
Brandon L. Hearley, Steven M. Arnold, and Joshua Stuckner
Glenn Research Center, Cleveland, Ohio

A Robust Machine Learning Schema for Developing,
Maintaining, and Disseminating Machine Learning Models

NASA/TM-20220017137

December 2022

NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space science.
The NASA Scientifi c and Technical Information (STI)
Program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Offi cer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI Program provides access
to the NASA Technical Report Server—Registered
(NTRS Reg) and NASA Technical Report Server—
Public (NTRS) thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major signifi cant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of signifi cant
scientifi c and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers, but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM. Scientifi c

and technical fi ndings that are preliminary or of
specialized interest, e.g., “quick-release” reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientifi c and
technical fi ndings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientifi c and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientifi c,

technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientifi c and
technical material pertinent to NASA’s mission.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Fax your question to the NASA STI

Information Desk at 757-864-6500

• Telephone the NASA STI Information Desk at
 757-864-9658

• Write to:

NASA STI Program
 Mail Stop 148
 NASA Langley Research Center
 Hampton, VA 23681-2199

Brandon L. Hearley, Steven M. Arnold, and Joshua Stuckner
Glenn Research Center, Cleveland, Ohio

A Robust Machine Learning Schema for Developing,
Maintaining, and Disseminating Machine Learning Models

NASA/TM-20220017137

December 2022

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Acknowledgments

The authors would like to acknowledge the support of the NASA Transformational Tools and
Technologies (TTT) project within the Aeronautics Research Mission Directorate.

Trade names and trademarks are used in this report for identifi cation
only. Their usage does not constitute an offi cial endorsement,
either expressed or implied, by the National Aeronautics and

Space Administration.

Level of Review: This material has been technically reviewed by technical management.

This work was sponsored by the
Transformative Aeronautics Concepts Program.

This report is available in electronic form at https://www.sti.nasa.gov/ and https://ntrs.nasa.gov/

NASA/TM-20220017137 1

A Robust Machine Learning Schema for Developing, Maintaining,
and Disseminating Machine Learning Models

Brandon L. Hearley, Steven M. Arnold, and Joshua Stuckner

National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Summary
Recent advances in the development of machine learning (ML) algorithms have enabled the creation

of predictive models that can improve decision making, decrease computational cost, and improve
efficiency in a variety of fields. As an organization begins to develop and implement such models, the
data used in the training, validation, and testing of ML models, the model parameters, and the use cases or
limitations of the models must be properly stored to ensure models are both fully traceable and used
correctly. In the context of predicting material behavior, advances in computationally intense, physics-
based modeling of material behavior at various length scales and the emergence of Integrated
Computational Materials Engineering (ICME) have driven the need for developing data-driven surrogate
models of the physics-based simulation tools using ML techniques. Surrogate model development allows
for accurate material behavior prediction at a fraction of the cost of its physics-based counterpart,
allowing for multiscale simulations of real-world applications, further enabling the ability to design fit-
for-purpose materials for a reasonable computational investment. However, training such models requires
extensive data, and thus, effective data management is necessary to reach the full potential that ML can
offer to material design and ICME.

This paper proposes a generalized, robust schema that allows organizations to store both real
(experimental) and virtual (simulation) data used to train ML models and the defining model parameters
and architectures within the Granta MI Platform. The developed schema allows for various types of data
inputs and outputs, including single point values, time-series data, and images that can be used in the
prediction of material behavior, while following outlined best practices for effective data management.
An effective schema for ML data and models can help prevent the recreation of virtual/real training data
and surrogate models, help reduce the time to create new models similar to existing ones by offering a
starting point in the hyperparameter determination stages, minimize resources devoted to verification and
validation (V&V) and certification of models, and ensure that data and surrogate models are not misused
due to full traceability of both the data and ML model. It also allows organizations access to models that
have already been developed, such that they can be used in the design of new materials, enabling the
overall goals of ICME.

1.0 Introduction
The desire to reduce the cost and time to produce new materials, coupled with the desire to effectively

design new materials to a specific application for superior performance, has led to the emergence of
ICME (Integrated Computational Materials Engineering) as a fast-growing discipline in material science
and engineering. The goal of ICME is to replace expensive and time-consuming experimentation and
testing with effective simulation techniques that can surpass the limitations associated with traditional
design methods (Ref. 1). ICME is predicated on linking material models at multiple time steps and
length/time scales and using information from each previous scale to determine the effective properties,

NASA/TM-20220017137 2

allowables, or response at the next higher scale, allowing the design of a material to be tailored to the
performance of a specific engineering application (Ref. 2). Therefore, ICME is heavily dependent on
available data, requiring material information at various length scales that can be used to build cost-
efficient simulation tools, which can in turn outline the parameters available to effectively design
application-driven materials.

The simulation tools that ICME depends on for its implementation typically are either calibrated from
available experimental data or solved through physics-based models. Calibrated models from
experimental data require extensive material testing, which is both expensive and impractical in the
design stages for new fit-for-purpose materials. Physics-based models can address these shortcomings by
providing a means of predicting material behavior without testing the physical material, thus lending itself
to be a better tool for ICME. However, as the complexity of a simulation grows, particularly as the
analysis moves down the various length scales, physics-based models can become too computationally
expensive to provide accurate predictions in a realistic timeframe. The limitations associated with
physics-based models have been recently addressed using machine learning (ML), in which a surrogate
model for a physics-based model is developed by training on virtual data created by the physics-based
model (Refs. 3 to 7). Though surrogate models have shown incredible promise in replacing physics-based
modeling, allowing for faster and more complex multiscale analyses of materials, one requirement of
training such models is a large data set. However, such models are not without their own unique
limitations. Since surrogate models are “learning” to mimic a physics-based model and no actual physics
are incorporated in their construction, the accuracy of the surrogate models is limited to that of the
model(s) and/or data used for training and the bounds associated with the data used as inputs and outputs.
As a result, surrogate models are more restricted in their application to real-world problems compared to
their physics-based counterpart, which can normally be applied to various types of problems.
Furthermore, the data sets for ML models can range anywhere from tens of thousands to hundreds of
thousands of examples, and generally contain virtual data (created by the physics-based model to be
replaced) and/or experimental data along with their respective metadata as well. Furthermore, within the
context of material behavior, various types of inputs and outputs can be used or required for accurate
predictions, and thus the data required to train different models can vary. For example, some simpler
models may require inputs of constituent material properties and predict homogenized effective properties
at the next highest length scale, in which case a simple Artificial Neural Network (ANN) will suffice.
Other models may predict history dependent behavior, in which the inputs and outputs vary with time,
requiring a Recurrent Neural Network (RNN), such as models that predict audio and text sequences, time-
series forecasting, or time-dependent material properties. Furthermore, behavior could also be dependent
on analyzing images of a material to understand the structure at lower length scales. In those cases,
Convolutional Neural Networks (CNN) would be required. Due to the high variability that can exist
between different machine learning models, the variability that can exist between the types of data used
for training and the vast amount of data required to train a surrogate model, there is an inherent need for a
robust means of storing data used to develop ML models that will enable an organization to effectively
make use of surrogate model development in material design.

