

Cathode Optimization for All-Solid-State Lithium Sulfur Batteries

Yi Lin,¹ Rodolfo I. Ledesma,² Vesselin I. Yamakov,² Ji Su,¹

Donald A. Dornbusch,³ James J. Wu,⁴ Rocco P. Viggiano³

¹Advanced Materials & Processing Branch, NASA Langley Research Center, Hampton, VA 23681; ²National Institute of Aerospace, Hampton, VA 23666; ³Materials Chemistry and Physics Branch, NASA Glenn Research Center, Cleveland, OH 44135; ⁴Photovoltaic and Electrochemical Systems Branch, NASA Glenn Research Center, Cleveland, OH 44135

2022 Materials Research Society (MRS) Fall Meeting & Exhibit

November 30, 2022 Boston, MA

Why is NASA Interested in Solid-State Batteries?

Why is NASA Interested in Solid-State Batteries?

SABERS: Solid-state Architecture Batteries for Enhanced Rechargeability and Safety

Dry-Pressed Electrodes Enabled by Holey Graphene

Acc. Chem. Res. 2022, 55, 3020-3031.

ACS Publications

www.acs.org

Li Ion Conductivity through hG Sheets

□ Li ion can conduct through the thickness of holey graphene (hG) – as long as the holes are at least 25% in size of the solid-state electrolyte particles.

ACS Appl. Mater. & Interfaces 2022, 14, 21363-21370.

- □ Active material: S
- □ Solid electrolyte (SE): Li₆PS₅CI (LPSC)
- Carbon: CB (carbon black) vs hG (holey graphene)

Advanced Materials and Processing Branch

NASA Langley Research Center

All-Solid-State S Cathodes

Dry-Pressed Cathode/SE Bilayer Discs

CB

hG

Car a same

Both composites are compressible to form robust cathode/SE bilayer discs

□ LPSC glass electrolyte serves as binder

☐ hG as "cold pressable hosts" is not an obvious advantage…?

Advanced Materials and Processing Branch

NASA Langley Research Center

Dry-Pressed Cathode/SE Bilayers

Cathode Microstructures

Advanced Materials and Processing Branch

NASA Langley Research Center

All-Solid-State Li-S Cell Impedance Characteristics

□ The use of hG provides much lower impedance, especially in low frequency region.

Li Ion Diffusion Properties

D_{Ti}^+	_	R^2T^2	
DLi	_	$2A^2n^4F^4c^2{\sigma_w}^2$	

	D _{Li+} (cm²/s)
СВ	$3.0 imes 10^{-18}$
hG	$3.9 imes 10^{-17}$

The use of hG allows one magnitude higher Li ion diffusion through the cathode.

All-Solid-State Li-S Cell Performance

Advanced Materials and Processing Branch

NASA Langley Research Center

60°C

60°C

hG

800

1000

600

СВ

0

hG

3

Strategies toward High S Utilization

Increase Operation Temperature

S Melt Infiltration

Morphology of mS in Cathode Discs

Advanced Materials and Processing Branch

NASA Langley Research Center

mS Improves Cathodic Interphase Contacts

□ ~3 times Li⁺ diffusivity

Design of Experiment (DOE) Studies

Li ion diffusivity

Composition/Process Optimization

- □ 20 unique compositions
 - ✤ S: 10 50%
 - ✤ hG₁+hG₂: 5-20%; hG₁: 0-15%; hG₂: 0-20%
 - ✤ SE₁+SE₂: 30-85%; SE₁: 0-75%; SE₂: 0-70%
 - No hG₁ = no melt infiltration

Room Temperature Discharge Capacity

- □ Solid-state S cathodes were prepared by **solvent-free pressing** a mixture of S, solid electrolyte, and carbon
- □ Holey graphene provides robust composite cathode architecture, thus enhanced electrochemical performance (in comparison to carbon black)
- High S utilization was achieved at high mass loading (> 5 mg/cm²) in all-solidstate cells
- □ Optimization of all-solid-state S cathodes was achieved via DOE studies

Acknowledgements

NASA Convergent Aeronautics Solutions (CAS) Project

□ NASA Transformational Tools and Technologies (TTT) Project

□ NASA **SABERS** Team

□ Student Interns:

- Abigail Durgin
- Christian Plaza-Rivera
- Brandon Walker
- Lucy Somervill
- Rehan Rashid