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Synopsis: 
 
We address the problem of constraining the mechanisms by which a massive amount of energy 
erupts from the sun at multiple scales, and how the corona is heated to high temperature. These 
mechanisms are highly dependent on how the magnetic field is stressed.  

As recommended in Klimchuk et al. white paper, translational and rotational motions of the 
photospheric magnetic elements are important drivers of the coronal heating that must be 
accurately characterized. Yet despite an abundance of photospheric observations, many 
uncertainties remain in measuring these flows that entangle and twist the magnetic field.   

This white paper states the current capacities for mapping the sun’s photospheric flows, with an 
emphasis on how to quantify the magnetic stress that builds up free energy and heats the corona. 
It also provides research avenues on how to go beyond our current limitations, so that the sun’s 
energy transport between the photosphere and the corona can be more accurately determined.  
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Introduction: The Sun is a differentially rotating sphere of magnetized fluid, presenting flow fields 

at multiple scales throughout its interior and atmosphere. By tracking and characterizing the 

magnetic flux flowing across the solar photosphere, we learn about fundamental properties of 

the solar plasma, including how plasma flows act on and react to strong magnetic fields. By 

converting kinetic energy into magnetic stress, the transport of solar plasma in the photosphere 

governs how our nearest star produces magnetic energy that is released during solar energetic 

events, such as solar flares and coronal mass ejections that put our technology-depended society 

at risk of space weather.  

One of the means to measure that energy conversion mechanism is to measure the photospheric 

flux of magnetic helicity, which is a conservative quantity that describes how much the magnetic 

field wraps around itself; it is a metric of magnetic stress, which builds up energy in excess of the 

field’s potential energy. The magnetic helicity flux depends on the magnetic flux transport 

velocity, which is subject to great uncertainties. Therefore, one requires to map the photospheric 

plasma flows at higher accuracy and higher resolution than what is currently possible, which 

implies also reliable error analyses. 

Since the beginning of the SDO era in 2010, systematic full sun photospheric imagery has been 

readily available at a time and spatial resolution sufficient to track the sun’s granulation flows 

over an entire solar cycle. Nonetheless, only the longitudinal component (in the direction of the 

line of sight) of the plasma flows can be imaged directly using Doppler effects, whereas the 

magnetic helicity flux requires knowledge of the magnetic flux transport vector parallel to sun’s 

surface, accessible by tracking and mapping the “horizontal” plasma flows over the photosphere.  

 

 

Figure 1: Left: Continuum image from SDO/HMI showing the Quiet Sun (granulation) and a sunspot. Right: 

Flow map processed with “Balltracking” using the continuum image series. The red-orange lines are the 

steramlines of the flows. The blue lanes outline the supergranular boundaries. 
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Current capacities in mapping horizontal flows  

In the last decade, photospheric flow maps (Figure 1) have been extremely valuable in advancing 

the characterization of the solar activity. For example, Toriumi et al. (2014) detected divergent 

flows prior to the emergence of active regions. Using SDO/HMI Dopplergrams, Hathaway et al. 

(2015) could accurately calculate the spectral components that reproduce the average 

photospheric convection spectrum down to granulation scales, thereby enabling realistic 

synthetic flow maps over nearly the entire solar disk. In general, mapping photospheric flows has 

been key in better understanding the sun’s supergranulation (Rincon & Rieutord 2018), and the 

global circulation of the magnetic flux over the solar cycle (Upton & Hathaway 2014). By tracking 

both the granulation horizontal flow and magnetic flux, Attie et al. (2016) mapped out a 

compelling relationship between vortical flows and coronal heating in the Quiet Sun. Attie et al. 

(2018) detected disturbances of an active region moat flow prior to one of the most dramatic 

active region’s flux emergence (Sun & Norton 2017), opening new research avenues for 

forecasting space weather events.  

To measure the horizontal surface flows, one often relies on tracking the displacements of 

photospheric “tracers”, such as Quiet-Sun granules in photospheric image series and moving 

magnetic features in series of magnetograms (Figure 3). Different methods exist to track these 

tracers. We categorize them into four main groups: 

1. Methods of optical flow: The displacements of matching patterns are tracked, with no physical 

assumption (Figure 2). Different implementations exist but they all share the use of a metric of 

similarity in tracking areas between consecutive images, e.g., maximum local correlation or 

maximum overlap (DeRosa 2001, Fisher & Welsch 2008, DeForest et al. 2007). This method has 

been widely used in our community since the end of the 1980s, when a granulation-specific 

implementation known as “Local Correlation Tracking” (aka LCT) was introduced by November & 

Simon (1988). The main disadvantage of optical flow is the aperture problem, which refers to the 

ambiguity in determining the true motion vector using a local motion detector (like LCT). Another 

disadvantage is the use of tracking sub-windows that are necessary for better velocity 

estimations at great cost on the resolution of the flow field. If magnetic fragments are small 

enough and rotating around each other, thereby injecting so-called “mutual helicity”, a tracking 

sub-window larger than the pair of rotating fragments will blur out that motion, which will not 

be seen as a rotation. 
 

