing cylinder that is then unrolled as a rectangular grid (Figure 2).  

 

                              

     

  

 

 

 

                                                                Figure 2. Cylindrical Projection                                      

The Mercator Projection is a popular example of the cylindrical projection and is valuable to navigators 

precisely because its longitude and latitude intersect at right angles, just as they do locally on the Earth’s 

sphere, thus preserving direction and orientation (Snyder, 1993). However, the Mercator Projection 

seriously distorts the size of objects near the poles (Figure 3). Greenland and Antarctica are not really 

that big! 

 

 

 

 

 

 

 

 

 

                                                     

                                                    Figure 3. Mercator Projection (giss.nasa.gov) 
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The problem of size distortion is solved with the Lambert Cylindrical Equal-area Projection (Weisstein, 

2020). Starting with equal longitude and latitude scale at the equator, the distance between latitude 

lines decreases towards the poles, in direct proportion to decreasing longitude width, such that the area 

of features is constant (Figure 4). This projection is analogous to the GONASA grid technique which  

increases latitude separation towards the poles to achieve a similar equal-area result.  

Figure 4. Lambert Cylindrical Equal-Area Projection (giss.nasa.gov) 

 

The ability to relocate square cells to other latitudes is captured in the Gall-Peters projection (Gall, 1885) 

which places longitude and latitude of equal scale at latitudes of 45o North and South (Figure 5). This is a 

singular instance of GONASA’s general ability to position approximately square cells to any latitude.  

 

  

 

 

 

 

 

 

 

 

 

Figure 5. Gall-Peters Projection (giss.nasa.gov) 
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The idea of tessellating the sphere into a contiguous grid of approximately equal-area cells is well-

established in theory (White, 1992) and in practice by the Quadrilateralized Spherical Cube (Chan, 1980), 

which projects the spherical surface inward onto the six faces of an inscribed cube (Figure 6). This 

technique was used with NASA’s COBE Cosmic Background Explorer (Essinger-Hileman, 1989) and has 

the unique advantage of avoiding singularities at the poles. Cell areas are only approximately equal and 

are neither iso-longitudinal nor iso-latitudinal.   

 

 

                             

 

 

 

 

 

                    Figure 6. Quadrilateral Spherical Cube (Chan, 1980) 

 

The HEALPix Hierarchical Equal Area isoLatitude Pixel framework (Gorski, 2005) also applies polyhedral 

faces to the sphere, but manages to place equal-area cells into rows of constant latitude to speed  

computation (Figure 7). The technique involves complex calculations for grid construction and cell 

indexing, and a different regime for polar vs. equatorial regions.  

 

 

 

 

 

 

 

 

 

                             

                         Figure 7. HEALPix Tessellation (healpix.jpl.nasa.gov - Courtesy NASA/JPL-Caltech) 
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(Roşca, 2010) achieves a single-regime grid of iso-latitudinal cells of truly equal area by applying a 

Lambert azimuthal projection (Figure 8). The construction calculations are simpler than HEALPix. The 

grid is not cartesian and the North-South curves have little relation to longitude.  

 

 

 

 

 

 

 

 

Figure 8. Lambert Azimuthal Projection (Roşca, 2010) 

 

Finally, the SREAG spherical rectangular equal-area grid (Malkin, 2019) uses iso-latitudinal rings of near-

equal width to create a single regime of truly equal-area cells. The vertical divisions are based on 

longitude but their quantity is increased for each ring, progressing away from the poles (Figure 9). 

Therefore, the grid is not cartesian and the cell numbering/indexing is complex. SREAG construction is a 

bit heuristic, adjusting latitude divisions to accommodate an integer number of cell divisions per ring. It 

is based on the computational geometry of (Gringorten, 1992) and (Beckers, 2012). 

 

      

 

Figure 9. SREAG grid construction and non-Cartesian indexing scheme (Malkin, 2013) 
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A summary comparison of GONASA with the above tessellation techniques is shown in Figure 10.   

     

 

Figure 10. Comparison of Spherical Analysis Techniques 
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2.0  Creating the Normalized Grid 

2.1  Understanding the area of spherical rings    

The thought experiment of section 1.5 invites us to choose successive latitude boundaries that result 

in spherical rings of equal area. Thus we begin by examining the area of rings on a sphere and 

relating that to latitude. The area of the orange-colored spherical cap of height L in Figure 11 is equal 

to 2 π r L (Polyanin, 2006). A second spherical cap of height 2L will therefore have double the area 

and the difference of the two caps, the spherical ring shown in green, will have the same area as the 

orange  cap. Subsequent rings of height L will also have equal areas. 

