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Modern distributed hybrid and electric propulsion aircraft, including vertical, short, and
conventional takeoff and landing configurations, exhibit significant aero-propulsive complexity
and a large number of interacting test factors. This paper presents the development and
evaluation of experiment designs for aero-propulsive characterization of distributed propulsion
aircraft. Five different foundational response surface designs are evaluated to inform the
development of two sequential design approaches tailored to complex aircraft aerodynamic
characterization experiments. The first approach, which builds on sequential face-centered
central composite designs, has been used previously to develop aero-propulsive models for
complex aircraft using wind tunnel testing. The second approach is a new design strategy
leveraging a regular I-optimal and nested I-optimal design that was developed for this study.
The two sequential design strategies are compared for experiments with a large number
of test factors using pre-experiment design evaluation metrics, as well as modeling results
obtained from simulated wind tunnel data for the NASA LA-8 aircraft. The design evaluation
metrics show that the sequential I-optimal base design has higher statistical power, lower
correlation among candidate regressors, lower prediction variance, and more precise parameter
estimates. The simulated wind tunnel experiments conducted using each design reveal that
the sequential I-optimal base design has better predictive capability with fewer test points.
The experiment design and evaluation procedures are described in detail to inform future
aerodynamic characterization experiments for complex aircraft.

I. Introduction
Many complex distributed hybrid and electric propulsion aircraft concepts have emerged to enable future Advanced

Air Mobility (AAM) transportation missions [1–6]. There are many design concepts with a variety of mission profiles,
which include vertical takeoff and landing (VTOL), short takeoff and landing (STOL), and conventional takeoff and
landing (CTOL) configurations. Common characteristics of these modern aircraft include the use of many control
surfaces and propulsors, as well as significant propulsion-airframe interactions. There has been a desire to study these
aircraft in recent years which has led NASA Langley Research Center to develop the GL-10 [7] and LA-8 [8] aircraft
as the first in a series of complex electric VTOL (eVTOL) aircraft enabling advancements in many areas including
rapid vehicle development [9], computational predictions [10], flight controls [11, 12], wind tunnel testing [13–15], and
flight testing [16–19]. One of the applications of these aircraft is to study the complex aero-propulsive characteristics
associated with eVTOL aircraft configurations [20–22].

Traditional aircraft aerodynamic characterization methods generally involve using one-factor-at-a-time (OFAT)
experiments, where testing is commonly conducted by sweeping one variable with the other variables held at a constant
setting. This approach has been used successfully for many years in aerospace testing and yields suitable results
for conventional aerospace vehicles. However, traditional static OFAT testing is not practical for developing models
describing the complex nonlinear aerodynamics and interactions present with distributed propulsion aircraft due to the
large number of test factors. Fortunately, experiments planned using design of experiments (DOE) [23] and response
surface methodology (RSM) [24] theory can efficiently scale to a large number of factors, allowing tests to be completed
in a reasonable amount of time while also supporting identification of interaction effects. DOE/RSM-based testing
fundamentally provides a statistically-rigorous experiment design approach supplying rich information content in
a relatively compact data set. The model development process also benefits from additional design properties of
orthogonality, randomization, replication, blocking, and sequential testing [23].

As an example of the efficiency gains realized using DOE/RSM techniques, consider a complex aircraft with
22 test factors—the number of factors independently varied in static LA-8 wind tunnel experiments. OFAT testing
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covering all possible combinations of each test factor at three different levels (a low, medium, and high value) requires
31,381,059,609 test points. Alternatively, a minimum run resolution V, face-centered central composite design (CCD)
with one center point, which also tests three levels of each factor and allows characterization of interactions among
all pairs of test factors as well as quadratic response variation with each test factor, requires only 299 test points. A
two-dimensional slice of the OFAT and face-centered CCD factor space is shown in Fig. 1a. This example comparing
the number of test points for a three-level OFAT and CCD test matrix is expanded to between 5 and 30 test factors in
Fig. 1b. Clearly, application of the CCD response surface design has substantially reduced the number of required test
points, while still allowing characterization of nonlinear, interactional features.

(a) Two-dimensional design space slice (b) Number of test points

Fig. 1 Comparison of three-level OFAT and minimum run resolution V, face-centered CCD experiments.

This paper presents an assessment of multiple static experiment designs and evaluates their relative utility for
application to experiments characterizing complex distributed propulsion aircraft. A new DOE/RSM test matrix design
approach is formulated and compared to standard Rapid Aero Modeling (RAM) test blocks [21, 25–27] using design
evaluation metrics and prediction capability assessment from simulated LA-8 wind tunnel experiments. The paper is
organized as follows: Section II introduces the LA-8 aircraft, provides an overview of its wind tunnel tests, and describes
the LA-8 wind tunnel simulation applied in this paper. Section III compares five foundational response surface designs
using pre-experiment design evaluation metrics. This analysis informs presentation of a new block design approach
developed alongside the RAM block design approach in Sec. IV. A comparison of pre-experiment design evaluation
metrics for the two sequential design approaches is shown in Sec. V. An overview of the employed model identification
methods is given in Sec. VI, followed by modeling results for simulated wind tunnel experiments presented in Sec. VII.
Overall conclusions are summarized in Sec. VIII.

II. LA-8 Aircraft
The static experiment designs presented in this paper were applied to develop an aero-propulsive model for the

Langley Aerodrome No. 8 (LA-8) vehicle [8]. The LA-8, pictured in Fig. 2, is a subscale, tandem tilt-wing, distributed
electric propulsion aircraft configuration built as a testbed for eVTOL aircraft technology. The LA-8 was developed
at NASA Langley Research Center as one of several eVTOL research aircraft intended to explore their unique flight
characteristics and resolve implementation challenges to help bring similar full-scale vehicles into mainstream operation.
The LA-8 is equipped with 20 control effectors, including two tilting wings, four elevons, four flaps, two ruddervators,
and eight electric motors/propellers. Figure 3 is a photo of the LA-8 with annotations showing the vehicle propulsor and
control surface definitions.

A series of LA-8 vehicle wind tunnel experiments [14, 15, 21, 22] have been performed in the NASA Langley
12-Foot Low-Speed Tunnel [28] to develop a high-fidelity aero-propulsive model of the aircraft, as well as investigate
wind tunnel test techniques and aero-propulsive characteristics for eVTOL aircraft. The experiments have included
OFAT testing for envelope expansion and DOE/RSM testing for aero-propulsive model development. The experimental
factors specified for testing at several different tunnel dynamic pressure settings were angle of attack 𝛼, angle of
sideslip 𝛽, wing angles 𝛿𝑤1 , 𝛿𝑤2 , elevon deflection angles 𝛿𝑒1 , 𝛿𝑒2 , 𝛿𝑒3 , 𝛿𝑒4 , flap deflection angles 𝛿 𝑓1 , 𝛿 𝑓2 , 𝛿 𝑓3 , 𝛿 𝑓4 ,
ruddervator deflection angles 𝛿𝑟1 , 𝛿𝑟2 , and motor pulse width modulation (PWM) commands 𝜂1, 𝜂2,..., 𝜂8, resulting in
22 independently varied factors. Although the test matrices were defined using experimental factors of airflow angles
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(a) LA-8 front view (b) LA-8 rear view

Fig. 2 LA-8 mounted in the NASA Langley 12-Foot Low-Speed Tunnel.

