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How to track/predict the evolution of a system state to failure?
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Prognostics and Reliability Analysis
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Instead of asking 
what a population of 
components will do, 
ask what this specific 
component will do –
based on its 
condition (state)



Preprocessing

Sensor Data

• De-noising

• Filtering
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* A. Saxena (Ph.D.); European PHM Conference 2010
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Prognostics and Decision Making Framework



Prognosis: Systematic Approach
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Constituent Problems

In order to compute EOL, we need to know
• What is the system state at time of prediction?
• What potential inputs will the system have from time of 

prediction to EOL?
• What model describes the system evolution?
• What is the process noise distribution?
• What is the future input trajectory distribution?

Prognostics is often split into two sequential problems
• Estimation: determining the system state at a given time
• Prediction: determining EOL
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Prognostic Algorithm Categories

• Type I: Reliability Data-based
– Use population based statistical model
– These methods consider historical time to failure data which are used to model 

the failure distribution.  They estimate the life of a typical component under 
nominal usage conditions.

– Ex: Weibull Analysis

• Type II: Stress-based
– Use population based fault growth model – learned from accumulated knowledge
– These methods also consider the environmental stresses (temperature, load, 

vibration, etc.) on the component.  They estimate the life of an average 
component under specific usage conditions.

– Ex: Proportional Hazards Model

• Type III: Condition-based
– Individual component based data-driven model
– These methods also consider the measured or inferred component degradation.  

They estimate the life of a specific component under specific usage and 
degradation conditions.

– Ex: Cumulative Damage Model, Filtering and State Estimation



Data-Driven Methods

• Model is based solely on data collected from the system
• Some system knowledge may still be handy:

– What the system ‘is’
– What the failure modes are
– What sensor information is available
– Which sensors may contain indicators of fault progression (and how those 

signals may ‘grow’)
• General steps:

– Gather what information you can (if any)
– Determine which sensors give good trends
– Process the data to “clean it up” – try to get nice, monotonic trends
– Determine threshold(s) either from experience (data) or requirements
– Use the model to predict RUL

• Regression / trending
• Mapping (e.g., using a neural network)
• Statistics



Physics-Based Methods

• Description of a system’s underlying physics using suitable 
representation

• Some examples:
– Model derived from “First Principles”

• Encapsulate fundamental laws of physics
§ PDEs
§ Euler-Lagrange Equations

– Empirical model chosen based on an understanding of the dynamics of a 
system

• Lumped Parameter Model
• Classical 1st (or higher) order response curves

– Mappings of stressors onto damage accumulation
• Finite Element Model
• High-fidelity Simulation Model

• Something in the model correlates to the failure mode(s) of interest



Hybrid Approach

Machine-Learning underlying physics 
parameters

Understanding and Learning underlying  
Physics  for Complex Systems

Advanced Composites

Tiltrotor Test Rig 



Dynamic Nonlinear Models

Source: Adapted from Inman et al. (2005



Why Model-Based Prognostics?

• With model-based algorithms, 
models are inputs
–This means that, given a new 

problem, we use the same general 
algorithms
–Only the models should change

• Model-based prognostics 
approaches are applicable to a 
large class of systems, given a 
model
• Approach can be formulated 

mathematically, clearly and 
precisely

System 
Inputs 

System 
Outputs

System 
Models 

Predictions

Prognostics



SYSTEM FAILURE 
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Effects of Measurement Uncertainty
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INTRODUCTION TO MODEL-
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Model-based prognostics (1/2)

Kalman
Filter

Health State 
Forecasting

RUL
Computation

RUL(tp)

{�̃, ⇥̃}D2

x̂(tp)

{y(t0), . . . , y(tp)}

{x̂(tp+1), . . . , x̂(tp+N )}

Failure
Threshold

• State vector includes 
dynamics of the degradation 
process

• It might include nominal 
operation dynamics

• EOL defined at time in which 
performance variable cross 
failure threshold

• Failure threshold could be 
crisp or also a random 
variable
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ẋ(t) = f(x(t), u(t)) + w(t)

y(t) = h(x(t)), u(t)) + v(k)

R(tp) = tEOL � tp



Model-based prognostics (2/2)

• Tracking of health 
state based on 
measurements

• Forecasting of health 
state until failure 
threshold is crossed

• Compute RUL as 
function of EOL 
defined at time failure 
threshold is crossed
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Methodology
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Research Approach

Development of remaining life prediction algorithms that take into account the different sources of 
uncertainty while leveraging physics-based degradation models that considers future operational 

and environmental conditions

Development of degradation models based on the physics of the device and the failure 
mechanisms

Development of accelerated aging testbeds that facilitate the exploration of different failure 
mechanisms and aid the understanding of damage progression 

Identification of precursors of failure which play an essential role in the prediction of remaining life 

Identification of failure modes and their relationship to their particular failure
mechanisms



Algorithm Maturation through Validation
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Algorithm Maturation through Validation
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ARCHITECTURE
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Problem Requirements

•



System Model



Initial Problem Formulation



Concept: Compute EOL



Computational Algorithm



Integrated Prognostics Architecture

• System (battery) gets inputs (current) and produces outputs (voltage)
• State estimation computes estimate of state given estimates of age 

parameters
• EOD prediction computes prediction of time of EOD, given state and 

age parameter estimates
• Age parameter estimation computes estimates of age parameters
• Age rate parameter estimation computes parameters defining aging 

rate progression
• EOL prediction computes prediction of time of EOL, given age 

parameter and age rate parameter estimates



State Estimation

• What is the current system state and its associated 
uncertainty?
– Input: system outputs y from k0 to k, y(k0:k)
– Output: p(x(k),θ(k)|y(k0:k))