 

 

 

 

 

 

 

 

 

 

 

                                                            Figure 11. Area of spherical rings 

Intuitively, we could slice the full sphere into an integer number (n) of divisions each having height    

L = 2r/n and these divisions would have equal area. More formally, we can calculate L using   

Archimedes’ formula for the area of a sphere = 4 π r2 (Beyer, 1987), dividing that into n equal-area 

rings, and solving for L: 

               4 π r2 / n  = 2 π r L  

                   2 r / n   =  L 

 

2.2  How to calculate latitude increments for equal-area rings    

Referring again to Figure 11, the opposite sides of angles 1 and 2 will have lengths: 

                         a = r sin(1)           b = r sin(2)   

The ring height L is the difference of lengths a and b: 

                          L  =  a - b  =  r [ sin(1) - sin(2) ] 
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Given 1 and L we can solve for 2: 

                           L  =  r [ sin(1) - sin(2) ] 

                      L / r  =  sin(1) - sin(2) 

                  sin(2)  =  sin(1) – (L / r)   

                          2  =  arcsin [ sin(1) – (L / r) ]        and since L = 2 r / n   

                          2  =  arcsin [ sin(1) – (2 / n) ]   

 

We construct the grid by choosing an appropriate value for n (discussed in later sections) and a 

starting latitude 1 somewhere North of the feature. Then we calculate successive latitude 

boundaries using the formula above.  

As an example, let’s choose n = 10 and start at the North pole, noting that the value of n should be an 

even integer to include the equator as a latitude boundary, if desired. 

                lat1  =  90o  (north latitude) 

                lat2   =  arcsin [sin(90o) – 2/10] = 53.13 o 

                lat3   =  arcsin [sin(53.13o) – 2/10] = 36.87 o 

                lat4   =  arcsin [sin(36.87o) – 2/10] = 23.58 o 

                lat5   =  arcsin [sin(23.58o) – 2/10] = 11.537 o 

                lat6  =  arcsin [sin(11.537o) – 2/10] = 0 o   (arriving exactly at the equator) 

            Now, simply invert for southern hemisphere (south latitude): 

                     lat7 = 11.537 o, lat8 = 23.58 o, lat9 = 36.87 o, lat10 = 53.13 o,  lat11 = 90o 

 

 

 

 

 

 

 

 

 

Figure 12. Latitude values for equal-area rings                          Figure 13. Resulting grid of equal-area cells  

 

Automatic calculation of the latitude divisions is provided on the Grid Construction tab of the 

GONASA.xlsx spreadsheet. 
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2.3  The nature of normalized latitude lines 

It’s interesting to note that the latitude decrements are calculated by repeatedly subtracting a constant 

(2/n) which represents the opposite (vertical) side of the right triangle’s latitude angle. Therefore, the 

calculated latitude increments will appear to be evenly spaced when viewed from a distance (Figure 14). 

 

 

 

 

 

 

 

 

 

 

Figure 14. Equal-area rings appear evenly spaced from a distance 

 

GONASA’s constantly-adjusted latitude spacing simultaneously accounts for two phenomena:   

1) Moving toward the poles, the increasing increments of latitude (which increase cell area) exactly 

compensate for the converging lines of longitude (which decrease cell area), leaving all cell areas 

equal.  

2) The increasing latitude increments exactly compensate for the spherical foreshortening of 

latitude line spacing when viewed at a distance.   

 

The latter effect of perceived even-spacing lends itself well to simple manual construction techniques. 

For example, when viewing a two-dimensional image of a sphere from a distance, horizontal latitude 

lines may be drawn at constant vertical pixel intervals to create rings of equal area.      

When longitude and latitude are available for an image, more precise calculations are possible with the 

GONASA technique. Note that the GONASA grid cell boundaries are defined by unchanging longitude 

and latitude values. Thus the GONASA method continues to work well with different projections of a 

sphere’s image. For instance, on a Mercator projection of the sphere the GONASA equal-area grid cells 

will appear as a well-ordered set of contiguous non-overlapping rectangles.  
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2.4  How to position square grid cells to specific latitudes 

In general, overlaying a feature onto a mosaic of grid cells will incur less partial-cell error when the grid 

cells are roughly square. Also, the assumptions of the GONASA algorithms will be more accurate when 

approximately square cells have been positioned to the latitude of the feature. In particular, the 

centroid, moments of inertia, perimeter, compactness, bounding box and major axis algorithms assume 

square cell dimensions when taking the cell diameter as the square root of the cell area.  

The construction technique of section 2.2 creates latitude separations that become increasingly larger 

towards the poles, to compensate for converging lines of longitude. Therefore, relatively speaking, the 

aspect ratio of the grid cells will be elongated vertically towards the poles and stretched horizontally 

nearer the equator. Somewhere in between the cells are approximately square, the width (w) and 

height (h) of a cell being equal as shown in Figure 15. The latitude of this occurrence can be manipulated 

by adjusting the number of longitude divisions (m) and latitude divisions (n).  

Note that grid cells defined by longitude are never exactly square. The vertical edges of the cells are 

curved and not precisely straight. The width of their horizontal edges will be slightly less on the polar 

side than on the equator side. Multiplying cell width and height does not provide the exact cell area. 