𝜹𝒘𝟐

𝜹𝒘𝟏
𝜹𝒇𝟏

𝜹𝒆𝟏 𝜹𝒇𝟐

𝜹𝒆𝟑 𝜹𝒆𝟒

𝜹𝒆𝟐

𝜹𝒇𝟒𝜹𝒇𝟑 𝜹𝒓𝟏 𝜹𝒓𝟐

𝒙𝒃

𝒚𝒃

𝒏𝟏
𝒏𝟐 𝒏𝟑 𝒏𝟒

𝒏𝟓
𝒏𝟔 𝒏𝟕

𝒏𝟖

front

Fig. 3 LA-8 propulsor and control surface definitions.

𝛼, 𝛽 and motor PWM commands 𝜂1, 𝜂2,..., 𝜂8 for operational convenience, modeling was performed using body-axis
velocity components 𝑣, 𝑤 and measured propeller rotational speeds 𝑛1, 𝑛2,..., 𝑛8. Note that forward body-axis velocity 𝑢

is not included as an explanatory variable, but its effect is implicitly described by the set of aero-propulsive models
identified at different dynamic pressure settings. The LA-8 wind tunnel-based aero-propulsive model development
approach is described further in Ref. [21].

The experiment designs compared in this paper were executed in an LA-8 simulation modeling the primary
aero-propulsive characteristics of tilt-wing aircraft. The aircraft components included in the model were the fuselage,
two rotating wings, inverted v-tail, four elevons, four flaps, two ruddervators, and eight wing-mounted propellers with
geometry and placement consistent with the LA-8 vehicle. Other smaller components, such as winglets and propeller
support struts, were not included in the model. The semi-empirical aircraft model utilizes strip theory-based tilt-wing
aerodynamic predictions [29] combined with high-fidelity LA-8 propeller models identified from isolated propeller
wind tunnel testing [30]. For this study, force and moment predictions were corrupted using zero-mean, Gaussian, white
noise with measurement noise standard deviations representative of values seen in the LA-8 wind tunnel tests. The
simulation was intended to be representative of LA-8 wind tunnel test results to inform future wind tunnel experiments
and allow rapid, inexpensive experimentation in a controlled, repeatable test environment. The simulated experiments
were executed at a dynamic pressure of 𝑞 = 3.5 psf (freestream airspeed of𝑉 = 54.3 ft/s at standard sea-level conditions),
with the test factor ranges shown in Table 1. This condition represents a high-speed transition phase of flight for the LA-8
aircraft. Multiple dynamic pressure settings need to be tested to develop a full-envelope aero-propulsive model [21], but
these experiments provide a suitable data set for evaluation and comparison of experiment designs.
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Table 1 LA-8 simulated wind tunnel experiment test factor ranges at 𝒒̄ = 3.5 psf (𝑽 = 54.3 ft/s)

Factor(s) Units Minimum Maximum
𝛼 deg −6 +6
𝛽 deg −5 +5

𝛿𝑤1 , 𝛿𝑤2 deg 0 +25
𝛿𝑒1 , 𝛿𝑒2 , 𝛿𝑒3 , 𝛿𝑒4 deg −25 +25
𝛿 𝑓1 , 𝛿 𝑓2 , 𝛿 𝑓3 , 𝛿 𝑓4 deg 0 +20

𝛿𝑟1 , 𝛿𝑟2 deg −30 +30
𝑛1, 𝑛2, ..., 𝑛8 rpm 3700 6100

III. Evaluation of Foundational Response Surface Experiment Designs
Within the body of DOE/RSM theory, there are multiple response surface design types that can yield an adequate

model for experiments with a large number of test factors. This section compares five different 22-factor, cuboidal,
completely randomized response surface experiment designs supporting identification of a full quadratic design model
(all possible linear, pure quadratic, and two-factor interaction model terms). All the experiment designs presented
in this paper were created using Design-Expert®, a commercially available statistical software package [31]. The
designs include: (1) a minimum run resolution V, face-centered central composite design (FCCCD); (2) an 𝐼-optimal
design; (3) an 𝐴-optimal design; (4) a 𝐷-optimal design; and (5) a distance-based optimal design. The FCCCD is
composed of a two-level fractional factorial design, six center points, and a low and high axial point for each test factor,
for a total of 304 test points. Minimum run resolution V fractional factorial designs contain the minimum number of
test points to support estimation of linear and two-factor interaction model terms. The axial test points augment the
fractional factorial design to allow estimation of pure quadratic model terms. The center points aid in stabilization
of the prediction variance within the experimental region and allow estimation of pure error [23]. The other designs
considered are 𝐼-, 𝐴-, 𝐷-, and distance-based optimal designs for a full quadratic design model, each with the same
number of test points and center points as the FCCCD to allow direct comparisons of the designs. It has also been
observed in related research that using the same number of test points as a minimum run resolution V FCCCD for a
given number of test factors generally yields good design evaluation metrics for optimal designs. 𝐼-optimal designs
minimize the integrated prediction variance for a predefined model order over the range of factors [23, 24, 32, 33].
Alternatively, 𝐷- and 𝐴-optimal designs focus on optimizing the design for precise estimation of model parameters for a
predefined model order. 𝐷-optimal designs minimize the confidence ellipsoid volume of the model parameters and
𝐴-optimal designs minimize the sum of the variances of model parameters. The distance-based design is a Maximin
design, or a design where the minimum distance between design points is maximized [24], that is modified to ensure
that model terms are not aliased [31]. The designs were optimized using 298 free design points and one center point.
After design optimization had completed, 5 additional center points were added to the design and the test matrix was
re-randomized. This was done because it has been noted that including multiple replicate points in the center of a design
during the optimization process can repel the optimized points away from the interior of the design space.

Figure 4 shows two-dimensional slices of the 22-factor space for each design. The figure shows that the 𝐼- and
𝐴-optimal designs cover the broadest number of individual factor settings in two-dimensions, although, the test points
are mostly concentrated around the design space boundaries. The 𝐷-optimal and distance-based designs are more
heavily concentrated around the design boundaries, with very few points in the interior of the displayed factor space.
The FCCCD design only tests the low, high, and center value of each test factor. Favoring the design space boundaries
can result in significant bias error in the interior of the design space when there are nonlinearities not described by
the assumed model [24]. The remainder of this section presents a comparison of the design evaluation metrics of the
five candidate base designs. These metrics provide insight into the design quality prior to conducing an experiment.
Evaluation of the base designs is then used to justify the choice of a new sequential design aimed at mitigating against
bias errors in the interior of the design space.
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Fig. 4 Two-dimensional slices of the 22-factor space for each base design.

