

NASA Sustainable Flight National Partnership

NASEM: Aeronautics Research and Technology Roundtable Dr. Richard A. Wahls (Rich) Sustainable Flight National Partnership Mission Integration Manager, Aeronautics Research Mission Directorate November 10, 2022 www.nasa.gov

Outline

- Introductory Remarks
 - Context NASA & Global
- Sustainable Flight National Partnership (SFNP)
 - Origin Story
 - Elements and Status
- Concluding Remarks

CONTEXT

www.nasa.gov | 3

ULTRA-EFFICIENT TRANSPORT

FUTURE AIRSPACE

HIGH-SPEED COMMERCIAL FLIGHT

www.nasa.gov |

Four Transformations for Sustainability, Greater Mobility, and Economic Growth

SUBSONIC COMMERCIAL TRANSPORTS

the 24/7 global backbone of air transportation now and into the foreseeable future

key to U.S. economic competitiveness and global leadership in a **sustainable** aviation future

Sustainability – a Global View

"Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs."

- UN World Commission on Environment and Development

> Meet the Mission Value to People Mobility Freedom Health

SOCIETY

ENVIRONMEN

Meet the Mission Value to Business Profit to Shareholders Import/Export Trade Balance Jobs

ECONOMICS

Meet the Mission Protect the Planet Protect Regional & Local Ecosystems

Aviation is Vital to our Nation's Economy

Subsonic Transport Market - Global competition expanding

Pre-COVID

- \$78 billion positive trade balance; the largest positive trade balance of any U.S. manufacturing sector
- \$1.8 trillion total U.S. economic activity
- 10.9 million direct/indirect jobs
- 21.3 billion tons of freight transported by U.S. airlines in 2019

Airplanes Delivered/Year

U.S. propulsion competes for global market share

E1

Carbon Emissions and 20-Year Market Demand Forecast – Global

- 289 million metric tons of fuel burned in 2018 (96 billion gallons)
 - 912 Mt carbon
 - 65% International 35% Domestic

Single-Aisle (SA) Aircraft Families

- Emit the most carbon (38%)
- Highest demand
- 2030s clean sheet design?

TP: Turboprop (pax) RJ: Regional Jet (pax) SA: Single Aisle (pax)

STA: Small Twin Aisle (pax)

LTA: Large Twin Aisle (psx)

VLA: Very Large Twin Aisle (pax)

WB: Widebody (STA+LTA+VLA)

Source data:

DoT/Volpe Center, Flemming et al,: basis of 2022 ICAO Environmental Report, Chapter 1, p24

https://www.icao.int/environmental-protection/Documents/EnvironmentalReports/2022/ICAO%20ENV%20Report%202022%20F4.pdf

Airbus Global Market Forecast (GMF) 2022-41: https://www.airbus.com/sites/g/files/jlcbta136/files/2022-07/GMF-Presentation-2022-2041.pdf Boeing Current Market Outlook (CMO) 2022-41: https://www.boeing.com/commercial/market/commercial-market-outlook/index.page?

Single-Aisle Transport Airplane Market

	*China COMAC C919					A320 Family Improvement						A320 Family Replacement				
Future Product	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035

Industry Product Dev

New Airplane EIS

Extensive European funding for commercial aviation technology, including COVID-mitigation efforts –

- Horizon Europe (Clean Aviation \$4.6b, Clean Hydrogen \$2.2b, Made in Europe \$2.2b)
- Next Generation EU Recovery fund fostering hydrogen economy, sustainable fuels
- Country level aviation R&D Germany, France, UK (\$800m plus)

Policy issues:

- Emissions/efficiency could become market access barrier (countries contemplating fuel efficiency/ emissions restrictions for future entry into EU airspace)
- Energy infrastructure will significantly impact ability to adopt alternative energy sources for aviation (Hydrogen, alternative fuels)

U.S. Aviation Climate Action Plan

Global Context for Sustainable Aviation

U.S. aviation goal is to achieve **net-zero greenhouse gas emissions by 2050.**

U.S. Aviation Climate Action Plan is aligned with

- U.S. economy-wide goal
- International Civil Aviation Organization
- Air Transport Action Group

https://www.faa.gov/sites/faa.gov/files/2021-11/Aviation_Climate_Action_Plan.pdf

The U.S. is working with the global community to achieve net-zero greenhouse gas emissions by 2050 using a common basket of measures.