Nonetheless, the  cell area can be calculated precisely by dividing the total surface area of the visible 

hemisphere by the product of the longitude and latitude divisions:   

                               True cell area (identical for all cells) =  2  r2 / (m * n) 

To position approximately square cells to the latitude of the feature, we first need to establish the cell 

size, chosen to be consistent with the scale of the feature. The grid of cells “resolution” should be 

granular enough to fit irregularities along the feature’s perimeter. The cell size may be specified by the 

length of a side (e.g., 10km) or by the cell area (e.g., 100 km2). If the specification is by area, then the 

assumed side lengths of the approximately square cell will be the square root of the area.  

Then, knowing the target latitude and the lengths of h and w, the necessary number of longitude 

divisions (m) can be calculated by observing that cell width decreases as the cosine of the latitude. 

Figure 16 shows two circles of latitude on the surface of a sphere, one at the equator and one at 

latitude . The radius of the two circles is r cos().  Therefore the circumference of the two circles is:      

2  r cos().  

                     

        

 

 

 

 

 

         Figure 15. Cell dimensions at latitude                               Figure 16. Cell width variation by latitude 
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Given m longitude divisions in the visible hemisphere (2m in both hemispheres), the width of each cell at 

latitude  is: 

                        w =  2  r cos() / 2m  

Rearranging, we have the desired number of longitude divisions to achieve width w at latitude : 

                       m  =  r cos() / w  

 

Next, to find the desired number of latitude divisions (n), we observe that the height of the cell is the arc 

between latitudes 1 and 2 shown in Figure 11. For convenience with the trig functions, we will express 

the cell height in terms of radians, by diving h by the sphere radius r. 

                     h/r  =  1  -  2      

By positioning the target latitude  at the center of the cell (see Figure 15), we have: 

                     1  =   + (½)h/r               2  =   - (½)h/r    

From section 2.2, we know how to find 2 given 1 and the latitude divisions n: 

               2  =  arcsin [ sin(1) – (2 / n) ]   

Then: 

                   h/r  =  1  -  2      

                   h/r  =  ( + h/2r) – arcsin[sin( + h/2r) – 2/n]     

         - h/2r  =  arcsin[sin( + h/2r) – 2/n]    

    sin( - h/2r) = sin( + h/2r)  – 2/n  

                  n = 2 / [sin( + h/2r)  -  sin( + h/2r)]                

 

This result is consistent with the calculations of Section 2.1: 

             L / r  =  sin(1) - sin(2)            and since L = 2r/n 

               2/n = sin(1) - sin(2)  

                   n = 2/[ sin(1) - sin(2)]      where:  1  =  + h/2r ;  2  =  - h/2r    

 

Note that the number of divisions m and n may well be fractional to achieve a specific cell size. If the 

desired cell size can vary a little, m and n may be rounded to integers. Furthermore, n may be set to an 

even integer to include the equator as a latitude division, and m may be selected to simplify the 

longitude widths.  

The next section offers advice for choosing suitable values of m and n. 
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2.5  How to choose the best grid dimensions 

Choosing the ideal number of latitude and longitude divisions can involve a tradeoff among optimizing 

various objectives:  

• An even number of latitude divisions to span the hemisphere and include the equator 

• An integer number of longitude divisions to neatly divide the visible hemisphere West to East 

• A number of longitude divisions to result in single decimal longitude widths (e.g., 0.7o, 1.2o, 3.8o)  

• A particular combination of longitude to latitude divisions to position square cells to the 

feature’s latitude 

• A fractional number of divisions to yield very square cells or a precise area per cell 

To facilitate the task, the Setup Guide tab of the GONASA.xlsx spreadsheet accepts inputs of the sphere 

radius, desired cell area, and latitude of the feature (as any decimal from 90o to -90o). The spreadsheet 

then calculates pairs of longitude/latitude divisions to prioritize various objectives. Users may select the 

recommendation that best suits their needs (Figure 17).   

 

Figure 17. Guide for choosing longitude/latitude divisions, depending on priorities 
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2.6  A note on the accompanying Excel spreadsheet  

As this report was prepared for publication, it was noted that the accompanying Excel spreadsheet could 

be considered to be NASA-released software and would need to undergo a rigorous certification cycle. 

The singular purpose of the spreadsheet is to provide additional explanation and visualization of the 

algorithms described in this report. Therefore, in the interest of timely publication, the spreadsheet has 

been rendered read-only and inoperable as a software program. The suggested methods of algorithm 

implementation remain clearly visible. The authors apologize for any inconvenience.  

 

2.7  A note on grid cell resolution 

One of the user inputs to the Setup Guide described in section 2.5 is the desired area for each grid cell. 