A. Statistical Power
Statistical power is the probability of detecting a significant effect in a model [23, 32, 34]. In other words, power is

the probability of including a particular model term that is significant to the model. Power is a function of the number of
design points, the placement of the design points, the significance level 𝛼𝑝 , and the ratio of the effect size 𝛿 and noise
level 𝜎. A general rule of thumb for experiment design is to strive for statistical power of at least 80% [34].

The lowest power among all the linear (L), interaction (I), and quadratic (Q) model terms for each base design is
shown graphically in Fig. 5 and numerically in Table 2. Figure 5a and Table 2a show the power for each design with
𝛼𝑝 = 0.05 and 𝛿/𝜎 = 2, which are common values used when assessing power. All designs have nearly 100% power
for the linear and interaction model terms. The power for quadratic model terms is just below 80% for the FCCCD
and distance-based design, whereas the 𝐼-, 𝐴-, and 𝐷-optimal designs have close to 100% power for quadratic model
terms. Figure 5b and Table 2b show the power for each design with 𝛼𝑝 = 0.0001 and 𝛿/𝜎 = 1, which are much more
conservative numbers to use in the power calculation and, accordingly, the power is lower. The FCCCD design has
the lowest power for each classification of model terms, followed by the distance-based design. The highest power is
generally observed for the 𝐼- and 𝐴-optimal designs. This suggests that models estimated from the 𝐼- and 𝐴-optimal
designs have a lower probability of failing to include model terms that are significant to the model.

Table 2 Base design power comparison (expressed as a percentage)

(a) Power calculation with 𝜶𝒑 = 0.05 and 𝜹/𝝈 = 2

Model Power for Power for Power for Power for Power for
Terms FCCCD 𝐼-optimal design 𝐴-optimal design 𝐷-optimal design distance-based design

L 99.999996 100.0000000000 100.0000000000 99.9999999999 99.999999995
I 99.99991 99.9999999997 99.9999999999 99.9999999999 99.9999996
Q 79.8 99.9999999999 99.9999999999 99.8 76.8

(b) Power calculation with 𝜶𝒑 = 0.0001 and 𝜹/𝝈 = 1

Model Power for Power for Power for Power for Power for
Terms FCCCD 𝐼-optimal design 𝐴-optimal design 𝐷-optimal design distance-based design

L 27.8 85.7 77.4 69.4 46.0
I 19.6 54.4 57.1 59.1 34.1
Q 0.4 66.2 70.9 4.3 0.4
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(a) Power calculation with 𝜶𝒑 = 0.05 and 𝜹/𝝈 = 2 (b) Power calculation with 𝜶𝒑 = 0.0001 and 𝜹/𝝈 = 1

Fig. 5 Base design power comparison.

B. Correlation Metrics
Data collinearity is defined as a correlation between regressors high enough to cause corrupted model identifica-

tion [35]. Data collinearity will cause difficulty in both model structure determination and parameter estimation because
the effects of certain regressors on the response cannot be distinguished. Model structure identification is corrupted by
candidate regressor correlation, particularly for the large number of candidate model terms associated with modeling
eVTOL aircraft, because an algorithm is more inclined to include model terms that lack physical reality or exclude
model terms describing significant aerodynamic phenomena [21]. Parameter estimation algorithms cannot differentiate
between highly correlated model terms, resulting in inaccurate parameter estimates and uncertainties from the poorly
conditioned estimation problem [35]. For these reasons, it is important to develop an experiment design with low
correlation among candidate regressors.

Correlation between two candidate regressors can be assessed using the pairwise correlation coefficient

𝑟𝑖 𝑗 =
(𝒙𝑖 − 𝑥𝑖)𝑇 (𝒙 𝑗 − 𝑥 𝑗 )√︁

(𝒙𝑖 − 𝑥𝑖)𝑇 (𝒙𝑖 − 𝑥𝑖)
√︁
(𝒙 𝑗 − 𝑥 𝑗 )𝑇 (𝒙 𝑗 − 𝑥 𝑗 )

(1)

where 𝒙𝑖 and 𝒙 𝑗 are two regressor measurement histories, with means denoted 𝑥𝑖 and 𝑥 𝑗 , respectively. A correlation
coefficient value of zero means the regressors are uncorrelated, or orthogonal, and an absolute correlation coefficient of
one indicates that the regressors are completely correlated. A correlation coefficient between regressors with magnitude
greater than 0.9 indicates that data collinearity problems may be encountered [35, 36]. Another metric that can be used
to assess candidate regressor correlation is the variance inflation factor (VIF). For the regressors 𝒙 𝑗 , the respective VIF
is

VIF 𝑗 =
1

1 − 𝑅2
𝑗

(2)

where 𝑅2
𝑗

is the coefficient of determination obtained through creating a regression model of 𝒙 𝑗 as a function of all other
regressors. A VIF value greater than 10 suggests that data collinearity may be present [33, 35, 37]. The 𝑟𝑖 𝑗 , VIF 𝑗 , and
𝑅2

𝑗
metrics only quantify correlation between pairs of regressors and, thus, cannot diagnose collinearity among more

than two regressors [35, 38].
An alternative method that can be used to assess multiple correlation between more than two inputs is analysis of

the eigenvalues of 𝑿𝑇𝑿, where 𝑿 is a matrix composed of column vectors of the regressors in the regression model.
The inverse of the 𝑿𝑇𝑿 matrix is required to compute the ordinary least-squares regression solution. The ratio of the
maximum eigenvalue and minimum eigenvalue, 𝜅 = 𝜆max/𝜆min, is the condition number of the 𝑿𝑇𝑿 matrix. A value
of 𝜅 close to one indicates low multiple correlation whereas a large value of 𝜅 indicates an ill-conditioned estimation
problem due to data collinearity. Values of 𝜅 indicating adverse effects from data collinearity range anywhere from 100
to 100,000 depending on the particular data set [35–38].

The pairwise and multiple correlation metrics for each design evaluated for a full quadratic model are shown in
Figs. 6-9. This represents a conservative analysis performed prior to the experiment that assumes all candidate regressors
are included in the model. Many candidate model terms considered here for the full quadratic model were expected to
be excluded through model structure determination after data collection.
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Fig. 6 Maximum absolute 𝒓𝒊 𝒋 values among candidate
regressors in a quadratic model for each base design.

Fig. 7 Maximum VIF𝒋 for candidate regressors in a
quadratic evaluation model for each base design.

Fig. 8 Maximum 𝑹2
𝒋 for candidate regressors in a

quadratic evaluation model for each base design.
Fig. 9 Condition number of 𝑿𝑻 𝑿 in a full quadratic
evaluation model for each base design.