There are many existing databases currently available, both free and paid for, that offer the ability to
store material information that can be used to develop ML models to aid material design. Many of the
existing available databases, however, are either specific to certain subsets of materials, including specific
databases for alloys (Refs. 8 and 9), nanomaterials (Refs. 10 and 11), and materials with crystalline
structures (Refs. 12 and 13) be they real or virtual data but not both. Additionally, both material-specific
and general material databases only give the ability to store material information, rather than provide both
the means to store data and link that data to developed, data-driven models. Using such a database would

NASA/TM-20220017137 3

then require the user to manually link data to a given model and use some other database to store the
model parameters and information. The Granta MI database platform looks to bridge this gap by allowing
users to define not only the data present in the database, but also the attributes for a specific subset of
data, denoted as tables in Granta, in each data record, thus allowing users to define both material and
model information. The ability to link records across different tables gives users the means to directly
connect their data to the models developed without relying on copying the data and storing it in another
location.

In this paper, a proposed schema for storage of ML data and model parameters is presented in the
context of a larger ICME schema. Rather than explain the development of an individual surrogate model,
the goal of this paper is to provide a robust framework for storing various types of ML models, their
associated data (albeit real or virtual), and the traceability between model development and parameters
used such that users within an organization can understand the models’ availability, their use, and their
limitations. The ML schema developed fits into the existing Materials Database information management
system used by NASA Glenn, presented in previous publications (Ref. 14). The current schema, shown in
Figure 1, is designed to operate within the Granta MI system and addresses techniques for effectively
storing generalized data that can be used for ML model development within the limitations of the Granta
platform. With such a system in place for ML data, organizations can efficiently find existing
characterized surrogate models that have been created, determine the traceability of any model previously
developed, and find existing data that may be used to train further models, which can significantly reduce
the time and cost associated with using surrogate models for material decisions.

Figure 1.—NASA Glenn's ICME schema modified for machine learning.

NASA/TM-20220017137 4

2.0 Database Management Best Practices
When designing the schema for ML data and models, it is important to keep in mind the best practices

previously defined during the development of the larger ICME schema (Refs. 2 and 15) as well as
principles previously established for data management, such as the FAIR principles (Ref. 16). Particularly
to ML models, the associated best practices that influence the schema design are capture, traceability, and
accessibility.

2.1 Capture

The developed schema must be able to capture information fundamental to defining the ML model
and the model pedigree, including the associated data used to train, validate, and test the model. The
schema must be robust enough to handle different types of data (single point, time series, images, etc.).
Furthermore, the data must be captured and organized such that it is easily findable and is described
uniquely to be distinguishable from similar yet different data in the database.

2.2 Traceability

The model pedigree must have high traceability such that it is inherently clear what data is used to
define an ML model. Traceability is particularly important for ML models, since the relation between
inputs and outputs is not necessarily based on physics-based constitutive equations and can act as a “black
box.” Thus, it is essential to understand the full development of the model to know its limitations.

Traceability also encompasses the database principle that data should be defined in only one place in
the database and viewed (copied) elsewhere. By following this best practice, if data needs to be changed
or updated, the change need only occur once, allowing all viewed instances of the data to be automatically
updated, thus ensuring the traceability of any associated pedigrees is maintained.

2.3 Accessibility

For various reasons, data may need to be controlled such that only those who are authorized to view it
may see it within the Granta MI platform. In the current NASA GRC schema, an attribute-based access
control is used, such that each attribute within a record is assigned a security control. This methodology
allows the schema administrator to restrict access to specific attributes to some users while allowing them
to see the remaining data. Within the context of ML, this feature is particularly important in which data
used for training may be restricted, but the resultant model may be viewed (or vice versa).

Within the organization, or within the specified group who is granted access to the database, data
should be easily accessible and usable. This includes both the relative ease of users to upload data to the
database, view data in the database, and download or output data in machine-readable forms such that it
can be used to drive decisions or, in the case of ML, create new surrogate models without repeating the
data creation, which generally is the most consuming component of the development of ML models.

NASA/TM-20220017137 5

3.0 Overview of Granta MI
Granta MI is a database software system offered by ANSYS that allows users to capture, manage, and

share material information within an organization (Ref. 17). Within Granta, users capture and store
specific data by assigning different attributes to be populated within a given record, folder, or table. The
collection of attributes and their organization (e.g., attributes are often collected into sections under
specific header names) is called the layout. For flexibility and organization, Granta allows users to design
different schema for different types of data. The highest level of organization in Granta is called a table,
where all records within a table have the same layout. Records can further be organized into folders or
generic records. Folders simply contain records and have no other associated data, similar to a computer
directory tree. Generic records are a combination of a record and a folder—they have the schema
attributes that can be populated for the generic record and can also contain different records within. An
example of a Granta MI tree structure and an associated record/generic record are shown in Figure 2.

Figure 2.—Granta MI definitions.

NASA/TM-20220017137 6

Granta MI also offers the ability to link records together for traceability of data across different
records. Links can either be static, where a record is explicitly defined by the user as linked to another
record, or a smart link, in which the user can define attribute-based criteria to automatically determine the
linking relationship between two records. Links in Granta can also be either one-way or two-way links.
For instance, in the example in Figure 3, the user defined Record 2 as being linked to Record 1, shown in
Figure 3(a). Clicking on the link brings the user to Record 2, shown in Figure 3(b). Although not
explicitly defined, the reverse direction link is automatically populated in the record, showing that
Record 2 is linked to Record 1 as well.