Generally speaking, the smaller the grid cell size, the more closely cells can approximate the uneven 

contours of a surface feature. This assumes the cells are counted in a binary manner, as containing the 

feature or not. However, the problem with smaller cell size and greater resolution is having to manage 

and count many more cells.  

One approach is to keep the cell size fairly large for convenience, but to estimate the coverage 

percentage of cells that are partially covered by a feature’s perimeter. The coverage estimation may be 

performed either manually, by a human looking at the grid overlay on an image of the feature, or 

programmatically by dividing the pixel count of the segmented feature by the pixel count of the 

partially-covered cell.   

This approach is used in the next section to calculate feature area. 
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3.0  GONASA Analysis Algorithms 

3.1  Example Use Case  

To better illustrate GONASA’s automated algorithms, an imaginary take on a real NASA project will be 

used. The Planetary Systems Lab is currently characterizing methane clouds on the surface of the 

Saturnian moon Titan from images captured by the Cassini mission. The radius of Titan is approximately 

2575 km and cloud altitude is estimated at 40 km, so using a radius to the clouds of 2615 km yields a 

spherical surface area of 85,931,670 km2 as shown in Figure 18.  

Note that in cases involving the analysis of features on the celestial sphere, the radius is infinite and area 

measures in units of distance2 are not appropriate. Instead, we can specify the radius in terms of 

degrees as one radian = 180/π = 57.29577951o. The area of the celestial sphere is then 41,253 degrees2.  

 

 

Figure 18. Calculating total surface area and loading the feature data. 

 

A normalized grid of longitude and calculated latitude lines having equal area cells is prepared as 

described in the previous section and overlaid onto the two-dimensional image of the moon and its 

imaginary methane cloud. The percentage overlap of the cloud on each cell is loaded into a cartesian 

table. This is shown under the Use Case tab of the accompanying GONASA.xlsx Excel spreadsheet.   
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3.2  How to find the AREA of a surface feature 

The first order of business is to measure area, which is the zeroth-order spatial moment of the feature 

(Wirth, 2004). Given the table of covered cell percentages from the previous section, those percentages 

are summed and multiplied by the area per cell to find the overall feature area. The area per cell is easily 

determined by dividing the total surface area of the sphere by the number of cells in the grid. (Figure 19)  

 

 

Figure 19. Calculation of feature area 

This example uses a grid of 10 rows by 24 columns, producing 240 cells, each of constant area = 358,049 

km2. The feature covers 7.8 cells and therefore has an area of 2,792,779 km2 which is 3.25% of the total 

surface area. A parallel calculation shows how an analogous feature on the celestial sphere would cover 

1,341 degrees2.  

This example is shown under the Area tab of the GONASA.xlsx spreadsheet.  
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3.3  How to find the CENTROID of a feature 

Next we measure the first-order spatial moment of the feature, normalized by the area calculated 

above. This is the center of mass, or centroid of the feature (Wirth, 2004). Because the sphere’s surface 

is sliced and diced neatly into contiguous quadrilateral cells, we may continue to employ the rows and 

columns structure of an Excel spreadsheet to calculate the centroid in terms of longitude and latitude.   

Mathematically, we are finding the first moments of area about the X-axis (QX) and Y-axis (QY) as: 

        QX = SUM(cell latitude centers * dA)          QY = SUM(cell longitude centers * dA) 

                 where dA is the cell area coverage (treating a full single cell area as unit 1 for convenience)  

The centroid coordinates are then:  Longitude = QY/A    Latitude = QX / A   (where A = # Total area cells)   

More intuitively, the feature’s percentage coverage of each cell can be thought of as a weighted vote for 

the latitude and longitude coordinate at the cell’s center. Summing the latitude and longitude voting 

separately and then dividing by the total cell coverage yields the average weighted longitude and 

latitude, which define the centroid of the feature’s area (Figure 20).  

Figure 20. Calculation of feature center of mass (centroid) 

This example is shown under the Centroid tab of the GONASA.xlsx spreadsheet. The centroid of the 

cloud feature is located at 6.66o North Latitude and 60.96o East Longitude (where 0o longitude was 

arbitrarily set at the left edge of the visible hemisphere for this example).  

Note that this technique accommodates features with irregular perimeters, and even multiple features 

whose overall centroid needs to be determined. Further, if the feature contains holes or even varying 

densities, this technique will continue to allow calculation of a center of mass.  
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3.4  How to find the MOMENTS OF INERTIA of a feature 

Next we measure the second-order spatial moment of the feature, normalized by the centroid 

calculated above. This is the Area Moment of Inertia and describes how the area of the feature is 

dispersed about the centroid in the X and Y directions.   

