

Exploitation of a Validation Hierarchy for Modeling and Simulation

Scott Shaw

MBDA UK LTD., GBR

James M. Luckring

NASA Langley Research Center, USA

William Oberkampf

WL Oberkampf Consulting, USA

Rick Graves

Air Force Research Laboratory, USA

National Harbor, MD 23rd – 27th January 2023

The Challenge : The Vision

Exploit Digital Transformation

increase initiatives to reduce development time and cost

Budgets continue to be Bui

challenged 🛠

Build on the successful use of

 Modeling and Simulation (M&S) to reduce design time and testing costs

Expectation of time to deployment continues to
 shorten

Design complexity continues to

Critically assess simulation credibility to increase confidence in certification by analysis

NATO

Potential uses of Modeling and Simulation (M&S) in the System Development Lifecycle

To enable the use of M&S capability later in the system design cycle, we need a rigorous process to establish confidence in the M&S capability for the <u>overall</u> system.

Lufthansa

NORTH ATLANTIC TREATY ORGANIZATION SCIENCE AND TECHNOLOGY ORGANIZATION

Bridge from Systems Engineering to Modeling and Simulation

Physics Modeling Code Verification Uncertainty Quantification Solution Model Verification Validation

Bridge from Systems Engineering to Modeling and Simulation

Model Validation Hierarchy

Physics Taxonomy

- Systems architecture perspective
 - Systems/subsystems/etc.
 - System design requirements are specified

Transition tier

- Transforms hierarchy from a systems architecture to a physics taxonomy view
- Mathematical modelling introduced

Physics taxonomy perspective

- Modeling and simulation features specified
- Physics/phenomenological decomposition from complex simulations to unit problems

Model Validation Hierarchy

• Systems architecture perspective

- Systems/subsystems/etc.
- System design requirements are specified

Transition tier

- Transforms hierarchy from a systems architecture to a physics taxonomy view
- Mathematical modelling introduced

• Physics taxonomy perspective

- Modeling and simulation features specified
- Physics/phenomenological decomposition from complex simulations to unit problems

How can we exploit this technology to prioritize Validation Experiments?

Model Validation Hierarchy Attributes

- Hierarchy addresses system engineering (SE) requirements
 - Presents SE and M&S concerns in a single view
 - Establishes a clear, logical connection between physical phenomenon and system behavior/performance
 - Is a rigorous and systematic approach that draws attention to missing elements
- Moving down the hierarchy corresponds to a deconstruction of element complexity
 - Sections of the hierarchy can have multiple tiers
 - Each tier can have multiple elements and subelements
- The hierarchy is modular
 - Reusable and adaptable to support new requirements
 - A strategic asset for a system and its future modifications
 - Elements may be reused for other systems

Prioritization of Validation Experiments

- The prioritization process has four main tasks
 - Creation of the Validation Hierarchy
 - Based on system design requirements
 - Creation of the Hierarchy ELement
 Prioritization (HELP) table
 - Prioritization based upon importance of validation hierarchy elements for an SRQ
 - Creation of the Gap Analysis
 - Establish validation status of prioritized elements
 - Many gaps can result
 - Prioritization of the Validation Gaps
 - Which gaps are most important to address

Hierarchy ELement Prioritization Table Analysis

• A single HELP Table is produced for each environment and scenario

NATO

- The importance of each element for each SRQ of interest is assessed
 - We can exploit the nature of a hierarchy to avoid assessing children of elements that are considered of low importance
 - Importance is assessed using a small number of ranks (typically 3)
- Results in a ranking of the importance of hierarchy elements for each SRQ
- We use this ranking as an initial prioritization.
 - Only high importance elements are considered in the next stage

Environment A, Scenario 1

Hierarchy Elements	SRQ 1	SRQ 2	SRQ 3
А			
В			
С			
D			
E			
F			

Gap Analysis

- A single Gap Analysis is performed for each environment, scenario and SRQ
- The adequacy of each Element is assessed for the adequacy of the
 - Physical Modeling
 - Code Verification
 - Solution Verification
 - Model Validation
 - Uncertainty Quantification and Sensitivity Analysis
- Results in the identification of gaps in the M&S capability
- Identifies M&S capability weaknesses

Environment A, Scenario 1 – SRQ 3 Verification Modeling

Heirarchy Elements	Modeling			Model	Uncertainty
		Code Verification	Solution Verification	Validation	Quantification
В					
С					
F					

Sensitivity Analysis

- Gap analysis often identifies many gaps, and consequently further prioritization may be required
- We propose sensitivity analyses to assess the impact of closing gaps
 - Establish a baseline using an initial Sensitivity Analysis
 - For each gap estimate the impact on the SRQ of closing the gap
- Results in a ranking of the gaps according to the expected improvement in uncertainty for the SRQ

Concluding Remarks

- We have presented a *rigorous* approach for identifying and prioritizing validation experiments
 - Exploits the properties of a Validation hierarchy
 - > A three step Prioritization process based on:
 - HELP Table prioritizes hierarchy elements that are of <u>importance</u>
 - Gap Analysis identifies <u>weaknesses of the M&S capability</u>
 - Sensitivity Analysis measures the *impact of closing gaps*
 - > Hierarchical approach is *modular* and creates artifacts/assets that can be *reused*:
 - to meet changing requirements of a single system
 - effort for one system can be recapitalized for other systems
- By identifying and prioritizing gaps in validation coverage, the approach provides a basis for critically assessing simulation credibility