(a)

(b)

Figure 3.—Linking directionality in Granta MI. (a) Record 1. (b) Record 2.

NASA/TM-20220017137 7

Along with viewing direct links to different records in Granta, users can view data in another record
within the same database, even if the two records are in different tables, through a tabular attribute type.
Therefore, if the record gets updated or changed where the data is defined, the changes will automatically
propagate to the record where the data is viewed. When viewing data in a tabular attribute, records are
linked together by the “Linking Value,” which is the value of a specified attribute that Granta MI uses to
populate the viewed table. In Figure 4, data from Record 1 (Figure 4(a)) will be viewed in a record named
“View of Record 1.” When defining the link between the two records on the back end, or the window the
user sees when editing the attribute properties (Figure 4(b)), the user enters the value of the defined
linking attribute. As a result, when viewing the record on the front end, or the window the user sees when
viewing the populated record (Figure 4(c)), the attributes in Record 1 are automatically pulled and
displayed in the viewed record. The linked tabular attribute in Granta MI allows the user to view data
from multiple records in one location (by selecting “Add a blank row” in Figure 4(b) and entering the
linking value of a different record), giving users the ability to view large data sets in one record with
guaranteed traceability.

Figure 4.—Viewing linked data in Granta MI. (a) The record where

data is defined. (b) The back end of the record where data is to
be viewed. (c) The front end of the record where data is viewed.

NASA/TM-20220017137 8

4.0 Table Organization
To enable the best practices for database management outlined in Section 2.0, the data storage for ML

is separated into two tables: Reference Data: Machine Learning, which contains all virtual data used to
train, validate, and test the ML model, and Models: Machine Learning, which contains the model
architecture, hyperparameters, and access. Real experimental data is placed as usual within one of the
tables within the Test Data collection (see Figure 1). Within the greater ICME schema (Figure 1), the
Reference Data: Machine Learning table is placed within the Reference Data collection (indicated in
Figure 1 by dash-lined box) and the Models: Machine Learning table is placed within the Model Pedigree
collection, thus showing the previously developed schema is robust enough to handle the addition of ML
data.

The separation of the data and model parameters into two tables allows one to follow the best practice
that data only be defined in one location within the database. Figure 5 shows two different example cases
that illustrate this division. In the first (left) example, a ML model is trained from a combination of virtual
(simulation) and real (experimental) data. The separation of data and model parameters allows data for a
model to come from various sources albeit real or virtual, which enables greater flexibility when defining
a model in Granta MI without repeating any preexisting data in the database. In the second (right)
example, the same virtual data set is used to define two different surrogate models. In this case, the
separation of data and model parameters prevents the virtual data from being repeated in the database in
multiple locations. Not only does this help maintain the traceability of each model, but it also reduces the
storage space necessary for capturing the full model pedigree of the two surrogates, which can be
particularly large for ML models. Furthermore, the current schema best enables the ability to track/record
model pedigree (e.g., idealization assumptions, mechanism, loading conditions, correlation data, etc.) and
V&V results so that one can ensure proper transferability, usability, reusability. This use case and the full
capabilities of the designed schema will be further demonstrated in an example in Section 4.0.

In general, it is assumed that data for training, validation, and testing is defined in the Reference Data:
Machine Learning table and viewed in the Models: Machine Learning table. Thus, the individual
attributes within each table must be designed to enable this relationship within the limitations of the
Granta MI platform. A detailed description of the attributes, layout, and linking behavior for the two
tables is described in the remainder of this section.

Figure 5.—Examples of the need for separating data and model parameters. (a) One model trained from multiple

data sources. (b) Two models trained from a single data source.

NASA/TM-20220017137 9

4.1 Reference Data: Machine Learning

The purpose of the Reference Data: Machine Learning table is to allow for storage of any generalized
data albeit literature or virtual such that it can be properly linked to any arbitrary number of surrogate ML
models that use the data for training, testing, and validation. Figure 6 illustrates the current layout and
attributes in the Reference Data: Machine Learning table.

The first header of the layout, Data Series Information, contains information associated with the
purpose of the data, how it was created, who owns the data, and the current point of contact. The “Point of
Contact” tabular attribute columns are defined in Table I. The first and second column define the column
name and the data type for that column. The third column defines whether the attribute is linked (viewed
from another table) or static (defined in the Reference Data: Machine Learning record). All linked values
for the “Point of Contact” attribute are defined in the GRC Directory table in Granta MI, with the linking
value as the person’s name.

The final attribute in the first header of the layout contains a summary of all other data series
information, with its columns defined in Table II. In the current schema, the project information is defined
in a generic folder, and each member of the data set is placed into an individual record within that generic
record. In the individual data records, rather than redefining the project information, it is viewed in the
“Project Information Summary” attribute by linking to the generic folder’s value for “Data ID.”

Figure 6.—Reference data machine learning layout and attributes.

NASA/TM-20220017137 10

TABLE I.—DEFINITION OF THE “POINT OF CONTACT”
TABULAR ATTRIBUTE

Column name Type Linked

Name STXT Yes

Email STXT Yes

Phone STXT Yes

Office STXT Yes

Mail Stop STXT Yes

Current Employment Status DCT Yes

Additional Information LTXT Yes

TABLE II.—DEFINITION OF THE “PROJECT INFORMATION

SUMMARY” TABULAR ATTRIBUTE
Column name Type Linked

Summary Record LINK Yes

Name LINK Yes

Standard Test Description LTXT Yes

Data Ownership DCT Yes

Data Ownership (Other) STXT Yes

Distribution Category DCT Yes

Funding Organization STXT Yes

Project Code STXT Yes

Project Name LTXT Yes

Project Notes STXT Yes

TABLE III.—DEFINITION OF THE “DATA LABELS”

TABULAR ATTRIBUTE
Column name Type Linked

Attribute Name STXT No

Label STXT No

Unit STXT No

The second layout header, Data, stores the actual data values. The “Data ID” attribute is used as a

linking value to enable the viewing of the data in subsequent Model: Machine Learning records. Because
data can take on many forms, including single point values, time-series values, or images, each data label
that would be used as either an input or output for a surrogate ML model is stored in a generic long text
attribute (“Attribute X”) or generic image attribute (“Image X”). The attributes themselves are defined
using the “Data Labels” tabular attribute, in which the user enters the attribute or image number, its
associated label, and the unit of that label. The “Data Labels” attribute columns are defined in Table III.