We use an approach similar to that taken to find the Centroid. We are finding the second moments of 

area about an X-axis (IX) and Y-axis (IY) that pass through the centroid: 

                   IX =  (Cell latitude – Centroid latitude)2 * dA    

                   IY =   (Cell longitude – Centroid longitude)2 * dA 

                               where dA is the full or partial area of each cell   

The desired units for the moments of inertia will be kilometers to the fourth power (km4). To simplify 

the transition from coordinates to meters, we will assume that square cells have been positioned to the 

feature’s latitude and thus each cell’s diameter in both the X and Y directions may be taken as the 

square root of the constant cell area.  

We give each cell center a row and column index representing the center of the cell, and rewrite the 

centroid longitude and latitude in terms of the cell indices. As shown on the Moment of Inertia tab of 

the GONASA.xlsx spreadsheet, the centroid latitude and longitude of 60.962o N, 9.925o E equates to a 

cell index of (column 7.564, row 9.925).  

The equation for the second moment of area about X may be written as:  

                   IX =  (Cell center vertical distance from Centroid)2 * dA 

                       =  ((Cell row – Centroid row)*Cell diameter)2 * Cell area * % Cell coverage 

                       =  (Cell row – 9.925) 2 * % Cell coverage * (Cell diameter)2 * Cell area  

 

Since Cell diameter and cell area are constant across all cells, and (Cell diameter)2 = Cell area, we can 

bring (Cell Area)2 outside the summation: 

 

                   IX  = (Cell area)2 *  [(Cell row – 9.925) 2 * % Cell coverage] 

The equation for the second moment of area about Y is derived similarly as: 

                   IY  = (Cell area)2 *  [(Cell column – 7.564) 2 * % Cell coverage] 

 

Values for IX = 5.27E+11 km4  and IY = 1.03E+12 km4 are calculated in Figure 21. 

 

 

 



 

23 
 

 

 

Figure 21. Calculation of feature moments of inertia.  
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3.5  How to find the PERIMETER of a feature 

Once the cloud feature is loaded into the spreadsheet table, we have a visualization of the feature on 

equal-area cells, including the feature’s perimeter. In a few steps, we can isolate the perimeter and 

count the externally-facing sides of the perimeter cells. Taking the diameter of the cells to be the 

unchanging square root of the cell areas, we can multiply by the external cell side count to determine 

the perimeter distance.  

Since vertical and horizontal cell sides are assumed to have equal distance, the technique of Section 2.4 

should first be used to position square cells to the latitude of the feature being analyzed.   

Note that the detected perimeter is formed by a continuous boundary of cells that connect at either 

their faces or their corners. This is a so-called eight-connected boundary. Where boundary cells connect 

at their faces, the perimeter distance will be the diameter of the cells. Where boundary cells connect at 

their corners, we have a choice. The perimeter distance may be calculated either as the Manhattan 

distance of two cell diameters, or the Euclidean distance of SQRT(2) cell diameters (Figure 22). This is a 

choice between smoothing with the diagonal or using the staircase.  

 

 

 

                                                             Figure 22. Manhattan vs. Euclidean distance 

It will be noted that for the Manhattan distance method, the perimeter of a convex feature will be the 

same as the perimeter of the feature’s bounding box, which would be a far simpler although less 

accurate way to estimate perimeter. On convex features, the accuracy of the Manhattan method does 

not improve with increasing cell resolution. Instead, we will use a Euclidean distance algorithm to obtain 

a more accurate perimeter estimate, and one which improves with increasing cell resolution.  

The first step of the algorithm is to create a binary mask of the feature that codes a “0” for presence of 

the feature in a cell and “1” for cells where the feature is not present. A threshold may be considered for 

presence, such as requiring more than 25% occupancy of the cell.   

The second step fills in any single interior cells that are not showing the feature’s presence. This is done 

by changing any 1 to 0 when the cell is surrounded on four sides by cells that contain a 0. In other 

words, we fill in any one-cell holes. Note that we are only interested in the perimeter as the external 

edge of the feature. Internal edges from holes are a distraction.   
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The third step finds perimeter cells that are connected diagonally, and modifies the nearest exterior cell 

to contain a value less than one. A value of SQRT(2)/2 is recommended, such that when the two sides of 

the diagonally-connected cells are summed, their value will equal the Euclidean diagonal of SQRT(2).  

In the fourth step, each cell on the perimeter counts its externally-facing cells, including the discounted 

Euclidean value for diagonals. The cell-side total multiplied by the cell diameter yields the perimeter 

distance of the feature (Figure 23).   

 

      Figure 23. Calculation of feature perimeter. 

 

The perimeter calculation is shown under the Perimeter tab of the GONASA.xlsx spreadsheet.  The 

perimeter is estimated as 8027 kilometers. 
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3.6  How to find the COMPACTNESS of a feature 

The compactness of a feature is a measure of how well its perimeter is minimized to contain maximum 

area. The most compact object then is a circle, and the measurement is normalized to a maximum value 

of 1 for a circle. Compactness is defined as the ratio of the area of the feature to the area of a circle 

having the same perimeter (Wirth, 2004). 

