
Enabling Thread Safety and 
Parallelism in the Program to 

Optimize Simulated 
Trajectories II

Anthony Williams, Rafael Lugo
NASA Langley Research Center

Steven Marsh, James Hoffman, Jeremy Shidner, 
John Aguirre

Analytical Mechanics Associates

This material is a work of 
the U.S. Government and is 
not subject to copyright 
protection in the United 
States.



Background and Motivation

 The Program to Optimize Simulated Trajectories II (POST2) is a widely used, workhorse trajectory 
simulation tool that has been used to solve a variety of atmospheric ascent and entry problems, with one 
or more vehicles

 POST2 development began in the 1970s, and has undergone continuous development and updates at 
NASA Langley Research Center (LaRC) since the conversion from all Fortran to C with C++ in the late 2000s

POST2
v1.1.6

Project
1

• Projects overwrote 
Core code

POST2
v3.0.0

Project
2

• Projects overwrote 
less of Core code

Project
3

POST2
v4.0.0

Project

• Projects use provided 
interfaces with Core (no 
code overwrite)

Process Evolution Current Process

Project
1

Project
2

Project
3

• Separate Code 
Repository

• Controlled by Team 1

• Separate Code 
Repository

• Controlled by Team 2

• Separate Code 
Repository

• Controlled by Team 3

POST2
Core

Multiple Projects

 Motivation is to enable thread safety to leverage high performance computing (HPC), 
such as multi-threaded central processing units (CPUs) or graphics processing units 
(GPUs), to improve POST2 performance, capability, and adaptability

2

Presenter
Presentation Notes
Maybe box in final bullet here



Calculations on
Separate Data

Calculations on
Separate Data

Update Shared
Data

Update Shared
Data

Use Shared
Data

Use Shared
Data

Thread 1 Thread 2

Time

Thread Safety

 Software is thread-safe if the parallel execution 
has no effect on the results

 A major issue preventing thread safety is data 
races, when shared data is begin read from and 
written too simultaneously

 Memory access must be analyzed, as well as 
execution to ensure thread-safe code

3



Before Thread-Safe Changes
Many global memory structures, 

remnants of Fortran common blocks
No grouping within global structures
Branches of code written specifically 

for first, global vehicle

After Thread-Safe Changes
Global memory space restructured 

into four-level hierarchy based on 
instruction execution
Vehicle specific logic removed

Memory Structure

Program
Problem

Vehicle
Trajectory

4



Function Pointers

 Used to interface custom model code 
for a particular project or mission by 
hooking into POST2 sockets

 Eliminates the need to change Core 
POST2 code

 User code must match specific 
function signature (return type and 
argument type)
• Before Thread-Safe Changes: 2 function 

pointer types, leveraging global memory 
access

• After Thread-Safe Changes: 1 function 
pointer type, can only access memory 
through passed in arguments

POST2 Aero

Atmosphere

Gravity

Mass
Properties

Propulsion

Winds

Thrust

Flight
Software

5



User Input

 User input is one of the features that allows POST2 to be generalized
 Defines initial conditions, physics model types, integration method, user 

models via function pointers, etc.
 POST2 tables are one of the more powerful and useful aspects

• 𝑦𝑦 = 𝑎𝑎 ∗ 𝑏𝑏 𝑥𝑥 + 𝑐𝑐 ∗ 𝑑𝑑
• Evaluated at the simulation rate
• Can be multi-dimensional

 Generalized equations
• Range from very simple to very complex, including conditionals, nesting, and most 

standard math functions (s𝑖𝑖𝑖𝑖, 𝑝𝑝𝑝𝑝𝑝𝑝, etc.)
• Nearly any combination of POST2 variables
• Evaluated at the simulation rate

𝑥𝑥: value of lookup table (POST2 variable)
𝑎𝑎: numerical component of table multiplier
𝑏𝑏: mnemonic component of table multiplier (POST2 variable)
𝑐𝑐: numerical component of table bias
𝑑𝑑: mnemonic component of table bias (POST2 variable)

6

Presenter
Presentation Notes
Figure out how best to deal with this now. The POST2 variables are bolded because it will lead to us talking about how best to deal with them



User Input

𝑥𝑥: value of lookup table (POST2 variable)

𝑏𝑏: mnemonic component of table multiplier (POST2 variable)