Figure 6 shows the maximum absolute pairwise correlation value, |𝑟𝑖 𝑗 |, among pairs of linear regressors (L-L),
linear-interaction regressors (L-I), linear-quadratic regressors (L-Q), interaction regressors (I-I), interaction-quadratic
regressors (I-Q), and quadratic regressors (Q-Q). The maximum VIF 𝑗 and 𝑅2

𝑗
for linear (L), two-factor interaction

(I), and quadratic (Q) model terms are shown in Figs. 7-8. Figure 9 shows the condition number 𝜅 of 𝑿𝑇𝑿 for a full
quadratic model. The overall takeaway from these figures is that the correlation metric values are generally lowest for
the 𝐼- and 𝐴-optimal designs. The correlation metrics are generally highest for the FCCCD and distance-based designs,
with the correlation metrics associated with the quadratic model terms being the highest, particularly for the FCCCD,
where the pairwise correlation and VIF for the quadratic regressors are above 0.95, and 19, respectively. This analysis
supports the recommendation given in Ref. [39] against using a face-centered central composite design for a large
number of test factors because of the high correlation among the quadratic model terms.

C. Prediction Variance
Assessment of the prediction variance of a response surface design for a given model structure provides insight into

its precision of prediction and allows comparison of different response surface designs. The variance of the predicted
response is

Var[ 𝑦̂(𝒙0)] = 𝜎2𝒙𝑇0

(
𝑿𝑇𝑿

)−1
𝒙0 (3)

where 𝑦̂(𝒙0) is the predicted response evaluated at the design space location 𝒙0 expanded to the form of the model
structure, 𝑿 is a matrix composed of the designed test points in the form of the model structure, and 𝜎2 is the
measurement error variance [24]. From Eq. (3), the prediction variance is a function of the experiment design, the
model structure, the location in the design space, and the measurement facility error variance. The unscaled prediction
variance (UPV), defined as

UPV =
Var[ 𝑦̂(𝒙0)]

𝜎2 = 𝒙𝑇0

(
𝑿𝑇𝑿

)−1
𝒙0 (4)

removes the dependence on 𝜎2 and, thus, can be used to compare experiment designs when 𝜎2 is unknown prior to
experimentation.

Graphical presentation of the distribution of prediction variance throughout the design space is an effective way to
assess experiment designs. Fraction of design space (FDS) plots, introduced by Ref. [40], depict the prediction variance
distribution over the design space in a concise manner, where the prediction variance metrics are plotted against the
FDS encompassing a prediction variance less than or equal to a particular value. It is also useful to consider the FDS
including a particular model precision, quantified by the confidence interval half-width 𝛿 [33, 41, 42]. The model
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precision 𝛿 normalized by the response standard deviation 𝜎 plotted against FDS provides further insight into the
prediction capability of the model developed from a particular experiment design, prior to conducting the experiment.
For this study, a design was deemed to be adequate for fitting a particular model complexity if 𝛿/𝜎 was less than two for
greater than 95% of the design space. The prediction variance threshold PV∗ used to determine the FDS within a given
model precision level is

PV∗ =

(
𝛿/𝜎

𝑡𝛼𝑝/2,𝑁−𝑝

)2
(5)

where 𝑁 is the number of test points, 𝑝 is the number of parameters in the model, and 𝛼𝑝 is the significance level chosen
as 𝛼𝑝 = 0.05.

Figure 10 shows the UPV and 𝛿/𝜎 threshold values against FDS for each base experiment design using a quadratic
evaluation model order. The average UPV for each design is also shown. The FCCCD and distance-based designs have
the highest UPV and 𝛿/𝜎 threshold across the design space; the 𝐼- and 𝐴-optimal designs have the lowest UPV and
𝛿/𝜎 threshold across the design space. The 𝐼-optimal design has the lowest average UPV, which is expected because
the design objective for the 𝐼-optimal designs is to minimize the average prediction variance across the design space;
however, the prediction variance distribution for the 𝐴-optimal design is very close to the 𝐼-optimal design.

Fig. 10 Prediction variance plots for a quadratic evaluation model for each base design.

Table 3 lists the FDS with 𝛿/𝜎 ≤ 1, 𝛿/𝜎 ≤ 1.5, and 𝛿/𝜎 ≤ 2 for each design using a full quadratic evaluation
model. An adequate FDS (FDS ≥ 0.95) for a normalized model precision 𝛿/𝜎 ≤ 2 is only obtained for the 𝐼-, 𝐷-, and
𝐴-optimal designs. Evaluation with 𝛿/𝜎 ≤ 1 and 𝛿/𝜎 ≤ 1.5 shows that, the 𝐼- and 𝐴-optimal designs have the highest
FDS meeting these 𝛿/𝜎 thresholds.

Table 3 Prediction variance threshold FDS values using a quadratic evaluation model for each base design

Design FDS with 𝛿/𝜎 ≤ 1 FDS with 𝛿/𝜎 ≤ 1.5 FDS with 𝛿/𝜎 ≤ 2
FCCCD 0.000 0.003 0.093
𝐼-optimal 0.048 0.853 0.999
𝐴-optimal 0.037 0.858 0.999
𝐷-optimal 0.000 0.297 0.982

distance-based 0.000 0.003 0.161
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D. Model Parameter Precision
The precision of the estimated model parameters can be assessed using the standard error of individual model

parameters or properties of the (𝑿𝑇𝑿)−1 matrix. Figure 11 shows the highest standard error for linear (L), interaction (I),
and quadratic (Q) model terms for each design. The standard errors are normalized by assuming unity measurement noise
variance and are denoted SE∗. The standard error of the model terms estimated using the FCCCD and distance-based
designs are the largest, particularly for the quadratic model terms, as a consequence of the higher correlation associated
with the quadratic model terms. The 𝐼- and 𝐴-optimal designs generally have the lowest standard error values. Figure 12
shows the scaled 𝐷-optimality criterion [39]

𝐷∗ = 𝑁

(
det

[
(𝑿𝑇𝑿)−1] )1/𝑝

(6)

and the trace of (𝑿𝑇𝑿)−1 which reflects the 𝐴-optimality [24]. The 𝐷-optimal design has the lowest 𝐷∗ and the
𝐴-optimal design has the lowest value of tr[(𝑿𝑇𝑿)−1], as expected. The FCCCD design has the highest 𝐷∗ and
tr[(𝑿𝑇𝑿)−1] values.

Fig. 11 Normalized standard error of the model parameters in a full quadratic model for each base design.

(a) Scaled 𝑫-optimality metric (b) 𝑨-optimality metric

Fig. 12 Overall model parameter precision metrics for a full quadratic evaluation model for each base design.