Given a feature of perimeter P, we calculate the area of a circle with the same perimeter: 

Circle of circumference P  = 2 π r  will have an area of  π r2  = π (P/2 π)2  =  P2 / 4 π   

 

Then the compactness measure is defined, using Area (A) and Perimeter (P) determined in the previous 

sections:  

Feature Area / Circle Area  =  A / (P2 / 4 π)  =  4 π A / P2 

 

 Using A =  2,792,779 km2   and P = 8,027 km, the compactness is directly calculated: 

 Compactness  =  4 π (2,792,779 km2) / (8,027 km) 2  =  0.545 

 

For comparison, a square will have a compactness of: 

 4 π A / P2  =  4 π (P/4)2 / P2  =   π / 4  =  0.785 

 

The example feature is fairly compact, but its rectangular shape is more elongated and less compact 

than a square.  

  

The compactness calculation is shown under the Compactness tab of the GONASA.xlsx spreadsheet. 
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3.7  How to find the X-Y BOUNDING BOX & ASPECT RATIO of a feature 

The X-Y bounding box is the smallest longitude- and latitude-aligned rectangle that completely encloses 

a feature. The bounding box will be defined by the range of its longitude and latitude, as well as by the 

distance of its sides. The ratio of the bounding boxes horizontal width to its vertical height is the X:Y 

aspect ratio of the feature. 

The first step in determining the bounding box is similar to finding the perimeter. A binary mask of the 

feature is coded with cell values of 1 where the feature is present and 0 where it is not. Again, a 

minimum threshold may be chosen for feature presence (in this example, 25%). See Figure 24. 

      

                                        Figure 24. Calculation of X-Y bounding box and aspect ratio 
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The columns and rows of the mask are summed and non-zero sums indicate which columns and rows 

are occupied. Next a test is performed – for longitude row, to see if either the sum immediately above 

or to the left is zero; for the latitude column, to see if either the sum immediately to the left or above is 

zero. If so, then the longitude/latitude of that cell boundary are recorded.  

Finding the corners of the bounding box is then a simple matter of finding the Max and Min values 

within the recorded longitude and latitude range. The width and height of the bounding box are 

determined from the count of non-zero cells in the Column Sum row and the Row Sum column. Taking 

the constant diameter of the cells as the square root of the area, the width and height is obtained from 

multiplying that by the cell counts.    

The width to height aspect ratio of the bounding box is the ratio of width and height cell counts  

The bounding box is seen to range from -11.537o to 23.58o North latitude, and from 30o to 90o East 

longitude. The bounding box is 2393 km wide by 1795 km high and its X-Y aspect ratio is 4:3.  

The bounding box and aspect ratio calculations are shown under the Bounding Box tab of the 

GONASA.xlsx spreadsheet.   

Although the X-Y bounding box and X-Y aspect ratio are fairly easy to calculate, they are misleading 

measures when a feature is elongated in a diagonal direction. For example, if a very thin and very long 

feature is oriented on a 45o angle, its X-Y bounding box will be square and the X-Y aspect ratio will be 

1:1, when in actuality the thin and long feature has a pronounced aspect ratio along the 45o diagonal 

(Figure 25).  

 

 

 

 

 

 

 

 

 

                                    Figure 25. X-Y vs. Major Axis bounding boxes and their aspect ratios  

 

In the next section we will find the major axis of the feature which will lead to a more accurate measure 

of aspect ratio.   
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3.8  How to find the MAJOR AXIS and ORIENTATION of a feature 

Features that are stretched (for example, not square or circular) will tend to have a discernable 

orientation, for example West-to-East or Northwest-to-Southeast. A common technique for describing 

the orientation of stretched features is to identify the major axis of the feature. The major axis is the 

longest line segment that connects two points on the feature’s perimeter (Figure 26). The minor axis is 

then the longest line segment perpendicular to the major axis that connects two perimeter cells. 

 

 

 

 

 

 

       Figure 26. Major and minor axes of a feature. 

 

The perimeter cells of the feature have already been determined in section 3.5. For convenience, the 

row and column indices are used to identify the perimeter cells, as was done for the Moments of Inertia 

calculations in section 3.5. Here however, the rows are numbered in decreasing order, which moves the 

origin to bottom left vs. Excel’s placement of the origin at top left. This “first quadrant” coordinate 

system will be important to define the orientation of the feature as the slope of the major axis.  

Assuming the cells are square, we find the two perimeter cells at  greatest distance by arraying all      

n(n-1)/2 combinations of cells and taking the Euclidean distance of their cell indices. For the nine 

perimeter cells of this example, there are 9(9-1)/2 = 36 unique pairs. The pair of cells with X,Y indices 

(2,2) and (5,4) are separated by the greatest Euclidean distance of SQRT[(2-5)^2 + (2-4)^2] = 3.606 cell 

diameters. Using a cell diameter of 598.4 km, the square root of the assumed square cell area, the 

length of the major axis is 2,157 km.   