The third layout header (see Figure 6), Further Information, contains links in Granta MI to any
associated records in the Models: Machine Learning table that views the data and links to any software
tools used to create the virtual data set.

NASA/TM-20220017137 11

As stated previously, data sets are uploaded to the Reference Data: Machine Learning table as a
generic record, which contains general information that applies to each example in the data set (i.e.,
attributes in the Data Series Information header and the “Data Labels” attribute), with individual records
for each example in the data set contained within that generic record. Although this formulation results in
potentially creating thousands of records for a single data set, it is necessary in order to follow the
outlined best practices in Section 2.0 within the current limitations of the Granta MI platform. The
alternative would be to replace “Attributes 1–200” and “Images 1–50” with a tabular attribute and allow
the number of rows to be equal to the size of the data set. However, in the current configuration of Granta
MI, it is not possible to link, or view, individual rows from a tabular attribute in another record. Thus,
given the current system, by consolidating all of the data into a single record using a tabular attribute, the
model records would lose the flexibility of being able to define training, validation, and test data and
would ultimately require the data to be repeated in the database if it were to be used by more than one
model. Thus, within the current limitation of Granta MI, the schema uses individual records for each data
example and long text field/image attributes to enable this flexibility. A detailed example illustrating this
use case and the need for the current schema is given in Section 4.0. Also, a feature request has been
submitted to ANSYS to enhance the current tabular attribute capabilities to allow for a more robust
implementation, explained in further detail in Section 7.0.

4.2 Models: Machine Learning

The purpose of the Models: Machine Learning table is to allow for storage of an established (i.e.,
developed, enhanced, tailored, etc.) surrogate model, including the creator of the model, all associated
model parameters and hyperparameters, links to the data in the Reference Data: Machine Learning table
used for training, testing, validation, and model performance, as shown in Figure 7.

Figure 7.—Models: Machine learning layout and attributes.

Type Type

Performing Organization STXT Data Variables Summary TABL
Data Ownership DCT Data Assembly TABL
Data Ownership (Other) STXT Training Data Set (View) TABL
Distribution Category DCT Validation Data Set (View) TABL
Funding Organization STXT Test Data Set (View) TABL
Funding Organization STXT
Project Code STXT Training Loss FUNC
Project Name STXT Validation Loss FUNC
Project Notes LTXT Validation Predictions (Define) TABL

Test Predictions (Define) TABL
Model Name STXT Accuracy PNT
Model Description LTXT Accuracy Metric DCT
Source Code Location HYP Validation Notes LTXT
Point of Contact TABL
Version STXT References LINK
Date DATE Data Information LINK
Lbraries/Modules TABL Software Information LINK
Model Notes LTXT Software Tools Implemented In LINK

Architecture Type STXT
Architecture Description TABL
Architecture Notes LTXT

Attribute
Project Information

General Model Information

Model Architecture

Attribute
Data Definition

Model Validation

Further Information

NASA/TM-20220017137 12

Attributes within the Models: Machine Learning table are separated into six different sections with
their own assigned headers. The first header, Project Information, defines the owner of the model and
associated funding/project information for the model development. The second, General Model
Information, provides information about the purpose of the model, programming languages used in
development, and how a user can access the model, including the point of contact (see Table I) and the
source code location. The third, Model Architecture, gives the hyperparameters and architecture of the
neural network developed, so that the model could be reproduced using any ML programming package
(e.g., TensorFlow, PyTorch, etc.). This allows both a means of providing one with the ability to create the
model in a different ML software package and a starting point for development of a similar model that
may use different training data or predict different output features. The columns for the tabular attribute
“Architecture Description” are shown in Table IV.

The fourth layout heading, Data Definition, defines the data employed to create the model. It provides
the training, validation, and test split of the data, and links each individual data record within the
Reference Data: Machine Learning table to one of the three aforementioned categories, such that the data
displayed in the “Training Data Set,” “Validation Data Set,” and “Test Data Set” tabular attributes are
viewed from the associated linked record. Because each attribute is viewed from the Reference Data:
Machine Learning record, column names for the three data set attributes take on the generic names
described above. Therefore, there is an additional attribute in the model record (under this fourth
heading), “Data Variables Summary,” to allow for the definition of each of the attribute names and
whether they are inputs, outputs, or not used in the model (see Table V). Note that in Table V, ideally the
Attribute Name, Variable, and Unit would be viewed from the “Data Labels” attribute in the Reference
Data: Machine Learning record. However, as described previously, it is not possible within the current
configuration of Granta MI to view individual rows from a tabular attribute in another table. Therefore, in
the current formulation, the data in the “Data Variables” tabular attribute is static and repeated, but the
entries marked in bold with a “*” in Table V would be linked if the capabilities in Granta MI change to
allow tabular row-wise linking.

TABLE IV.—DEFINITION OF THE “ARCHITECTURE DESCRIPTION”
TABULAR ATTRIBUTE

Column name Type Linked

Label STXT No

Value STXT No

TABLE V.—DEFINITION OF THE “DATA VARIABLES”
TABULAR ATTRIBUTE

Column name Type Linked

Attribute Name STXT No*a

Variable STXT No*

Unit STXT No*

Input/Output DCT No
aEntries marked with a “*” would be linked if the capabilities in
Granta MI change to match the proposed feature request.

