

Health Monitoring and Prognostics for Electric Aircrafts

Chetan S. Kulkarni, PhD Diagnostics and Prognostics Group KBR Inc, NASA Ames Research Center

Acknowledgement

Dr. Matteo Corbetta Diagnostics and Prognostics Group NASA Ames Research Center

SWS Team NASA Langley Research Center

Collaborators

Prof. Felipe Viana, Renato Nascimento -University of Central Florida

Credit: www.nasa.gov

Credit: www.nasa.gov

Credit: www.nasa.gov

Why Diagnostics

- di-ag-nos-tic
 - a distinctive symptom or characteristic.
 - a program or routine that helps a user to identify errors.
 - the practice or techniques of diagnosis.
 - "advanced medical diagnostics"
 - PHM Community "Detect and Isolate"
 - Fault Magnitude
 - System/Component

Why Prognostics

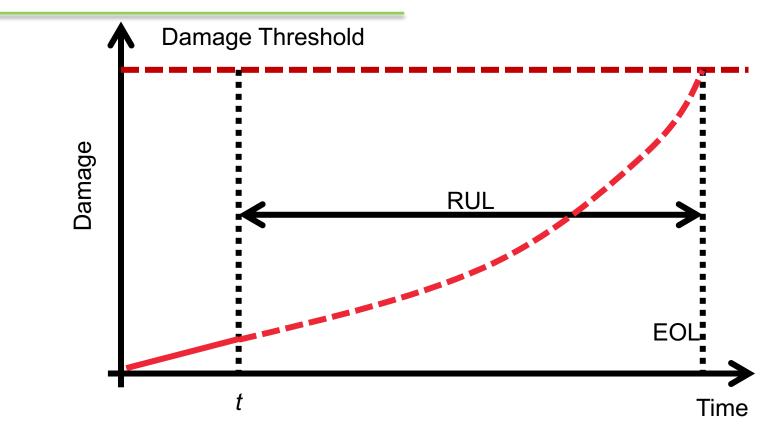
- Safety and Decision Making
 - Reconfiguring the system to avoid using the component before it fails
 - Prolonging component life by modifying how the component is used
 - Optimally plan or replan a mission
- Adopting condition-based maintenance strategies, instead of timebased maintenance
 - scheduling maintenance
 - planning for spare components
- System operations can be optimized in a variety of ways

Why Prognostics

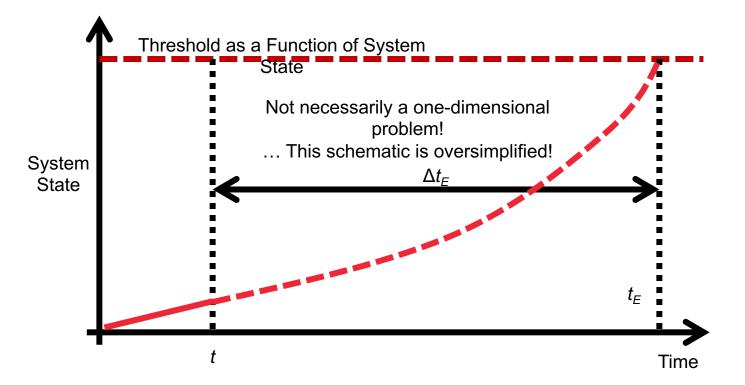
- Reliability & Performance
 - product reputation reduced safety factors

- Operational Optimization
 - Prolonging component life by modifying how the component is used (e.g., load shedding/distribution)
 - Optimally plan or replan a mission