Note that the major axis is measured between the centers of the most distant cells, and not their outer 

edges. This is a reasonable estimate because the perimeter cells might only be partially covered by the 

feature. If greater accuracy is needed, or if more than one pair of cells shares the greatest distance, then 

additional longitude/latitude divisions can be used to increase the cell count resolution.  

The slope of the major axis is simply the difference of the cell pair y values divided by the difference of 

their x values = (2-4)/(2-5) = 2/3. An equation for the major axis may be written in the form of y = mx + b 

where the slope m = 2/3 and the y-intercept b = y - mx for either of the perimeter cell coordinates, for 

example b = 4 - (5* 2/3) = 2/3. The major axis falls on the line with equation y = (2/3)x + 2/3.  

The orientation of the feature is the arctangent of the slope = DEGREES(ATAN(0.667)) = 33.7o. These 

calculations are shown in Figure 27 below and under the Major Axis & Orientation tab of the 

GONASA.xlsx spreadsheet.  
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Figure 27. Calculating the major axis and feature orientation. 
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3.9  How to find the MAJOR AXIS BOUNDING BOX and ASPECT RATIO of a feature 

The goal at this point is to find the bounding box of smallest dimension that completely encloses the 

feature and then to take the width/height ratio of that bounding box as the most accurate measure of 

the feature’s aspect ratio. The major axis, shown in dark blue in Figure 28, sets the width of the gray 

bounding box and its orientation. The top and bottom of the bounding box are set by the two line 

segments (in orange) that extend perpendicularly above and below the major axis and have the greatest 

distance to the perimeter.  

 

 

 

 

 

 

 

 

Figure 28. Using the major axis to define the feature’s minimum bounding box. 

 

The equation for the major axis was determined in the previous section as y = (2/3)x + 2/3. We will 

measure the distance from that line to each of the perimeter cells to find maxima above and below the 

line. First, let’s derive an equation for the perpendicular distance from a point D to the major axis line 

(Figure 29).  

 

 

 

 

 

 

 

 

 

Figure 29. Calculating the perpendicular distance from point D to the major axis. 
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Referring to Figure 29, the distance DF has no X component and is simply YD – YF where YF = m*XD + b: 

               DF =  y0 – m x0 - b   

Distances EG / FG define the slope (m) of the line. Triangles DEF and FGE are seen to be similar triangles 

and so  EG / FG =  EF / DE = m  and thus: 

                EF = m * DE 

By the Pythagorean theorem: 

               DF = SQRT[DE2 + EF2]  

               DF = SQRT[DE2 + (m * DE)2]  

               DF = SQRT[DE2(1+m2)]  

               DF = DE * SQRT[(1+m2)] 

Combining the equations for DF: 

               DE = DF / SQRT[(1 + m2)]  

               DE = (y0 – m x0 – b) / SQRT[(1 + m2)]   

When this distance is calculated for all nine perimeter cells of the example, cell (2.4) has the maximum 

distance of 1.664 above the major axis, and cell (4,2) has the greatest distance of 1.1094 below the 

major axis. The sum of their distances is 2.7735. These cell index distances are converted to kilometers 

by multiplying by cell diameter of 598.4 km, resulting in a bounding box width of 2157 km and height of 

1660 km.  

The aspect ratio is the major axis width divided by the sum of the two perpendicular segment distances, 

or 1.3 : 1.  

A related measurement is elongation which is defined as the shortest dimension divided by the longest 

dimension. Elongation has a maximum value of 1 when the  feature is circular or square. In this case, the 

elongation is the inverse of the aspect ratio, or 0.769.  

The calculation of the Major Axis bounding box dimensions and feature aspect ratio are shown in Figure 

30 and under the MA Box & Aspect Ratio tab of the GONASA.xlsx spreadsheet.   
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Figure 30. Calculation of major axis bounding box and feature aspect ratio.   
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In section 3.7, it was sufficient to define the X-Y bounding box by the longitude and latitude lines of the 

bounding box’s sides. When the bounding box is aligned to the major axis and is potentially rotated 

away from the X-Y axis, its location needs to be defined by the latitude/longitude coordinates of the four 

corners. Those corners are derived as follows. 

In general, we’ll write equations for each of the four sides of the bounding box and then solve for their 

intersection, starting with cell indices and then converting to longitude and latitude. The equations for 

the top and bottom sides, which are parallel to the major axis, will have the same slope m but a 

different y-intercept b that places the parallel line through cells 3 and 4.   

Top cell 3 = (2,4):         y = mx + b   =>    4 = (2/3)*2 + b    =>    b3 = 8/3   

Bottom cell 4 = (4,2):   y = mx + b  =>    2 = (2/3)*4 + b   =>     b4 = -2/3  

The left and right sides of the bounding box, being perpendicular to the major axis, will have the 

negative reciprocal of the major axis slope, or m = -1.5. 