• Battery models are nonlinear, so require nonlinear state 
estimator (e.g., extended Kalman filter, particle filter, 
unscented Kalman filter)

• Use unscented Kalman filter (UKF)
– Straight forward to implement and tune performance
– Computationally efficient (number of samples linear in size of state 

space)



Prediction

• Most algorithms operate by simulating samples forward in 
time until E

• Algorithms must account for several sources of uncertainty 
besides that in the initial state
– A representation of that uncertainty is required for the selected 

prediction algorithm
– A specific description of that uncertainty is required (e.g., mean, 

variance)



CASE STUDY : PROGNOSTICS 
OF LI-ION BATTERIES



Battery Modeling

• Equivalent Circuit Empirical Models
§ Most common approach
§ Various model complexities used 
§ Difficulty in incorporating aging effects



• An equivalent circuit battery model is used 
to represent the battery terminal voltage 
as a function of current and the charge 
stored in 3 capacitive elements

• Two laboratory loading experiments are 
used to fit the following parameterization 
coefficients
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Discharge
Reduction at pos. electrode:
Li1-nCoO2 + nLi+ + ne- à LiCoO2
Oxidation at neg. electrode:

LinC à nLi+ + ne- + C
Current flows + to –
Electrons flow – to +

Lithium ions flow – to +

Charge
Oxidation at pos. electrode:
LiCoO2 à Li1-nCoO2 + nLi+ + ne-

Reduction at neg. electrode:
nLi+ + ne- + C à LinC

Current flows – to +
Electrons flow + to –

Lithium ions flow + to –

• Electrochemical Models vs. Empirical Models
§ Battery physics models enable more direct representation of age-related 

changes in battery dynamics than empirical models
§ Typically have a higher computational cost and more unknown parameters

Battery Modeling



Electrochemical Li-ion Model

• Lumped-parameter, ordinary differential equations
• Capture voltage contributions from different sources

– Equilibrium potential àNernst equation with Redlich-Kister
expansion

– Concentration overpotential à split electrodes into surface 
and bulk control volumes

– Surface overpotential à
Butler-Volmer equation 
applied at surface layers

– Ohmic overpotential à
Constant lumped resistance 
accounting for current 
collector resistances, 
electrolyte resistance, 
solid-phase ohmic resistances



Battery Aging

• Contributions from both decrease in mobile Li 
ions (lost due to side reactions related to 
aging) and increase in internal resistance
– Modeled with decrease in “qmax” parameter, 

used to compute mole fraction
– Modeled with increase in “Ro” parameter 

capturing lumped resistances
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Edge 540-T

• Subscale electric 
aircraft operated at 
NASA Langley 
Research Center

• Powered by four sets 
of Li-polymer 
batteries

• Estimate SOC online 
and provide EOD 
and remaining flight 
time predictions for 
ground-based pilots
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Edge UAV Use Case

• Piloted and autonomous 
missions, visiting waypoints

• Require 2-minute warning for 
EOD so pilot/autopilot has 
sufficient time to land safely
– This answer depends on battery age
– Need to track both current level of 

charge and current battery age
– Based on current battery state, 

current battery age, and expected 
future usage, can predict EOD and 
correctly issue 2-minute warning

Runway

Objective #1

Objective #2

Objective #3

Objective #4

Electric Aircraft



Predication over Flight Plan

• Measured and predicted 
battery current, voltage 
and SOC different time 
steps

• The min, max and median 
predictions are plotted 
from each sample time 
until the predicated SOC 
reaches 30%

• Predictions for remaining flight time for entire 
flight plan

• Overestimate till parasitic load is injected
• Once the parasitic load is detected the 

remaining flying time time prediction shifts down.

Ref : E. Hogge et al, “Verification of a Remaining Flying Time Prediction System for Small Electric Aircraft”, PHM 2015



Performance Requirements

• Accuracy requirements for the two minute warning were specified as:
– The prognostic algorithm shall raise an alarm no later than two minutes 

before the lowest battery SOC estimate falls below 30% for at least 90% of 
verification trial runs.

– The prognostic algorithm shall raise an alarm no earlier than three minutes 
before the lowest battery SOC estimate falls below 30% for at least 90% of 
verification trial runs.

– Verification trial statistics must be computed using at least 20 experimental 
runs



Data Sets Available for Download

• https://www.nasa.gov/content/prognostics-center-of-excellence-data-
set-repository

https://www.nasa.gov/content/prognostics-center-of-excellence-data-set-repository
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https://nasa.github.io/progpy/guide.html

Tools Available for Download



CLOSING REMARKS



§ Prognostics helps enable 
– Systems safe and efficient 
– Decision making

• Research approach challenges
– How to balance lack of knowledge of the system vs own expertise on 

particular PHM tools
– Data-driven or model-based?

• Data is always needed but more important, information about 
degradation/aging processes is key

• Experiments and field data
• Hybrid Approach

§ Requirements for autonomous systems
§ Framework still in early stages and needs maturation
§ Health Management and Safety Working Group 
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