NASA/TM-20220017137 13

TABLE VI.—DEFINITION OF THE “DATA ASSEMBLY”
TABULAR ATTRIBUTE

Column name Type Linked

Folder LINK Yes

Data Shuffle Equation STXT No

Data Shuffled PNT No

Training Split (%) PNT No

Validation Split (%) PNT No

Test Split (%) PNT No

Size PNT No

TABLE VII.—DEFINITION OF THE “TRAINING DATA SET,”

“VALIDATION DATA SET,” AND “TEST DATA SET”
TABULAR ATTRIBUTES

Column name Type Linked

Record Name LINK Yes

Data Source Type DCT No

Attribute 1 LTXT Yes

⋮ ⋮ ⋮

Attribute 20 LTXT Yes

Image 1 IMG Yes

⋮ ⋮ ⋮

Image 50 IMG Yes

The “Data Assembly” tabular attribute (in Figure 6 under the Data Definition header) is used to

define how the data is split into training, validation, and test data. Each column is defined in Table VI.
In Table VI, the folder column contains a link to the generic record for the data set, with the linking

value equal to the “Data ID” attribute in the Reference Data: Machine Learning table. The remaining
three tabular attributes (“Training Data Set,” “Validation Data Set,” “Test Data Set”) contain the specific
model inputs and outputs for the three respective categories. Each tabular attribute has the same column
structure, as defined in Table VII.

Each linked column in the three tabular attributes is automatically populated by entering the “Data
ID” from the associated individual data record, within the generic record, in the Reference Data: Machine
Learning table, and each row represents a different example in that set. Additionally, the user can enter
whether the data in that specific row was virtual or experimental in the “Data Source Type” column,
giving the user the ability to easily identify the limitations associated with training the model.

The fifth layout heading, Model Validation, allows for the definition of the model performance.
Because predictions are specific to each model, the values in the tabular attributes “Validation
Predictions” and “Test Predictions” are defined in the model record and are not linked to another table in
the database. A definition of the columns for the two tabular attributes is given in Table VIII.

The final layout heading, Further Information, provides links to any references, data information, or
software information that may have been used in the development of the model. Additionally, completed
ML models that contribute to developed software are also linked to the Software Tools table. A detailed
example illustrating the flexibility of the schema is given in Section 4.0.

NASA/TM-20220017137 14

TABLE VIII.—DEFINITION OF THE “VALIDATION PREDICTIONS”
AND “TEST PREDICTIONS” ATTRIBUTES

Column name Type Linked

Attribute 1 LTXT No

⋮ ⋮ ⋮

Attribute 20 LTXT No

Image 1 IMG No

⋮ ⋮ ⋮

Image 50 IMG No

5.0 Example
5.1 Problem Definition

To demonstrate the need for the current ML schema and its ability to store ML data and models while
following the outlined best practices for database management, an example problem is herein described in
detail. In this example, two different ML surrogate models are created to replace a physics-based tool that
predicts the fatigue-life (S-N) curve of a polymer matrix composite given inputs of constituent
mechanical properties, constituent life properties, laminate ply schedule, laminate volume fraction, and a
vector of applied loads (Ref. 18). Virtual data is created using a physics-based micromechanics tool
known as MAC/GMC (Refs. 18 and 19) and uploaded to the Reference Data: Machine Learning table in
Granta MI. Two different surrogate models were trained from the same data set to reproduce the physics-
based results:

1. An artificial neural network (ANN) known as feed-forward Multi-layer Perceptron (MLP)
(Ref. 20) that takes a single applied load and produces a single value of life at that load. To produce
the full S-N curve, the ML model must be called at each applied load step (Figure 8(a)). This model
exactly mimics the physics-based tool, in which each life calculated is independent of other applied
loads.
2. A recurrent neural network (RNN) (Ref. 21) that takes the applied load as a vector and produces a
vector of associated life values. To produce the full S-N curve, the ML model is called only once
(Figure 8(b)). Unlike the actual physics-based tool, in which values of life are calculated at a given
load independent of the solutions at other loads, the RNN formulation considers the relationship
between neighboring points that is ultimately inherent to the physics-based solution.

5.2 Virtual Data

Both the ANN and RNN are trained from the same data set, and thus the virtual data is only uploaded
once to the Reference Data: Machine Learning table. A generic record (“Fatigue Life Estimator Data”) is
created for the full data set, and individual records for each run case in the creation of the virtual data is
created and placed within the generic record (see Figure 9). In the generic record, the project information,
point of contact, and data ownership information is defined in the Data Series Information layout heading
(Figure 10(a)). In the Data layout heading, a generic “Data ID” is defined (herein named “Fatigue Life”)
for linking the model records, as well as the “Data Labels” tabular attribute for defining the physical
quantities each attribute represents (e.g., 21 attributes are shown in Figure 10(b)). Finally, in the Further
Information layout heading, links to the two associated models in the Models: Machine Learning table are
defined (see Figure 10(c)).

NASA/TM-20220017137 15

(a)

(b)

Figure 8.—The ML general architecture. (a) ANN model. (b) RNN model.

Figure 9.—Folder tree organization

of the virtual data.

NASA/TM-20220017137 16

(a)

Figure 10.—Generic record attributes. (a) Data series information. (b) Data. (c) Further information.

NASA/TM-20220017137 17

(b)

Figure 10.—Continued.

NASA/TM-20220017137 18

(c)

Figure 10.—Concluded.

NASA/TM-20220017137 19

Figure 11.—Individual data record attributes.

Individual records are created for each of the different examples in the data set. Figure 11 shows an
example of one of the populated records. Although all records will have the same attributes populated,
their values will differ for each of the example records. In each of the records, only the “Data ID” and
generic “Attribute X” are defined, since all other defining information is found in the parent generic
record. The “Project Information Summary” tabular attribute is linked to the parent generic record and all
entries in the tabular attribute are viewed.

5.3 Model Data

Two different records are created in the Models: Machine Learning table: one for the ANN and one
for the RNN. For clarity, figures relating to the ANN model will be outlined in blue and figures relating to
the RNN model will be outlined in green. If the figure applies to both models, it will be outlined in black.

For both the ANN and RNN models, the Project Information (Figure 12(a)), and General Model
Information (Figure 12(b)) are commonly defined. Note however, that in Figure 12(b), the “Model
Description” would be different between the two models; Figure 12(b) shows the description for the ANN
model.

Attributes under the Model Architecture layout heading are defined for both models in Figure 13. Due
to the use of a tabular attribute for the “Architecture Description,” the schema is able to define a model
with a varying range of complexity with regard to its architecture.