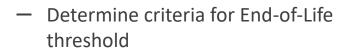
Basic Idea



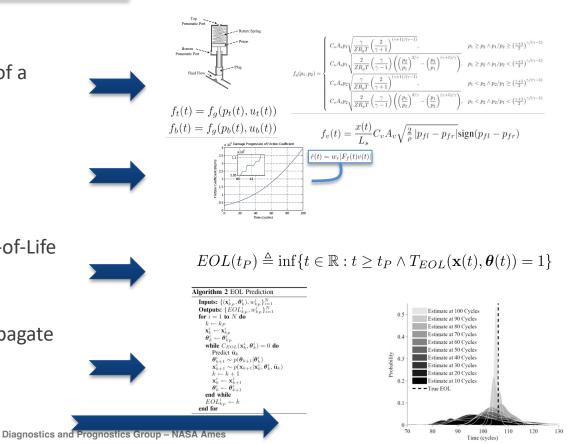
Basic Idea

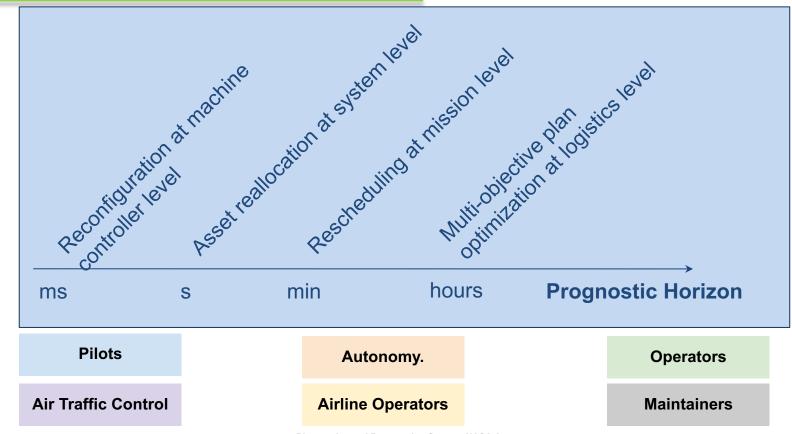


- RUL: Remaining Useful Life
 - Model underlying physics of a component/subsystem
 - Model physics of damage propagation mechanisms



- Develop algorithms to propagate damage into future
- Deal with uncertainty

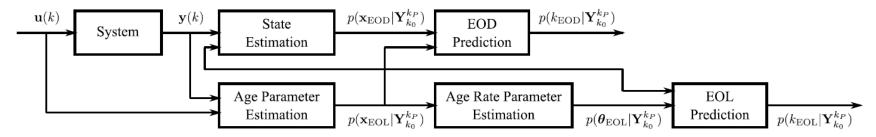




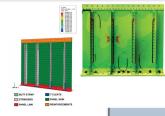
Diagnostics and Prognostics Group – NASA Ames

Integrated Prognostics Architecture

- System (battery) gets inputs (current) and produces outputs (voltage)
- State estimation computes estimate of state given estimates of age parameters
- EOD prediction computes prediction of time of EOD, given state and age parameter estimates
- Age parameter estimation computes estimates of age parameters
- Age rate parameter estimation computes parameters defining aging rate progression
- EOL prediction computes prediction of time of EOL, given age parameter and age rate parameter estimates



State of the Art



- Results tend to be intuitiveModels can be reused
- If incorporated early enough in the design process, can drive sensor requirements Computationally efficient to implement
- Model development requires a thorough understanding of the system
- High-fidelity models can be
 computationally intensive
 - Paris-Erdogan Crack
 Growth Model
 - Taylor tool wear model
 - Corrosion mode
 - · Abrasion model

- Easy and Fast to implement
- May identify relationships that were not previously considered
- Requires lots of data and a "balanced" approach"
- Results may be counter(or even un-)intuitive
- Can be computationally intensive, both for analysis

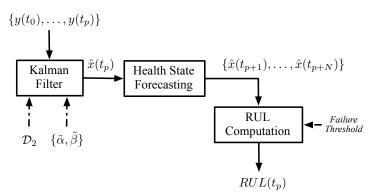
and in

- Regression analysis
- Neural Networks (NN)
- Bayesian updates
- Relevance vector machines (RVM)

Model-based prognostics

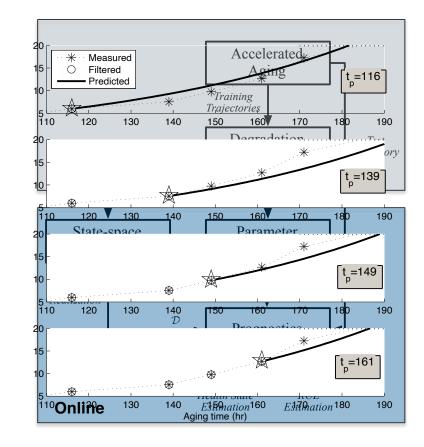
State vector includes dynamics of normal and degradation process