E. Discussion
The analysis in the previous subsections has shown that the 𝐼- and 𝐴-optimal designs generally have the highest

statistical power for candidate model terms, the lowest correlation among candidate model terms, the lowest prediction
variance across the design space, and the lowest model parameter standard errors. Based on these metrics, the 𝐼- and
𝐴-optimal designs are expected to yield the most appropriate model structure, provide the most precise estimates of
model parameters, and have the best predictive performance. The FCCCD and distance-based designs generally have
the worst design evaluation metrics, and the 𝐷-optimal design generally has moderate values between the most and
least favorable designs. Based on this analysis, the 𝐼- and 𝐴-optimal designs are recommended for experiments with a
large number of test factors in a cuboidal test region, as is needed to develop an aero-propulsive model for a distributed
propulsion aircraft. For this study, the decision was made to proceed with the 𝐼-optimal over the 𝐴-optimal design
because of the slightly better precision of prediction. An 𝐼-optimal design will be expanded in the next section to
address the scarcity of design points in the interior of the design space.

IV. Sequential Response Surface Experiment Designs
Two separate sequential, cuboidal, completely randomized, response surface block designs were executed and

compared to investigate possible improvement of modeling results and reduction of the number of test points needed for
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future aircraft characterization experiments. The designs will be referred to as the face-centered base (FCB) design and
a 𝐼-optimal base (IOB) design. The FCB design has been used previously in wind tunnel and computational testing
for eVTOL aircraft [20, 21, 43] and is the set of test blocks used for the RAM process [25–27]. The IOB design is a
new block design process introduced in this work building off of previous work which developed the FCB design. The
𝐼-optimal design was selected for this study based on the design evaluation analysis presented in Sec. III. The block
design approach for the FCB and IOB designs are described in the following subsections. For each design, a series of
five test blocks was designed to acquire the data necessary to incrementally develop more accurate aero-propulsive
models.

A. Face-Centered Base (FCB) Design
The sequential FCB design blocks for the LA-8 22-factor experiments are as follows [21]:

• Block 1 is the same minimum run resolution V, face-centered central composite design (FCCCD) described in
Sec. III.

• Block 2 is a nested FCCCD. The nested FCCCD was originally developed in Ref. [44], where it was shown to be
an effective design strategy for a 5-factor fixed-wing aircraft aerodynamic characterization experiment. The nested
design augments the conventional FCCCD to allow estimation of pure cubic model terms and provides additional
information in the interior region of the design space. The nested FCCCD applied for this work emulates the
ordinary FCCCD, except that the factorial and axial points are all located at half the distance from the center of
the design space. The nested FCCCD is designed separately from the Block 1 FCCCD (i.e., knowledge of the data
points within Block 1 do not influence the choice of data points in Block 2).

• Block 3 is an 𝐼-optimal design for a full quadratic design model with the number of model points being five
times the number of test factors [20]. Five additional lack-of-fit points, which are selected using the Maximin
distance-based criterion, as well as five additional non-center replicates are also included in the design [39].
Inclusion of five lack-of-fit points and five non-center replicates are the default settings in Design-Expert® for base
optimal response surface designs to permit lack-of-fit testing [31]. The 𝐼-optimal design augments the designs
from previous blocks to sequentially improve the model and avoid duplicating previously tested combinations of
factor settings. In other words, the previously tested FCCCD and nested FCCCD design points are factored into
the optimization algorithm to minimize the prediction variance.

• Block 4 is another augmented 𝐼-optimal design for a quadratic design model, which follows the same augmented
design procedure from Block 3. With fewer test factors, the design model could be increased to a higher order, for
example, including cubic model terms [26, 27].

• Block 5 is another augmented 𝐼-optimal design for a quadratic design model, or the highest design model
complexity from Blocks 1-4, which is used for model validation. The block contains 75 validation test points,
which has been found to provide a good estimate of prediction error while remaining a modest number of test
points. No lack-of-fit, replicate, or center points are included. Because the validation data are 𝐼-optimal test points
designed to augment the data used for modeling to optimally reduce prediction error, but are not used to fit the
models, the data provide a rigorous prediction test for the designed model complexity. The factor settings for
these validation data, however, are dependent on the designs used for model identification and tend to favor the
boundaries of the design space.

B. I-Optimal Base (IOB) Design
The sequential IOB design blocks for the LA-8 22-factor experiments are as follows:

• Block 1 is the same 𝐼-optimal design for a quadratic design model described in Sec. III. The design includes the
same total number of test points and the same number of center points as the Block 1 FCB design to provide a
direct comparison. Lack-of-fit points and non-center replicates are not included in the design.

• Block 2 is a nested 𝐼-optimal design for a quadratic design model, which was inspired by the concept of the nested
FCCCD proposed in Ref. [44]. The nested 𝐼-optimal emulates the same design process as Block 1, except that
the design points are all located at half the distance from the center of the design space. The nested 𝐼-optimal
design was created separately from the Block 1 𝐼-optimal design (i.e., knowledge of the Block 1 design does not
influence the Block 2 design). The design provides more broad coverage of the interior portion of the design
space, which aids in reducing model bias [24].

• Block 3 is an 𝐼-optimal design for a quadratic design model with the number of model points being five times
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the number of experimental factors, following Ref. [20]. Five additional lack-of-fit points and five additional
non-center replicates are also included in the design, following the Block 3 FCB design approach. The 𝐼-optimal
design augments the designs from previous blocks to sequentially improve the model and avoid duplicating
previously tested combinations of factor settings.

• Block 4 is another augmented 𝐼-optimal design for a quadratic design model following the same augmented design
procedure from the previous block, and also following the Block 4 FCB design approach.

• Block 5 contains 75 additional validation test points selected using a random number generator. This block
provides validation data that are agnostic to the model development experiment design and the model complexity
it was designed for. Since this block is design agnostic, it will be used to directly compare the IOB design with the
FCB design later in the paper. Note that for the simulated LA-8 wind tunnel experiments executed for this study,
the validation block was increased to 304 test points (the same number of test points as Block 1 and Block 2)
selected using a random number generator to provide a greater validation sample size. Increasing the number
of validation points for these simulated experiments is justified because of the low computational expense of
executing each test point, but acquiring a large number of validation test points would not be practical for an
expensive and/or time-consuming experiment.

C. Block Design Summary
The FCB and IOB designs are summarized in Table 4. The designs intentionally have the same number of test points

in each block so that the design qualities can be compared directly. The difference between the sets of test blocks is the
type of design used in Block 1, Block 2, and Block 5. It is worth noting that the FCCCD designs are available nearly
instantaneously, whereas each 𝐼-optimal design blocks can take roughly 1-2 hours to create due to the computational
expense of the employed coordinate exchange optimization algorithm [24, 32]. Figures 13-14 show two-dimensional
slices of the 22-factor space for each design. Each block is plotted sequentially with points from the previous blocks to
show how the higher complexity designs fill the design space. The figure shows that the IOB design covers a broader
number of individual factor settings compared to the FCB design. The next section compares the pre-experiment design
evaluation metrics for the FCB and IOB designs.