Figure 2: Tracking areas (sub-windows) of optical flow methods define the 

widest possible search region where the moving parcels of fluid can move. 

If the sub-window is too wide, the algorithm may face ambiguous 

displacements, where the moving feature at time t1 is mapped to the wrong 

feature at time t2. If the tracking sub-window is too small, there may not be 

any solution at all.  

 

 

https://iopscience.iop.org/article/10.1088/0004-637X/794/1/19
https://iopscience.iop.org/article/10.1088/0004-637X/811/2/105
https://iopscience.iop.org/article/10.1088/0004-637X/811/2/105
https://link.springer.com/article/10.1007%2Fs41116-018-0013-5
https://iopscience.iop.org/article/10.1088/0004-637X/792/2/142
https://www.aanda.org/articles/aa/full_html/2016/12/aa27798-15/aa27798-15.html
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018SW001939
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018SW001939
https://iopscience.iop.org/article/10.3847/2515-5172/aa9be9
https://ui.adsabs.harvard.edu/abs/2001PhDT.........8D/abstract
https://ui.adsabs.harvard.edu/abs/2008ASPC..383..373F/abstract
https://iopscience.iop.org/article/10.1086/518994
https://ui.adsabs.harvard.edu/abs/1988ApJ...333..427N/abstract
https://ui.adsabs.harvard.edu/abs/1988ApJ...333..427N/abstract
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2. The Balltracking methods: A displacement of a pattern is tracked, but without the use of any 

similarity metric. Local trackers assume the presence of “plasma blobs” characterized by local 

extrema in the distribution of brightness. Considering a line-of-sight magnetogram as a 

photospheric cut across vertically oriented magnetic flux tubes, the center of the magnetic 

fragments (Figure 3, right) appear as local extrema in the magnetogram. By rescaling the intensity 

of the image, the image turns into a data surface where all the local extrema map to local minima 

(Figure 3, left). Local trackers are then modeled as “balls” that are “pushed” in those blobs using 

a numerical Newton’s law that makes them settle down into the local minima. A moving blob will 

push the balls around. By differentiating and averaging the positions of the balls, we map out the 

velocity of the blobs. Damping forces in the Newton’s law add more resilience to noisy data which 

makes the algorithm very robust. The main advantage of this algorithm is that it tracks the flux 

at the native resolution of the instrument. The “Balltracking” and “Magnetic Balltracking” 

algorithms implement this paradigm (Potts, 2004, Attie & Innes, 2015, Attie et al. 2018 – Figure 

1 and Figure 3). 

  
Figure 3: (Left) Magnetic Balltracking tracking the unsigned flux of magnetic elements in magnetograms 
(right) converted into a data surface. The downward bumps on the left map to areas of stronger flux in the 
magnetogram. The red dots are the center of the balls (left). Sometimes there can be multiple local 
extrema within the same magnetic fragment due to noise, non-vertical field orientation or poorly resolved 
magnetic fragments that appear coalescent as one single magnetic patch, which is why more than one 
ball may be involved in tracking the patch.   

3. Physics-based methods: Methods 1) and 2) are often considered “naive”, as they only rely on 

the displacement of brightness patterns. When tracking magnetic elements, these methods track 

only the apparent velocity of the magnetic fragment that is thought to be different from the true 

horizontal flux transport velocity defined in MHD (Schuck 2008). Thus physics-based methods 

add further MHD constraints to the optical flow solution (method 1). One of the most recent 

methods that targets the helicity rates is DAVE4VM (Schuck 2008, Figure 4). MHD simulations 

showed that this method can reconstruct helicity rates more accurately than the methods based 

solely on optical flow. DAVE4VM has set itself as the benchmark algorithm for measuring flux 

transport vectors. Nonetheless, despite being more accurate than optical flow methods, 

https://www.aanda.org/articles/aa/abs/2004/34/aa0891/aa0891.html
https://www.aanda.org/articles/aa/abs/2015/02/aa24552-14/aa24552-14.html
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018SW001939
https://ui.adsabs.harvard.edu/abs/2008ApJ...683.1134S/abstract
https://ui.adsabs.harvard.edu/abs/2008ApJ...683.1134S/abstract
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DAVE4VM inherits some of their limitations, such as the use of tracking sub-windows at the cost 

of resolution. 