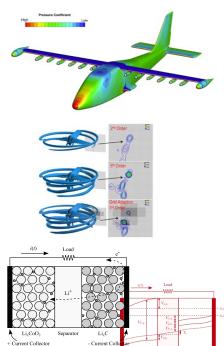
$$x_k = Ax_{k-1} + Bu_{k-1} + w_{k-1}$$
$$y_k = Hx_k + v_k$$



 EOL defined at time in which performance variable cross failure threshold

$$R(t_p) = t_{EOL} - t_p$$



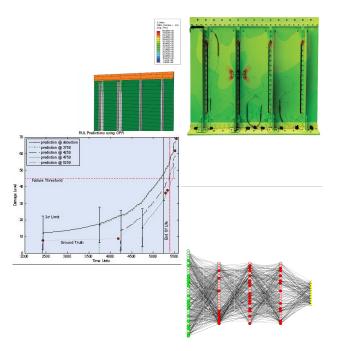


Li_aCoO₂

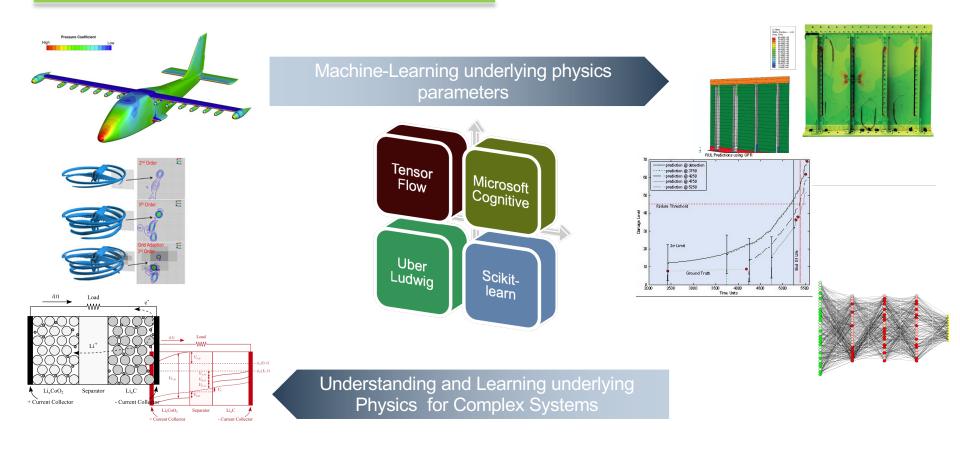
+ Current Collector

Separator Li_xC

- Current Collector

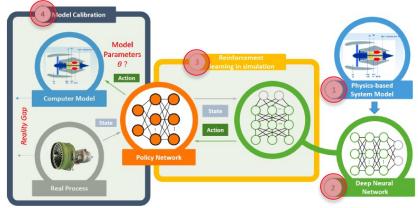


Hybrid Approach



Approach 1 : Deep Learning + Physics Model Calibration

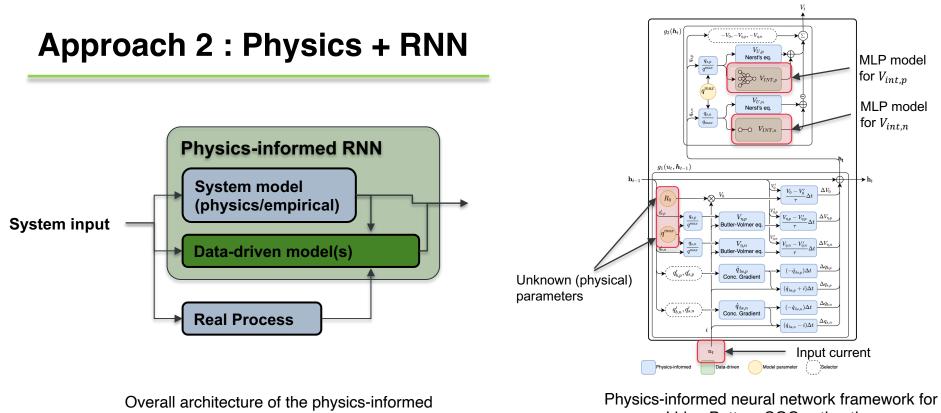




Overall architecture of the hybrid prognostics framework fusing physics-based and deep learning models.