Table 4 FCB and IOB test block design summary

(a) FCB design

Design Block Cumulative
Block Type Points Points

1 FCCCD 304 304
2 nested FCCCD 304 608
3 𝐼-optimal 120 728
4 𝐼-optimal 120 848
5 𝐼-optimal (validation) 75 923

(b) IOB design

Design Block Cumulative
Block Type Points Points

1 𝐼-optimal 304 304
2 nested 𝐼-optimal 304 608
3 𝐼-optimal 120 728
4 𝐼-optimal 120 848
5 random (validation) 75 923

Fig. 13 Sequential two-dimensional slices of the 22-factor space for each FCB test block.
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Fig. 14 Sequential two-dimensional slices of the 22-factor space for each IOB test block.

V. Sequential Experiment Design Evaluation
This section compares the sequential FCB and IOB experiment design approaches using the pre-experiment design

evaluation metrics described in Sec. III. The designs are assessed sequentially at each block, meaning that the analysis
for each block includes the design points in the current block and all previous blocks.

A. Statistical Power
The lowest statistical power among all the linear (L), interaction (I), and quadratic (Q) model terms for each design

and block number are shown in Fig. 15. The power values are also shown numerically in Table 5. Figure 15a and
Table 5a show the power for each design with common values of 𝛼𝑝 = 0.05 and 𝛿/𝜎 = 2. The FCB design has nearly
100% power for the linear and interaction model terms in all blocks. The power for quadratic model terms is near
80% for Blocks 1-2 and near 100% for Blocks 3-4. The IOB design has nearly 100% power for all model terms in all
blocks. Figure 15b and Table 5b show the power for each design with conservative values of 𝛼𝑝 = 0.0001 and 𝛿/𝜎 = 1,
resulting in lower power. For Block 1, the lowest power among the groups of model terms is between 54% and 86% for
the IOB design and between 0% and 28% for the FCB design. For Block 2, each group of model terms has a power
value below 75% for the FCB design, whereas all model terms have a power above 88% for the IOB design. For Block 3,
the lowest power for the quadratic model terms is 72.3% for the FCB design, but above 99% for the IOB design; the
power for linear and interaction model terms are above 98% for both designs, but the power is higher for the IOB design.
For Block 4, all model terms in each design have a high power, but the power for the IOB design is higher. The overall
takeaway is that, for the same number of design points, the statistical power for the IOB design is always higher than
the FCB design, particularly for the quadratic model terms. This means that for the same significance level, models

(a) Power calculation with 𝜶𝒑 = 0.05 and 𝜹/𝝈 = 2

(b) Power calculation with 𝜶𝒑 = 0.0001 and 𝜹/𝝈 = 1

Fig. 15 FCB and IOB design power comparison.

12



estimated from the IOB design have a lower probability of failing to include model terms that are significant to the
model. The power is also seen to increase as the block number increases, as would be expected when increasing the
total number of available data points.

Table 5 FCB and IOB design power comparison (expressed as a percentage)

(a) Power calculation with 𝜶𝒑 = 0.05 and 𝜹/𝝈 = 2

Model Power for Power for
Block Terms FCB Design IOB Design

1 L 99.999996 100.0000000000
1 I 99.99991 99.9999999997
1 Q 79.8 99.9999999999
2 L 99.9999999999 100.0000000000
2 I 99.999996 99.9999999999
2 Q 84.5 100.0000000000
3 L 100.0000000000 100.0000000000
3 I 100.0000000000 100.0000000000
3 Q 99.9999999999 100.0000000000
4 L 100.0000000000 100.0000000000
4 I 100.0000000000 100.0000000000
4 Q 100.0000000000 100.0000000000

(b) Power calculation with 𝜶𝒑 = 0.0001 and 𝜹/𝝈 = 1

Model Power for Power for
Block Terms FCB Design IOB Design

1 L 27.8 85.7
1 I 19.6 54.4
1 Q 0.4 66.2
2 L 74.6 99.9
2 I 39.5 88.2
2 Q 0.8 91.0
3 L 99.96 99.9996
3 I 98.3 99.6
3 Q 72.3 99.2
4 L 99.999997 99.9999998
4 I 99.990 99.998
4 Q 98.7 99.98

B. Correlation Metrics
The pairwise and multiple correlation metrics for each design evaluated for a full quadratic model are shown in

Figs. 16-19. As mentioned in Sec. III.B, this is a conservative analysis that assumes all candidate regressors are included
in the model and many candidate model terms were expected to be excluded through model structure determination
after data collection. The important takeaway from these figures is that the correlation metric values are generally
lower for the IOB design compared to the FCB design. For the FCB design, the correlation metrics associated with the
quadratic model terms are the highest, particularly for the Block 1 FCCCD and Block 2 nested FCCCD, where the
pairwise correlation and VIF for the quadratic regressors are above 0.95, and 19, respectively. The condition number for
each FCB design block is also higher compared to the corresponding IOB block, indicating that adverse effects from
multiple correlation are greater, particularly for the Block 1 FCCCD and Block 2 nested FCCCD designs. Again, this
analysis assumes a full quadratic model; if a subset of the model terms is selected for the model, then the condition
number will be reduced.

Fig. 16 Maximum absolute 𝒓𝒊 𝒋 values among candidate regressors in a quadratic model for FCB and IOB
designs.
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Fig. 17 Maximum VIF𝒋 for candidate regressors in a quadratic evaluation model for FCB and IOB designs.

Fig. 18 Maximum 𝑹2
𝒋 for candidate regressors in a quadratic evaluation model for FCB and IOB designs.

Fig. 19 Condition number of 𝑿𝑻 𝑿 in a full quadratic evaluation model for FCB and IOB designs.

C. Prediction Variance
Figure 20 shows the UPV and 𝛿/𝜎 threshold values against FDS, as well as the average UPV, for each experiment

design using a quadratic evaluation model order. The UPV and 𝛿/𝜎 threshold curve decreases in value and becomes
more uniform (flat) as the block number increases. Block 1 and Block 2 for the FCB design (a FCCCD and nested
FCCCD) have a significantly higher UPV across the design space compared to Block 1 and Block 2 for the IOB design
(an 𝐼-optimal and nested 𝐼-optimal design). This is expected because the design objective for the 𝐼-optimal designs is to
minimize the average prediction variance across the design space. The respective Block 3 and Block 4 designs have a
more similar prediction variance distribution and average value because both design approaches employ augmented
𝐼-optimal designs for these blocks, but the IOB design blocks still have a lower UPV value across the design space.