Under the Data Definition layout heading, the “Data Variables Summary,” “Data Notes,” “Data
Assembly,” “Training Data Set,” “Validation Data Set,” and “Test Data Set” attributes are populated for
both records (see Figure 14). The “Data Variables Summary” tabular attribute is the same for the two
records and is a copy of the Data Labels tabular attribute in Figure 10(b) and is thus hidden for
conciseness. The “Data Assembly” tabular attribute is the same for the two records except for the Data
Shuffled column. For the ANN, the data was unshuffled (thus the value zero in Figure 14(a)) prior to
being split into training, validation, and test data sets, whereas for the RNN, the data was shuffled with a
random seed value of 42 (see Figure 14(b)). This difference manifests itself in the subsequent “Training
Data Set,” “Validation Data Set,” and “Test Data Set” attributes. In the ANN, because the data is
unshuffled, the “Training Data Set” Record Name entries appear in order (Figure 14(a)), while in the
RNN the order is shuffled (Figure 14(b)). The remaining columns in both tabular attributes dynamically

NASA/TM-20220017137 20

(a)

(b)

Figure 12.—Model: Machine Learning Record example. (a) Project information. (b) General model information.

NASA/TM-20220017137 21

Figure 13.—(a) ANN model architecture. (b) RNN model architecture.

NASA/TM-20220017137 22

(a)

(b)

Figure 14.—Data definition. (a) ANN model. (b) RNN model.

NASA/TM-20220017137 23

copy the associated attributes in the defined record, such that changes made in the Reference Data:
Machine Learning records would automatically update in the Models: Machine Learning records. Within
the current limitations of the Granta MI platform, the only way to define the virtual data once while
simultaneously showing that data in two different model records can only be enabled by the current
schema, particularly if it is desired to have the same example in different categories (i.e., training,
validation, and test) for the two different models. Note that the “Validation Data Set” and “Test Data Set”
attributes take a similar form to the “Training Data Set” attribute, and thus are not shown.

The Model Validation layout heading for both model records contain the same populated attributes,
although because the models are different and the attribute values are model specific, the individual
values differ between the two (Figure 15). For this example, the “Training Loss” and “Validation Loss”
functional attributes are defined as a function of the number of epochs completed during training, shown

Figure 15.—Model validation attributes.

NASA/TM-20220017137 24

for the ANN model. For the “Test Predictions” tabular attribute, the inputs and model predictions are
given for each example in the test set. Because the predictions are specific to the model and are not the
data set used for training, there is no linking to the Reference Data: Machine Learning table for this
attribute, and all values in the tabular attribute are defined rather than viewed.

The example problem shown demonstrate the need to separate the data sets used for model training
and the parameters that define the models themselves in order to follow the outlined best practices for
database management. Furthermore, it shows the need to create individual records for each example in a
data set given the limitation of the current Granta MI platform. Without this overarching schema, it would
be impossible to define multiple ML models from the same data set, or to train a ML model from multiple
data sets, without repeating information somewhere in the database, thus violating one of the basic
principles of database management. The example further shows the capability to capture all relevant
information regarding the traceability and pedigree of an ML model such that the model can be easily
found, used, and reproduced by members within an organization.

6.0 Importing Machine Learning Data
One of the more important aspects of effective database design and management has to do with

minimizing the burden of utilization regarding data capture: that is, the ease of users to upload data they
have on their hard drive or local machines to the database. Without effective tools that facilitate this
process, adoption of the database by users within an organization can be difficult, leading to incomplete
access to information across the organization. In the Granta MI Viewer software, users can only input
data into a record manually, attribute by attribute or, in the case of tabular attributes, cell by cell. This
method of uploading data is extremely time consuming and, particularly in the case of ML, where
thousands of records need to be uploaded for a single model, is infeasible. To facilitate the ease of data
upload, Granta MI offers a Python SDK connection point, which allows users to develop custom Python
code that can effectively write records to the database automatically. Thus, for the Reference Data:
Machine Learning and Models: Machine Learning tables a Python Graphical User Interface (GUI) was
written using the tkinter Python module (Ref. 22).

Loading the Machine Learning Importer tool presents the user with the home screen (Figure 16),
which allows the user to upload either ML data or a ML model individually, as well as both the data and
associated model together. For demonstration purposes in this paper, the third option will be shown, as
the other two are a subset of the combination upload. When continuing by selecting an option, the user is
then displayed a table where each row matches the attributes in the Data Series Information layout
heading in the Reference Data: Machine Learning table (Figure 17). Note that for discrete (DCT) type
attributes, the GUI also presents the user with the same discrete options. There is also an option to read an
.xlsx or .csv file and automatically populate the table for convenience. The Record Name row of the table
is the name given to the generic (parent) record, and each child record will be the combination of the
name entered and the row index in the data file (e.g., “Reference Data: Machine Learning Demo 1”).

NASA/TM-20220017137 25

Figure 16.—Machine learning importer home screen.

Figure 17.—Importing data series information for a Reference Data: Machine Learning record.

NASA/TM-20220017137 26

The next screen asks the user to upload the file containing all data used to train, validate, and test the
model. The importer assumes that each row is a given example in the data set and that the first row in the
file contains the data labels. Once a .xlsx or .csv file is selected by the user, the table shown in Figure 18
will be automatically populated. The Labels column will be populated with values from the first row and
if those values contain opened and closed parenthesis (“()”), any text within will be assumed as a Unit
and populated in the adjacent column. By default, all parameters are assumed to be inputs in the final
column, so the user must also change any rows that are outputs, or predictions, from the model in the GUI
using the drop-down menu in each cell. Note that for simplicity the same table is used when uploading
either a Reference Data: Machine Learning or Models: Machine Learning record individually, as well as
in the combined case. For Reference Data: Machine Learning records, the Input/Output column data is
not used, since the relationship between inputs and outputs is dependent on the ML model developed, and
not necessarily the same as the software tool used to create the virtual data.

Figure 18.—Reading the data file and defining parameters.

NASA/TM-20220017137 27

Figure 19.—Importing project and general model information for a Models: Machine Learning record.

Once the data has been uploaded and the different columns defined in the import tool, the next

window presents the user with a table with attributes matching those present in the Project Information
and General Model Information layout headings in a Models: Machine Learning record (Figure 19).
Again, any attribute of discrete type has the same list options in the GUI to prevent invalid information.