𝑑𝑑: mnemonic component of table bias (POST2 variable)

 POST2 tables are one of the more powerful and useful aspects
• 𝑦𝑦 = 𝑎𝑎 ∗ 𝑏𝑏 𝑥𝑥 + 𝑐𝑐 ∗ 𝑑𝑑
• Evaluated at the simulation rate

 Generalized equations

• Nearly any combination of POST2 variables
• Evaluated at the simulation rate

 Flexibility to utilize any POST2 variable poses challenge
 Need to log information on variables so that value at any point in simulation 

can be found
• Before Thread-Safe changes: Store absolute address to be dereferenced later, relative 

only to existing Trajectories or Vehicles
• After Thread-Safe changes: Store relative address offset from template 

Trajectory/Vehicle, relative to any future Trajectories or Vehicles 7

Presenter
Presentation Notes
Figure out how best to deal with this now. The POST2 variables are bolded because it will lead to us talking about how best to deal with them



Multithreaded Execution

 The work to be completed in parallel needs to outweigh the amount of time 
it takes to divide the work amongst multiple threads

 Qualitative analysis showed that Trajectories (level) running concurrently 
was the most impactful
• At the Vehicle level, not enough work to justify splitting it up

 For some optimization and guidance schemes multiple trajectories need to 
be simulated

 Open Multi-Processing (OpenMP) was the Application Programming 
Interface (API) chosen for parallelizing threads
• Leveraging the parallel for construct
• For this work, only utilizing CPUs

8

Presenter
Presentation Notes
With memory restructuring and thread-safe modifications made (function pointers, user inputs and tables), where best to insert multithreaded execution



Parallel Optimization Framework

 Default optimization scheme in POST2 is the projected gradient method
 Multiple derivatives are needed to build a sensitivity or Jacobian matrix

• Controls for the optimization problem determine derivatives needed

 Derivatives approximated via finite differencing
• Depending on type, e.g. central 2nd order, the number of trajectories needed changes

Before Thread-Safe Changes

Nominal Run

+ perturbation control 1

- perturbation control 1

+ perturbation control 2

- perturbation control 2

Separate, 
independent 
trajectories 
(sequential)

Time

After Thread-Safe Changes

Setup Overhead

Separate, independent 
trajectories (parallel)

+ perturbation 
control 1

- perturbation 
control 1

+ perturbation 
control 2

- perturbation 
control 2

Nominal Run

9



Human-Scale Lunar Lander

 NASA government reference human-scale Lunar lander was set to utilize 
parallel optimization [AAS 20-592]

 3 degree of freedom (DOF) simulation broken into multiple phases that each 
have optimization

DOI
PDI

Loiter Coast Braking Approach Terminal
Descent

10

Presenter
Presentation Notes
Problem 2: DOI
Problem 3: PDI
Problem 4: Braking
Problem 5: Approach
Problem 6: Terminal descent



Lunar Lander Results

Lower is 
Better

*Benefit to overall time 
bound by time spent within 
optimization region, which 
saw a 7X improvement

11



Summary and Future Work

 Heritage trajectory simulation tool, POST2, was modified to be thread-safe
 POST2 was then upgraded to enable parallel calculations to generate 

optimization solutions
 Lunar lander simulation utilizing parallel optimization shown to improve 

overall run time approximately 3X
 Additional efficiencies can be gained by utilizing more complex OpenMP 

constructs, as well as modifying when the parallel trajectories are launched 
within the execution

 Memory restructuring allowed for task creating API for POST2
 If interested in requesting access to POST2, 

https://www.nasa.gov/post2/request

12

https://www.nasa.gov/post2/request


Backup

13



Lunar Lander Gradient Calculations

Lower is 
Better

14



Regression Tests Gradient Calculations

Lower is 
Better

15



Regression Tests Overall Time

Lower is 
Better

16


	Enabling Thread Safety and Parallelism in the Program to Optimize Simulated Trajectories II
	Background and Motivation
	Thread Safety
	Memory Structure
	Function Pointers
	User Input
	User Input
	Multithreaded Execution
	Parallel Optimization Framework
	Human-Scale Lunar Lander
	Lunar Lander Results
	Summary and Future Work
	Backup
	Lunar Lander Gradient Calculations
	Regression Tests Gradient Calculations
	Regression Tests Overall Time