NASA Sustainable Aviation Strategy

Aviation Pillars for a Sustainable Future

Global Aviation GOAL: net-zero carbon emissions by 2050

NASA Sustainable Aviation Strategy

Investment in innovation today paves the way to a net-zero carbon and beyond aviation future

SFNP Scope

within broader sustainable aviation strategy

Sustainable Aviation

safe, clean, quiet, economical, operable, marketable

Sustainable Flight National Partnership (SFNP)

- Accelerating aviation towards net-zero carbon
- Focus on energy efficiency improvements and Sustainable Aviation Fuels (SAF)
- Demonstrate/transfer promising/likely technology and concepts beyond current next-gen baseline today
- Impact next-generation transport aircraft (2030s) and near-term and future operations (2020s)
- Significant near-term market opportunities

- Powering aviation to net-zero carbon and beyond
- Focus on alternative energy and propulsion architectures and non-CO₂ driven climate impacts
- Explore/early development of technology and concepts for more radical change, demonstrate contrail management for current-gen and beyond aircraft
- Impact beyond next-gen transport aircraft (2040s) and near-term and future aircraft operations (2020s)
- Catalyze and stimulate new energy paradigms

Beyond SFNP

Sustainable Flight National Partnership (SFNP)

Sustainable Flight National Partnership

Next-Generation Capability on the Path to Net-Zero Greenhouse Gas Emissions by 2050

Advance engine efficiency and emission reduction

Enable integrated trajectory optimization

Advance airframe efficiency and manufacturing rate

Enable use of 100% sustainable aviation fuels

Accelerate toward net-zero greenhouse gas emissions by 2050 through 25-30% energy efficiency improvements in next-generation transports, 100% sustainable aviation fuel, and optimal trajectories.

Integrated Aviation Systems Program

Aerosciences Evaluation and Test **Capabilities Portfolio**

Advanced Air Vehicles Program

Transformative Aeronautics Concepts Program

Airspace Operations and Safety ARMD PROGRAMS

Partnering with Aviation Community Program

Sustainable Flight National Partnership (SFNP)

NASA Projects

1 Advanced Air Transport Technology (AATT)

2 Hi-rate Composite Aircraft Manufacturing (HiCAM)*

3 Hybrid Thermally Efficient Core (HyTEC)*

4 Electrified Powertrain Flight Demonstrations (EPFD)*

5 Sustainable Flight Demonstrator (SFD)*

6 Air Traffic Management Exploration (ATM-X)

7 Transformational Tools and Technology (TTT)

* focused SFNP

19

www.nasa.gov

Subsonic Transport Technology Prioritization

Subsonic Transport Strategy Based on over a Decade of Research, Concept and Technology Development, and NASA-Industry Partnership

www.nasa.gov | 20

* Sponsored by FAA Office of Environment & Energy (AEE)

NASA

Subsonic Transport Technologies

NASA

Ensure U.S. industry is the first to establish the new "S Curve" for the next 50 years of transports

Transonic Truss-Braced Wing 5-10% fuel burn benefit

Small Core Gas Turbine 5-10% fuel burn benefit

Electrified Aircraft Propulsion ~5% fuel burn and maintenance benefit

High-Rate Composite Manufacturing 4-6x manufacturing rate increase

Planned

Notional

......

	FY20	FY21	FY22	FY23	FY24	FY25	FY26	FY27	FY28	FY29	
						Te	chnology R	eadiness Tar	get		
	Model Base Analysis &	ed Systems Engineerin	g					t Test"			
 EPFD GE Aviation readiness for GE Prelimin magniX PDF AATT/Electrified Completed A Completed N 	and magniX Us or single-aisle a ary Design Rev R will be in 1QF Hi Rate Co I Aircraft Propul Altitude Integrat	SA Inc. cont ircraft. view (PDR) Y24 after co mossite Air Ision ted Test (AII it breaker te	racts are in p completed in ompletion of craft) with Gene chnology wit	place to mate 4QFY22. configuration ral Electric, o th 3 partners	ure MW-clas n trade stud demonstratii (Navy, GE	ss hybrid ele ies ng high-pow & Raytheon	ectric propul Mfa 8 Sta er, high-volt) as part of l	sion systems Internal Dam age EAP po EAP Fault M	s & demons wertrain at anagemen	strate flight altitude con t contracts	nditions. - one of
	Hybrid The Core (HyTE	rmally Efficiency	ient	Co	re Award(s) O Pc) wer Extract	Co ion Test	ore Demons	tration		
www.nasa.gov 23	Electrified	Powertrain Partner	Flight Dem Selection	onstration (EPFD)	Flight Test	S				
	Electrified Technologi	Aircraft Pro es (AATT) `	pulsion MW Altit	TC Cc ude Capabili NEAT)	ompletion ity	Achiev pr	re TRL 6 ir roduc <u>t dec</u>	n time for ir ision-makir	ndustry ng		Planned Notional

Project implementing Technology Development Phase

- Completed System Requirements, Baseline Definition, Technology Assessments & Development Roadmaps
- Conducted experiments of high-rate materials & manufacturing concepts at coupon/element levels. Data to help estimate potential impact on production rate and to assess material properties & failure mechanisms.
- Multi-party Cooperative Research Teams formed & integrated plans developed. Making awards of Cooperative Agreements for work to be performed July 2022 to June 2024
- Leveraging Advanced Composites Consortium (19 partners)

Model-Based Systems Analysis & Engineering SFNP Vision

Systems-level, digital integration across SFNP projects capped by a Digital Flight Test

Sustainable Aviation Operations Demonstrations

NASA's Vision for Sustainable Aviation Operations ~2035

- Integrated trajectories optimized for environmental benefit
- Advanced flight deck capabilities to operate on those trajectories
- Tailored services that support safe integration of all diverse operations

Increased operational efficiency reduces fuel burn, carbon emissions, contrail formation, and ozone impact.

