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Background and Motivation

 The Program to Optimize Simulated Trajectories II (POST2) is a widely used, workhorse trajectory 
simulation tool that has been used to solve a variety of atmospheric ascent and entry problems, with one 
or more vehicles

 POST2 development began in the 1970s, and has undergone continuous development and updates at 
NASA Langley Research Center (LaRC) since the conversion from all Fortran to C with C++ in the late 2000s
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 Motivation is to enable thread safety to leverage high performance computing (HPC), 
such as multi-threaded central processing units (CPUs) or graphics processing units 
(GPUs), to improve POST2 performance, capability, and adaptability
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Thread Safety

 Software is thread-safe if the parallel execution 
has no effect on the results

 A major issue preventing thread safety is data 
races, when shared data is begin read from and 
written too simultaneously

 Memory access must be analyzed, as well as 
execution to ensure thread-safe code
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Before Thread-Safe Changes
Many global memory structures, 

remnants of Fortran common blocks
No grouping within global structures
Branches of code written specifically 

for first, global vehicle

After Thread-Safe Changes
Global memory space restructured 

into four-level hierarchy based on 
instruction execution
Vehicle specific logic removed
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Function Pointers

 Used to interface custom model code 
for a particular project or mission by 
hooking into POST2 sockets

 Eliminates the need to change Core 
POST2 code

 User code must match specific 
function signature (return type and 
argument type)
• Before Thread-Safe Changes: 2 function 

pointer types, leveraging global memory 
access

• After Thread-Safe Changes: 1 function 
pointer type, can only access memory 
through passed in arguments
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User Input

 User input is one of the features that allows POST2 to be generalized
 Defines initial conditions, physics model types, integration method, user 

models via function pointers, etc.
 POST2 tables are one of the more powerful and useful aspects

• 𝑦𝑦 = 𝑎𝑎 ∗ 𝑏𝑏 𝑥𝑥 + 𝑐𝑐 ∗ 𝑑𝑑
• Evaluated at the simulation rate
• Can be multi-dimensional

 Generalized equations
• Range from very simple to very complex, including conditionals, nesting, and most 

standard math functions (s𝑖𝑖𝑖𝑖, 𝑝𝑝𝑝𝑝𝑝𝑝, etc.)
• Nearly any combination of POST2 variables
• Evaluated at the simulation rate

𝑥𝑥: value of lookup table (POST2 variable)
𝑎𝑎: numerical component of table multiplier
𝑏𝑏: mnemonic component of table multiplier (POST2 variable)
𝑐𝑐: numerical component of table bias
𝑑𝑑: mnemonic component of table bias (POST2 variable)
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User Input

𝑥𝑥: value of lookup table (POST2 variable)

𝑏𝑏: mnemonic component of table multiplier (POST2 variable)

𝑑𝑑: mnemonic component of table bias (POST2 variable)

 POST2 tables are one of the more powerful and useful aspects
• 𝑦𝑦 = 𝑎𝑎 ∗ 𝑏𝑏 𝑥𝑥 + 𝑐𝑐 ∗ 𝑑𝑑
• Evaluated at the simulation rate

 Generalized equations

• Nearly any combination of POST2 variables
• Evaluated at the simulation rate

 Flexibility to utilize any POST2 variable poses challenge
 Need to log information on variables so that value at any point in simulation 

can be found
• Before Thread-Safe changes: Store absolute address to be dereferenced later, relative 

only to existing Trajectories or Vehicles
• After Thread-Safe changes: Store relative address offset from template 

Trajectory/Vehicle, relative to any future Trajectories or Vehicles 7
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Multithreaded Execution

 The work to be completed in parallel needs to outweigh the amount of time 
it takes to divide the work amongst multiple threads

 Qualitative analysis showed that Trajectories (level) running concurrently 
was the most impactful
• At the Vehicle level, not enough work to justify splitting it up

 For some optimization and guidance schemes multiple trajectories need to 
be simulated

 Open Multi-Processing (OpenMP) was the Application Programming 
Interface (API) chosen for parallelizing threads
• Leveraging the parallel for construct
• For this work, only utilizing CPUs
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Parallel Optimization Framework

 Default optimization scheme in POST2 is the projected gradient method
 Multiple derivatives are needed to build a sensitivity or Jacobian matrix

• Controls for the optimization problem determine derivatives needed

 Derivatives approximated via finite differencing
• Depending on type, e.g. central 2nd order, the number of trajectories needed changes
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Human-Scale Lunar Lander

 NASA government reference human-scale Lunar lander was set to utilize 
parallel optimization [AAS 20-592]

 3 degree of freedom (DOF) simulation broken into multiple phases that each 
have optimization

DOI
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Loiter Coast Braking Approach Terminal
Descent
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Lunar Lander Results

Lower is 
Better

*Benefit to overall time 
bound by time spent within 
optimization region, which 
saw a 7X improvement
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Summary and Future Work

 Heritage trajectory simulation tool, POST2, was modified to be thread-safe
 POST2 was then upgraded to enable parallel calculations to generate 

optimization solutions
 Lunar lander simulation utilizing parallel optimization shown to improve 

overall run time approximately 3X
 Additional efficiencies can be gained by utilizing more complex OpenMP 

constructs, as well as modifying when the parallel trajectories are launched 
within the execution

 Memory restructuring allowed for task creating API for POST2
 If interested in requesting access to POST2, 

https://www.nasa.gov/post2/request
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Backup

13



Lunar Lander Gradient Calculations

Lower is 
Better
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Regression Tests Gradient Calculations

Lower is 
Better
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Regression Tests Overall Time

Lower is 
Better
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