The next screen presents the user with a table that matches the Data Assembly attribute in the Data
Definition layout heading, allowing the user to specify the percentage split of training, validation, and test
data (Figure 20). Similar to the Data Assembly attribute, the user also specifies the random seed value or
equation used to shuffle the data prior to training. On the back end of the GUI, the code will take the
index of the stored data and shuffle according to the user definition. The index and generic record name
from the Reference Data: Machine Learning table are used by the importer to write the Models: Machine
Learning record, such that the data is properly viewed and not redefined. Once the training, validation,
and test data split have been defined, the importer will then ask the user to supply a .xlsx or .csv file
containing the model test predictions (Figure 21). The importer assumes that each row in the supplied file
corresponds to the row in the test data after it was shuffled. There are also options for the user to supply
.xlsx or .csv files for the training and validation curves, as well as a value for accuracy.

NASA/TM-20220017137 28

Figure 20.—Data assembly definition in the importer.

Figure 21.—Importing the model validation.

NASA/TM-20220017137 29

The final window in the import tool asks the user to supply the ML code used to train the model
(Figure 22(a)). An additional feature built into the import tool is the ability to digest ML code as static
text and automatically extract the libraries used and model architecture by reading keywords expected for
a given ML package. Currently the import tool supports reading Python codes that use Keras with
TensorFlow for ML, due to its widespread use at NASA GRC for developing surrogate models.
Figure 22(b) shows an example of how the import tool determines the model architecture from the
supplied ML code. By first finding “.Sequential,” the code knows to look for “.add” for a new addition to
the model. By knowing the layer types available in Keras (in this case “Dense” and “LSTM”) and their
associated options, the code can recognize layers, hidden units, and activation functions for the model.

(a)

(b)

Figure 22.—(a) User input for ML code digestion. (b) Example of code digestion procedure.

NASA/TM-20220017137 30

The keyword “.compile” indicates the end of the model building, and knowledge of the options supply
within the importer with the loss function and learning rate. The code digestion feature for a Models:
Machine Learning record has been shown to work well for various architectures but is currently limited to
Keras models using TensorFlow. As more users adopt the ML schema presented, additional functionality
can be added for different ML programming packages to help incentivize users uploading their data and
models to the database.

All data uploaded through the import tool GUI is saved to local Python libraries with matching
attribute names to the above schema. Using the Python SDK provided by Granta MI, records can then be
written to the database automatically by matching the attribute names to the locally populated libraries.
The import tool gives users the means to upload their large data sets to the database in a time-efficient
manner, creating the individual data records necessary for best database management practices that would
otherwise be infeasible to do manually. It also provides some additional utility features, such as the
automatic code digestion and ability to save and import programmatic information, in an attempt to
reduce the burden on the user and increase the likelihood of user adoption.

7.0 Current Challenges and Proposed Improvements to Granta MI
As stated previously, the current Reference Data: Machine Learning table schema is not optimal, in

that it requires the creation of individual records for each example in the data set to enable database
management best practices within the current confines of the Granta MI platform. Although the proposed
solution works with this limitation, as a data set grows the feasibility of the proposed schema decreases
and could thus deter users from using Granta MI for storing ML data. For example, when previously
attempting to upload the full data set for the example problem, which contained ~10,000 total examples,
the Remote Import Tool for Granta gave a timeout error and the data failed to upload. As a result, the data
had to be uploaded in smaller batches, which adds time and opens up the possibility of errors to the data
management process. In addition to challenges in uploading the data, once the data is in the database, the
large number of records associated with a single data set results in longer load times when using Granta
MI Viewer. This load time is further exacerbated when an organization uses attribute-based access
control, in which the MI Viewer software must check through each attribute, in each record, to determine
what data can be displayed to the user.

To address the above issues, the authors have proposed to ANSYS Granta an enhancement to the
tabular attribute that would allow an ML data set to be stored in a single record without sacrificing the
flexibility of the existing schema. In the proposed change to the tabular attribute, when linking from one
tabular attribute to another, the user would specify both a linking value and a linked row. Figure 23 gives
a simple demonstration of how the proposed changes would enable the desired feature for the ML
schema. Instead of defining individual attributes in the multiple data records, each of the previous
attributes would now be a column in the Data attribute and each example in the data set would be a row
(see gray box—Data Record—in Figure 23). For the model record, the Training Data, Validation Data,
and Test Data attributes would be defined as linked tabular attributes with the same columns as the
“Data” attribute. When the user is defining the Model Record attributes (back end, see light yellow,
Figure 23), the user would define the linking value and a linked row as opposed to just a linking value.
The Granta MI software would then search for all records in the Data Table that contain the linking value
in the “Data ID” attribute (see gray box Figure 23) and would display all values found for the specified
column name (i.e., Value 1, Value 2) in the specified linked row. The resultant model record (orange box,
Figure 23) would then display to the user (front end) the defined partition of the “Data” tabular attribute
in the three tabular attributes shown.

NASA/TM-20220017137 31

Figure 23.—Proposed enhancement to the tabular attribute in Granta MI.

8.0 Conclusions
Advances in modeling techniques and machine learning (ML) have enabled the ability to quickly and

efficiently mimic physics-based models at various length scales, further enabling the prospect of ICME
and allowing for the design of fit-for-purpose materials. As these abilities grow further, and the problems
to be solved become more complex, the time and cost traditionally associated with either experimental
testing or computational runtime of physics-based models will transfer to the creation of virtual data and
training time for surrogate models. Therefore, for any organization to efficiently embrace the advantages
ML can offer, effective data management is paramount in maintaining traceability, preventing the
repetition of re-creating existing virtual data, re-creating existing surrogate models, or creating new
surrogate models without first referencing any existing similar models that have been developed. Another
advantage is the avoidance of misuse of ML models and/or the understanding of imposed limitations on
the models due to training data/procedure. The proposed schema for ML data and models looks to address
these potential problems by offering a generalized, robust means of storing/retrieving models and their
associated data and metadata within the ANSYS Granta MI Database platform, such that existing model
pedigree information can be easily found, understood, and used, or not used, for future model
development or application in the design of materials while following previously defined best practices
for database management. Furthermore, the associated tools developed allow users to easily and
efficiently interact with both models and data and import/export existing data into the database, thereby
increasing the likelihood of adoption of the proposed ML schema. Also presented are the challenges that
the current schema faces subject to the current restrictions imposed by the Granta MI tabular attribute, as
well as the proposed solution to enable a more efficient means of storing such data. Surrogate models
developed using ML are essential for truly implementing ICME, and the management of the data needed
for such models is thus necessary in helping an organization capitalize on the capabilities that such tools
can enable.