NASA Led SFNP Operations Demonstrations

Collaborative Digital Departure Reroute (SFNP-Ops-1, FY22-25)

Sustainable Oceanic Airborne Re-Routing (SFNP-Ops-2, FY26) Irregular Ops Recovery/Disruption Management (SFNP-Ops-3, FY27)

4D Trajectory Optimization (SFNP-Ops-4, FY28)

SFNP-Ops = Sustainable Flight National Partnerships - Operations

Sustainability Goals: Deliver reduction in emissions, fuel, and noise of aviation operations through digital services technology

Sustainable Aviation Operations Demonstrations

www.nasa.gov | 32

FY 2022 Realized Benefits

Collaborative Digital Departure Re-Route

Joint partner flight demonstration of re-Routing Technology via Trajectory Option Set (TOS) by rerouting flights and departures at Dallas Fort Worth (DFW) and Dallas Love Field (DAL) International Airports with FAA, American Airlines, Southwest Airlines, and Envoy Air.

Sustainable Aviation Fuel and Non-CO₂ Impacts

NASA = Supporting Role

Sustainable Aviation Fuels

Enable the use of 100% sustainable aviation fuels (SAF) and reduce climate impact

Scope

 Support adoption of high-blend ratio sustainable aviation jet fuels

Benefits

- Reduced aviation environmental impact
- Reduced uncertainty for climate impact of aviation-induced cloudiness
- Improved efficiency/emissions with drop-in synthetic and biofuels

Approach

 Characterize high-blend sustainable aviation jet fuel emissions on ground and in flight

Future SAF Research Plans in Development

Climate Scientists' View of Aviation Impacts

- Lee et al. (2021) represents latest and most comprehensive assessment of aviation's climate impacts
- Non-CO₂ impacts comprise two-thirds of the net radiative forcing from aviation
- Lot of uncertainty in these estimates. Cruise observational data critically lacking!

Lee et al. (2021) "The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018" *Atmospheric Environment*, <u>https://doi.org/10.1016/j.atmosenv.2020.117834</u>

"...to halt aviation's contribution to global warming, the aviation sector would need to achieve net-zero CO_2 emissions and declining non-CO₂ radiative forcing ..: neither condition is sufficient alone." Lee et al. (2021)₃₆

Need to understand the

Need to fly aircraft with lean burn combustor tech (e.g. 737-MAX) at flight altitude to understand contrails

"soot-poor" regime and

do it at flight altitude to

understand contrails

Figure adapted from Kärcher, *Nature Communications*, 2018.

Red circles show the approximate Number Els observed during the 2014 ACCESS-II and 2018 ND-MAX/ECLIF-II flight test series.

Moore et al., Nature, 2017; Voigt et al., Nature Comms. Earth & Environ., 2021

Flight Required to Link Emissions to Contrails – Combustor Tech + SAF Important Future SAF/Emissions Research Plans in Development

www.nasa.gov | 3

Sustainable Flight National Partnership

the baseline projects are established and active

opportunity now to up-level and strengthen the partnership between the elements and organizations "TEAM USA"

Exploratory Stage

- Precompetitive discussion on mutually beneficial topics
 - priorities/advocacy for U.S. aviation competitiveness
 - inspiring/insuring the next generation aviation workforce
 - other
- Conceptually no head, but NASA de facto leadership
 - NASA + Other Gov't Agencies
 - U.S. aviation community participation based on funded collaborative partnerships

Concluding Remarks

Global aviation faces significant challenges to sustainable growth

- Halt aviation's contribution to global warming without suppressing flight demand and without out-of-sector offsets, while remaining a viable and valued cornerstone of transportation (safe, clean, quiet, efficient, operable, economical, marketable)
- Challenges require multiple, often interdependent, solutions across technology, operations, and energy domains
- No silver bullets

NASA Aeronautics addressing the challenges of Sustainable Aviation

- Maturing and demonstrating the most promising solutions for application in the 2030s
- Exploring innovative solutions for application 2040+

Follow Us

www.nasa.gov/aeroresearch/solicitations

www.nasa.gov/aeroresearch/strategy