               Left cell 1 = (2,2):         y = mx + b  =>    2 = (-1.5)*2 + b   =>    b1 = 5  

               Right cell 2 = (5,4):       y = mx + b  =>    4 = (-1.5)*5 + b   =>    b2 = 11.5 

We now have the four equations for the sides of the bounding box: 

                                                   Top:   y = (2/3)x + 8/3 

                Left:   y = -1.5x + 5                                                           Right:   y = -1.5x + 11.5 

                                                            Bottom:  y = (2/3)x – 2/3 

 

The intersection of each adjacent pair of equations will give us the corners of the bounding box. The 

intersection is found by setting m1x + b1 = m2x + b2, solving for x, and then plugging x to solve for y. In 

general terms, the intersection occurs at: 

                 x0 = (b1 – b2) / (m2 – m1)                 y0 = (m2 b1 – m1 b2) / (m2 – m1)  

These calculations are performed in Figure 29 above. Once the cell indices are obtained, we can use the 

longitude/latitude of the cell centers to interpolate coordinate values. The resulting corners of the 

bounding box are: 

Top-Left:            10.30o N. Lat, 23.65o E. Long 

Top-Right:          35.91o N. Lat, 68.65o E. Long 

Bottom-Right:     6.68o N. Lat, 91.73o E. Long 

Bottom-Left:     -16.65o N. Lat, 46.73o E. Long 

 

All calculations are shown on the MA Box & Aspect Ratio tab of the GONASA.xlsx spreadsheet.   
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4.0  Use Case – Methane Clouds on Titan 
4.1  Motivation 

Saturn’s moon Titan is the only other body in the solar system that has liquid lakes, rivers and clouds 

and an evaporation/precipitation cycle like Earth’s (Lorenz, 1993). On Titan, the liquid and vapor are 

methane, but the cycle is entirely analogous to Earth’s water cycle. Studying the seasonal and long-term 

weather patterns of Titan’s methane clouds will inform our understanding of atmospheric mechanisms 

on other solar system worlds as well as our own (Mitchell, 2011).  

 

4.2  Automated Cloud Analysis 

Whereas previous analysis of Titan’s methane clouds has relied upon manual detection and 

characterization by humans (Griffith, 2009), the Planetary Systems Laboratory (PSL) at NASA’s Goddard 

Spaceflight Center is automating this analysis using machine learning to automatically detect methane 

clouds in images of Titan’s atmosphere. The images analyzed were taken by the Cassini spacecraft 

mission from June 2004 to October 2017. In addition to automatically detecting image pixels where 

methane clouds exist, the PSL is interested in automating the calculation of cloud area, centroid, 

perimeter, orientation and aspect ratio. The GONASA algorithms of this paper were developed 

specifically to accomplish this task.  

 

4.3  GONASA Application 

The GONASA algorithms described here have been coded into Python routines and executed against  

images of Titan taken by the Cassini mission. To match the size and shape of methane clouds detected in 

Titan’s northern  latitudes, a granularity of 40 longitudinal divisions of the visible hemisphere (4.5o each) 

and 90 latitudinal divisions was chosen for the grid. In the image below, that grid is superimposed on 

Titan with the detected methane cloud highlighted in green (Figure 31).   

A cloud area of 558,556 km2 was calculated by 

counting the number of cells covered by the cloud.  

A cloud centroid of 51.05o North, 93.18o East was 

calculated by finding the weighted center of mass of 

the covered cells.  

A cloud perimeter of 4423 km was measured by 

counting the outside-facing sides of the perimeter cells, 

which corresponds to a compactness ratio of 0.359.  

A major axis of 1591 km length was detected, with an 

orientation of -15.9 degrees.  

A minimum bounding box aligned to the major axis 

revealed a cloud width of 1591km and height of 390 

km, for an aspect ratio of 4.077 : 1. 

Figure 31. GONASA grid on Titan (Goddard PSL) 
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5.0  Summary 

This paper has described a novel approach for the parameterization of features on spherical surfaces, 

such as planets and moons. The GONASA technique is both iso-latitudinal and iso-longitudinal, creating 

a cartesian grid of equal-area cells with fixed longitude and latitude boundaries. The technique is 

compared to other approaches in the literature and is seen to have advantages in simplicity of 

construction and use, flexibility of resolution and square cell positioning, and integration with standard 

coordinate systems of longitude/latitude and right ascension/declination.  

The GONASA toolkit includes algorithms to calculate feature area, centroid, moments of inertia, 

perimeter, compactness, bounding boxes, aspect ratio and orientation. The algorithms are carried out in 

the accompanying GONASA.xlsx spreadsheet for clarity of implementation and as evidence of their 

suitability for automation.   

Finally, the practical value of the GONASA method is demonstrated with the real use case of 

characterizing methane clouds in the atmosphere of Titan.   
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