NASA/TM-20220017137 32

References
1. M. Yuan, S. Paradiso, B. Meredig, and S. Niezgoda, “Machine Learning-Based Reduce Order Crystal

Plasticity Modeling for ICME Applications,” Integrating Materials and Manufacturing Innovation,
vol. 7, pp. 214–230, 2018.

2. S. Arnold, F. Holland Jr., and B. Bednarcyk, “Robust Informatics Infrastructure Required for ICME:
Combining Virtual and Experimental Data,” in AIAA SciTech Forum, National Harbor, MD, 13–17
January 2014.

3. Y. Al-Assaf and H.A. Kadi, “Fatigue life prediction of composite materials using polynomial
classifiers and recurrent neural networks,” Composite Structures, vol. 77, pp. 561–569, 2007.

4. M. Piekenbrock, J. Stuckner, S. Arnold, and T. Ricks. “Multiscale Analysis of Composites Using
Surrogate Modeling and Information Optimal Designs,” in AIAA SciTech Forum, Orlando, FL, 6–10
January 2020.

5. S. Khandelwal, S. Basu, and A. Patra, “A Machine Learning-based surrogate modeling framework for
predicting the history-dependent deformation of dual phase microstructuers,” Materials Today
Communications, vol. 29, pp. 1–14, 2021.

6. R. Liu, Y. Yabansu, Z. Yang, A. Choudhary, S. Kalidindi, and A. Agrawal, “Context Aware Machine
Learning Approaches for Modeling Elastic Localization in Three-Dimensional Composite
Microstructures,” Integrating Materials and Manufacturing Innovation, vol. 6, pp. 160–171, 2017.

7. B. Hearley, J. Stuckner, E. Pineda, and S. Murman, “Predicting Unreinforced Fabric Mechanical
Behavior With Recurrent Neural Networks,” NASA Technical Memorandum, NASA/TM-
20210023708, pp. 1–26, 2022.

8. “ASM Alloy Center Database,” ASM. [Online]. Available: mio.asminternational.org/ac
9. “High Performance Alloys Database (HPAD),” CINDAS LLC, 2022. [Online]. Available:

https://cindasdata.com/products/hpad
10. “nanoHUB,” NCN, 2022. [Online]. Available: https://nanohub.org/
11. “Nanomaterial Registry,” Nanomaterial Registry, 2022. [Online]. Available:

http://www.nanomaterialregistry.org/
12. N. Day and P. Murray-Rust, “Crystallography Open Database,” CrystalEye, 2022. [Online].

Available: http://www.crystallography.net/cod/
13. “The Cambridge Crystallographic Data Centre (CCDC),” University of Cambridge, 2022. [Online].

Available: https://www.ccdc.cam.ac.uk/
14. S. Arnold, F. Holland, T. Gabb, M. Nathal, and T. Wing, “The Coming ICME Data Tsunami and

What Can Be Done,” in 54th AIAA/ASME/ASCE/AHS/ACS Structures, Structural Dynamics,
Materials Conference, Boston, MA, 23–27 April 2013.

15. S. Arnold, F. Holland, B. Bednarcyk, and E. Pineda, “Combining Material and Model Pedigree is
Foundational to Making ICME a Reality,” Integrating Materials and Manufacturing Innovation,
IMMI, no. 4:4, DOI 10.1186/s40192-015-0031-2, 2015.

16. M.D. Wilkinson et al., “The FAIR Guiding Principles for scientific data management and
stewardship,” Scientific Data, vol. 15, no. 3, 2016.

17. “Granta MI: Materials Gateway for ANSYS Workbench,” ANSYS, 2022. [Online]. Available:
https://www.grantadesign.com/industry/support/granta-mi/gateway/notice/

18. S.M. Arnold, S.K. Mital, P.L. Murthy, and B. Hearley, “Use of Artificial Neural Nets to Predict
Stiffness and Fatigue Lives of Polymer Matrix Composite Laminates,” in NAFEMS Regional
Conference Americas, Indianapolis, IN, June 21–23, 2022.

https://eportal.asminternational.org/
https://cindasdata.com/products/hpad
https://nanohub.org/
http://www.nanomaterialregistry.org/
http://www.crystallography.net/cod/
https://www.ccdc.cam.ac.uk/
https://www.grantadesign.com/industry/support/granta-mi/gateway/notice/

NASA/TM-20220017137 33

19. B.A. Bednarcyk and S.M. Arnold, “MAC/GMC 4.0 User’s Manual, Volume 2: Keywords Manual,”
NASA Technical Memorandum, TM 2002-212077/Vol. 2, 2002.

20. M.W. Gardner and S.R. Dorling, “Artificial Neural Networks (The Multilayer Perpetron)—A Review
of Applications in the Atmospheric Sciences,” Atmospheric Environment, vol. 32, no. 14/15,
pp. 2627–2636, 1998.

21. Z. Lipton, D. Kale, C. Elkan, and R. Wetzel, “Learning to Diagnose with LSTM Recurrent Neural
Networks,” in International Conference on Learning Representations, San Juan, PR, 2016.

22. “Graphical User Interfaces with Tk,” Python Software Foundation, 17 October 2022. [Online].
Available: https://docs.python.org/3/library/tk.html

https://docs.python.org/3/library/tk.html

	TM-20220017137.pdf
	Summary
	1.0 Introduction
	2.0 Database Management Best Practices
	2.1 Capture
	2.2 Traceability
	2.3 Accessibility

	3.0 Overview of Granta MI
	4.0 Table Organization
	4.1 Reference Data: Machine Learning
	4.2 Models: Machine Learning

	5.0 Example
	5.1 Problem Definition
	5.2 Virtual Data
	5.3 Model Data

	6.0 Importing Machine Learning Data
	7.0 Current Challenges and Proposed Improvements to Granta MI
	8.0 Conclusions
	References