Table 6 lists the FDS with 𝛿/𝜎 ≤ 1 and 𝛿/𝜎 ≤ 2 for each design using a full quadratic evaluation model. An
adequate FDS (FDS ≥ 0.95) for a normalized model precision 𝛿/𝜎 ≤ 2 is obtained for each IOB block, whereas this
threshold is only achieved in Block 3 and Block 4 for the FCB design. Evaluation with 𝛿/𝜎 ≤ 1 shows that, for each
block, a larger FDS meets this more stringent requirement for the IOB design compared to the FCB design.
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Fig. 20 Prediction variance plots for a quadratic evaluation model for FCB and IOB designs.

Table 6 Prediction variance threshold FDS values using a quadratic evaluation model for FCB and IOB designs

FCB Design IOB Design FCB Design IOB Design
Block FDS with 𝛿/𝜎 ≤ 1 FDS with 𝛿/𝜎 ≤ 1 FDS with 𝛿/𝜎 ≤ 2 FDS with 𝛿/𝜎 ≤ 2

1 0.000 0.048 0.093 0.999
2 0.000 0.288 0.222 1.000
3 0.448 0.799 1.000 1.000
4 0.953 0.982 1.000 1.000

D. Model Parameter Precision
Figure 21 shows the highest standard error for each group of model terms for each design and block number. The

standard error of the model terms estimated using the FCB design are greater, particularly for the quadratic model terms,
as a consequence of the higher correlation associated with the quadratic model terms. Figure 22 shows the scaled
𝐷-optimality criterion [39] and the trace of (𝑿𝑇𝑿)−1 (representing the 𝐴-optimality [24]). For Block 1 and Block 2,
the IOB design has lower 𝐷- and 𝐴-optimality metrics compared to the FCB designs. For Block 3 and Block 4, the 𝐷-
and 𝐴-optimality metrics are similar for each design.

Fig. 21 Normalized standard error of the model parameters in a full quadratic model for FCB and IOB designs.
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(a) Scaled 𝑫-optimality metric (b) 𝑨-optimality metric

Fig. 22 Overall model parameter precision metrics for a full quadratic evaluation model for FCB and IOB
designs.

E. Discussion
This section presented several pre-experiment design metrics and direct comparisons were made between the

FCB and IOB design approaches assuming a full quadratic model structure. The analysis indicated that the IOB
design has improved statistical power, correlation among model terms, prediction variance, and precision of estimated
model parameters compared to the FCB design. The following sections further investigate the two experiment design
approaches by comparing results from simulated LA-8 wind tunnel experiments.

VI. Model Identification Approach
Aero-propulsive modeling for this effort focuses on developing a polynomial representation of the aero-propulsive

forces and moments as a function of vehicle state and control variables. Factors under test, or close variants (as discussed
in Sec. II and Ref. [21]), are defined as explanatory variables, and a model is identified from the data collected using
the experiment designs described in Sec. IV. Aero-propulsive modeling for tilt-wing, distributed electric propulsion
aircraft requires a different approach compared to conventional fixed-wing and rotary-wing aircraft modeling approaches.
Transitioning eVTOL vehicles can be considered a fixed-wing/rotary-wing hybrid, suggesting that a combination of
modeling approaches will facilitate suitable model development. Accordingly, the modeling variable formulation
described in Ref. [21], and applied here, merges appropriate fixed-wing and rotary-wing modeling attributes to model
the LA-8 and other similar vehicles.

The modeled responses are the dimensional body-axis aero-propulsive forces 𝑋,𝑌, 𝑍 in lbf and moments 𝐿, 𝑀, 𝑁

in ft·lbf. The explanatory variables are defined as the body-axis velocity components 𝑣, 𝑤 in ft/s, propeller speeds
𝑛1, 𝑛2, ..., 𝑛8 in revolutions per second, wing angles 𝛿𝑤1 , 𝛿𝑤2 in radians, elevon deflections 𝛿𝑒1 , 𝛿𝑒2 , 𝛿𝑒3 , 𝛿𝑒4 in radians,
flap deflections 𝛿 𝑓1 , 𝛿 𝑓2 , 𝛿 𝑓3 , 𝛿 𝑓4 in radians, and ruddervator deflections 𝛿𝑟1 , 𝛿𝑟2 in radians. Note that it is important to
perform modeling with explanatory variables expressed in coded units, or in engineering units with the explanatory
variables centered on a reference value, to maintain low correlation among candidate regressors.

The model structure identification and parameter estimation methods used for this work were adapted from the
System IDentification Programs for AirCraft (SIDPAC) software toolbox [35, 45]. The model structure was developed
using the stepwise regression algorithm described in Ref. [46] and the model parameters were estimated using ordinary
least-squares regression. The stepwise regression algorithm is a combination of forward selection and backwards
elimination of candidate regressors where a single regressor is either added to or removed from the model at each
iteration. If the partial 𝐹-statistic for a term included in the model falls below a cutoff threshold 𝐹 (𝛼𝑝 , 1, 𝑁 − 𝑝), the
term is removed from the model. Otherwise, the excluded candidate model terms with the highest correlation to the
unmodeled portion of the response variable is added into the model. The algorithm was run automatically until the
remaining excluded model terms did not surpass the partial 𝐹-statistic cutoff value when added to the model. The
significance level 𝛼𝑝 is commonly chosen as 𝛼𝑝 = 0.05, or 95% confidence that a model term is significant; however,
this threshold has been noted to admit a large number of model terms that lack physical justification for eVTOL
aircraft aero-propulsive modeling problems. Over-parameterizing a model is undesirable because the model can yield
unrealistic response predictions and unnecessary curvature. For the data analyzed in this work, a significance level from
𝛼𝑝 = 0.01 to 𝛼𝑝 = 0.0001 (99% confidence to 99.99% confidence, respectively) appeared to be a good choice to obtain
a parsimonious model with good prediction capability.

After identifying the model structure and parameter estimates, model adequacy was examined using data withheld
from the model development process. Model fit metrics and modeling residuals alone do not provide information about
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the model predictive capability. Assessment of model performance using validation data not used for modeling provides
a more reliable estimate of model prediction accuracy. Validation assessment can be performed by analyzing the
prediction residuals (𝒆 = 𝒛− 𝒚̂) between the measured response 𝒛 and predicted response 𝒚̂. Comparison of modeling and
prediction residuals is useful because a significant increase in the spread of prediction residuals compared to modeling
residuals is a way of diagnosing an inadequate model. Residuals and their statistical properties can be given further
interpretability by normalization. A good error normalization metric is the range of response variable measurements
used to develop the model, range(𝒛) = 𝒛max − 𝒛min. Range normalization provides a fair comparison between prediction
error metrics for different response variables used for aircraft modeling because longitudinal responses are generally
biased above or below zero and lateral-directional responses are generally centered about zero. The normalized residual
vector is defined as:

𝒆∗ =
𝒛 − 𝒚̂

range(𝒛) (7)

Similarly, the normalized root-mean-square modeling error (NRMSE) is defined as:

NRMSE =
1

range(𝒛)

√︄
(𝒛 − 𝒚̂)𝑇 (𝒛 − 𝒚̂)

𝑁
(8)

The range-normalized NRMSE is a good metric for model validation because it:
1) succinctly presents a quantitative assessment and comparison of the model fit and prediction performance,
2) allows comparisons of the prediction capability for responses with different character and units, and
3) is straightforward to interpret as a percent error quantity.