Calibration Policy

Yuan Tian, Manuel Arias Chao, Chetan Kulkarni, Kai Goebel, Olga Fink, "Real-Time Model Calibration with Deep Reinforcement Learning", arXiv:2006.04001 Manuel Arias Chao, Chetan Kulkarni, Kai Goebel, Olga Fink, "Fusing Physics-based and Deep Learning Models for Prognostics", arXiv:2003.00732



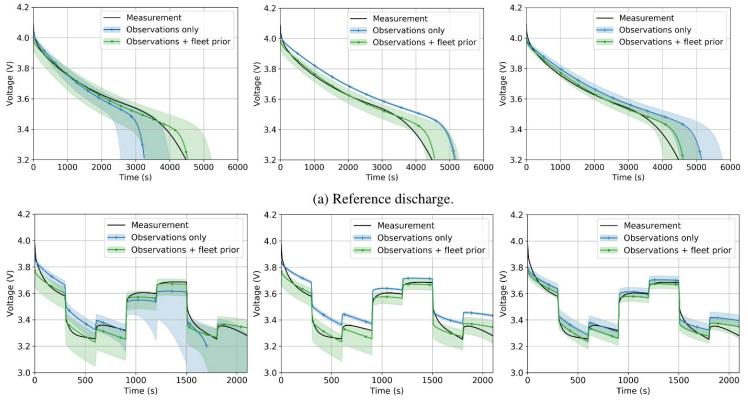
Li-ion Battery SOC estimation

Nascimento, R.G. & Viana, F. A. & Corbetta, M. & Kulkarni, C. S. (2021). "Usage-based Lifing of Lithium-Ion Battery with Hybrid Physics-Informed Neural Networks," AIAA Aviation 2021.

recurrent neural network

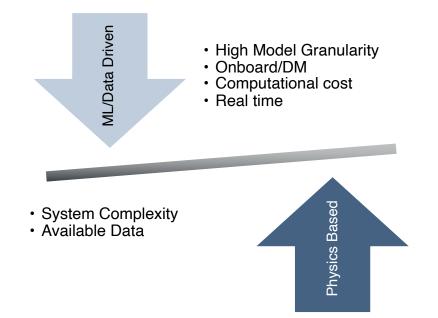
Renato G. Nascimento; Matteo Corbetta; Chetan S. Kulkarni; Felipe A.C. Viana, "Hybrid Physics-Informed Neural Networks for Lithium-Ion Battery Modeling and Prognosis". Journal of Power Sources 2021 (accepted)

Approach 2 : Physics + RNN

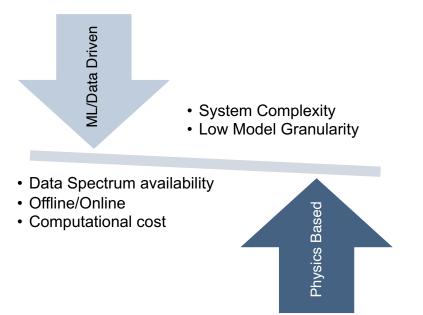


(b) Random-loading discharge.

Next Steps : Looking Ahead



Next Steps : Looking Ahead



Next Steps : Looking Ahead

Concluding Remarks

- Health Management framework helps enable
 - Systems safe and efficient
 - Decision making
- Hybrid Approaches
 - Physics based methods can be combined with machine learning to determine and evaluate models for complex physical systems.
 - High Fidelity simulation
 - Field and Tests
 - These models enable in verification and validation for autonomy in shorter period of time than current state of the art.
 - Computational tools are two slow.
 - With availability of test and field data, machine learning able to blend the digital data fabric for model update
 - Uncertainty Quantification
- Requirements for autonomous systems
- Framework still in early stages and needs maturation

Thank You

chetan.s.kulkarni@nasa.gov

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/