VII. Modeling Results
Separate aero-propulsive models were identified using the data collected from the FCB and IOB simulated wind

tunnel experiments for each sequential test block. Figure 23 shows a comparison of the modeling NRMSE (NRMSE𝑚)
and validation NRMSE (NRMSE𝑣) for the sequential models developed using the FCB and IOB designs. Histories
of normalized modeling residuals and normalized validation residuals, as well as validation NRMSE metric bounds
(±2 NRMSE𝑣), for each block are shown in Figs. 24-27 in the Appendix to compare residual values and verify that the
residuals are independent. The y-axis limits for each response across each block and design type are identical to aid in
visual comparisons of residual character. Additional omitted residual diagnostic plots were viewed for each design to
verify that the residuals were normally distributed and had constant variance.

Fig. 23 Modeling and validation NRMSE for models developed at each test block for LA-8 simulated wind
tunnel experiments.

As can be seen in Fig. 23, most respective IOB-design NRMSE values calculated using the modeling and validation
data for each response are similar and low-valued signifying that a high-quality model has generally been identified
at each block; however, for the first IOB design block, the NRMSE𝑣 values for 𝑍 and 𝑀 are notably larger than the
respective NRMSE𝑚 values suggesting that the Block 1 model for these responses may require improvement to obtain
an adequate model. There is a decrease between the NRMSE𝑣 values between Block 1 and Block 2 for all responses
indicating that augmentation with the nested 𝐼-optimal design has improved the prediction capability. The NRMSE𝑣

values for Block 3 and Block 4 are similar to those obtained for Block 2 indicating that the additional data collected in
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Block 3 and Block 4 provide little additional benefit in terms of prediction capability. These results suggests that only
the first two IOB test blocks need to be executed for this experiment.

For the first FCB design block, the NRMSE𝑣 values for all responses except 𝑁 are significantly larger than the
respective NRMSE𝑚 values suggesting that the model may be deficient, which could be attributed to the sparsity of
interior data points. This residual character is also clearly reflected in Fig. 24a, where the magnitude of normalized
validation residuals for most responses is significantly larger than the magnitude of the respective normalized modeling
residuals. Although model adequacy reservations were noted for the Block 1 IOB design for some responses, the
disparity between the respective modeling and validation NRMSE values is more prominent for the FCB design.
Execution of the second FCB block decreases the NRMSE𝑣 for most responses and results in the NRMSE𝑣 values for
each response being closer to the respective NRMSE𝑚 values; however, the NRMSE𝑣 values are still notably larger
compared to the NRMSE𝑚 values for certain responses. For the Block 3 and Block 4 FCB models, the NRMSE𝑚 and
NRMSE𝑣 values for each response are similar in value, providing confidence that model development was successful.
The NRMSE𝑣 values obtained for the models identified from the Block 3 and Block 4 FCB designs are also similar in
value to the corresponding NRMSE𝑣 values obtained for the Block 3 and Block 4 IOB models, but lower prediction
error is still generally obtained for the models identified using the IOB block designs. 𝐼-optimal designs are optimized
to reduce prediction error for the identified models, so it makes sense that the IOB design blocks result in lower
prediction error values. Future studies are recommended to further investigate the utility of the presented response
surface experiment design approaches in wind tunnel experimentation and other complex modeling problems with a
large number of test factors.

VIII. Conclusions
Distributed propulsion aircraft configurations present new challenges for aero-propulsive modeling and are currently

an important area of research. The mathematical models developed to characterize aero-propulsive phenomena for these
complex aircraft must readily describe many control effectors and interactions, while also being amendable to drastically
changing aerodynamics at numerous different flight conditions across a wide flight envelope. The result is a large
modeling problem with significant nonlinearities and many interaction effects that requires an efficient experiment design
within cost and time constraints. Design of experiments and response surface methodology theory provide efficient,
statistically-rigorous experiment designs that enable accurate characterization of complex distributed propulsion aircraft.

Several experiment designs were described and evaluated for modeling the aerodynamics of a tandem tilt-wing,
distributed electric propulsion aircraft in the form of a response surface model including linear, two-factor interaction,
and pure quadratic model terms. Evaluation of single block foundational experiment designs revealed that 𝐼-optimal
and 𝐴-optimal designs generally have the highest statistical power, lowest correlation among candidate model terms,
lowest prediction variance across the design space, and yield the most precise parameter estimates. However, the
single block designs were noted to place most of the design points near the exterior of the design space, which can
result in model bias errors in the interior of the design space. To resolve this shortcoming, two sequential experiment
designs containing nested designs that provide more coverage of the interior of the design space were investigated. The
first sequential design approach used ordinary and nested minimum run resolution V, face-centered central composite
designs as its base and represents a legacy design approach that has been applied previously to characterize complex
aircraft. The second sequential design approach used a regular 𝐼-optimal design and a nested 𝐼-optimal design as
its base with the same number of test points as the central composite designs. The nested 𝐼-optimal design was a
new experiment design approach proposed in this paper for complex aircraft aero-propulsive characterization. Design
evaluation metrics available prior to conducting an experiment were used to compare the two design approaches and
revealed that the 𝐼-optimal base design had better statistical power for the candidate model terms, lower correlation
among candidate model terms, and was expected to yield models with better prediction capability and more precise
parameter estimates. Each set of sequential test matrices was applied in simulated LA-8 wind tunnel experiments
to develop a model of the dimensional forces and moments exerted on the aircraft at a reference airspeed condition.
Modeling results obtained from the simulated wind tunnel data suggested that the 𝐼-optimal based design provides
improved prediction capability for data not used in the modeling process compared to the design blocks built off of the
face-centered central composite design. The results also indicated that an adequate model was obtained earlier in the
block design sequence for the 𝐼-optimal base design. Based on the design evaluation metrics and modeling results
presented in this paper, the nested 𝐼-optimal design approach is recommended for future aero-propulsive characterization
experiments for complex distributed propulsion aircraft.
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Appendix: Residual Plots

(a) FCB test matrix (b) IOB test matrix

Fig. 24 Normalized modeling and prediction residuals (1 modeling block).

(a) FCB test matrix (b) IOB test matrix

Fig. 25 Normalized modeling and prediction residuals (2 modeling blocks).
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(a) FCB test matrix (b) IOB test matrix

Fig. 26 Normalized modeling and prediction residuals (3 modeling blocks).

(a) FCB test matrix (b) IOB test matrix

Fig. 27 Normalized modeling and prediction residuals (4 modeling blocks).
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