 

4. Neural Networks: Through supervised learning (i.e., 

learning from existing examples of the inputs and the “ground 

truth” solutions), a neural network can emulate a numerical 

simulation of the solar photosphere and atmosphere. For 

example, the DeepVel neural network (Asensio Ramos et al., 2017) was trained in conjunction 

with realistic numerical simulations of the solar atmosphere to recover the depth-dependent 

velocity vector from surface quantities that relate to observational data. In reality, the neural 

network is only capable of generating an approximative mapping function between its input and 

output quantities. This approximation of the synthetic flows is model-dependent per the 

supervised training process which propagates biases existing in the model. Improvements in the 

neural network architecture have given more robust models and made them able to resolve flows 

at scales not achievable by traditional flow tracking methods (Tremblay & Attie 2020).  

A fundamental limitation shared by all the above methods is 

their inability to track the rotation of magnetic patches around 

their own axis when the distribution of flux is axisymmetric 

around that axis. It makes it impossible to measure the twisting 

of field lines (Figure 5). We do not expect actual structures to be 

perfectly axisymmetric. Existing methods will work with varying 

accuracy depending on the amount of deviation from 

axisymmetry, but at best one would be measuring the velocity 

of a rotating wave-like pattern that does not correspond to the 

flux transport at play.  

Another proxy for the magnetic stress is the “tangling efficiency” (see Klimchuk et al. white 

paper), defined as “the ratio of the random walk step size to the separation between nearby 

elements”. Together with twisting motions, they define the fundamental ways to generate the 

magnetic stress that builds up free energy, and the current sheets that dissipate it. Because 

twisting flows may play an essential role in heating the corona, quantifying rotational, stressing 

flows is a fundamental research area that needs further investigations and investments.   

  

Figure 4: Illustration of the physics-based method DAVE4VM. The gray-
scale background image is the vertical magnetic field BZ  scaled within +/- 
3kG. The blue contours indicate smoothed neutral lines. The red arrows 
show the flux transport velocity, and the green arrows are the “ground 
truth” inductive velocity of the MHD simulation. 

Figure 5: tangled field (left) and 
twisted field (right) 

https://arxiv.org/abs/1703.05128
https://ui.adsabs.harvard.edu/abs/2020FrASS...7...25T/abstract
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Summary on limitations and proposed improvements: 

Recent advances in tracking photospheric tracers such as the granulation show that this paradigm 

is accurate after averaging the output flows over mesogranular scales and above. In particular, 

using MHD simulation of the photospheric granulation (Rempel & Cheung 2014; Stein & Nordlund 

2012), it has been established that to produce one flow map with a correlation above 0.9 

between the measured velocity and the ground truth velocity of the MHD simulation, one needs 

to time-space average the flows over least 30 minutes and at least 2.5 Mm (Tremblay et al. 2018; 

Rieutord et al. 2007). Because much of the magnetic fragments covering the solar surface can be 

orders of magnitude smaller than 2.5 Mm, it is imperative to resolve the flux transport vector at 

much smaller scales by tracking these magnetic fragments at higher resolution.  

As a matter of fact, at the center of vortical flows (Brandt et al., 1988, Attie et al., 2009), relatively 

small magnetic fragments are observed to rotate around each other, and possibly around their 

own center axis due to the increased vorticity (Figure 6). Resolving injection of helicity into the 

magnetic field over a statistically significant area of the photosphere requires the tracking at high-

resolution of the magnetic tracers that are ubiquitous in the photosphere, so that one can reveal 

rotating motions over small areas: below the granulation scale of 1 Mm and lifetimes of 5-10 min. 

It is important to note that such magnetic tracers of the flux transport velocity would be the 

magnetic elements transporting weak field, i.e., below 10G, which are also small in area and close 

to each other, which often falls below the noise level and separating power of typical 

magnetograms (e.g., SDO/HMI resolution is 1 arcsec). In fact, if these observational constraints 

are not satisfied, any analysis of the magnetic stress of the sun using the horizontal flows would 

be highly biased, if not meaningless. So, to accurately quantify the magnetic stress with current 

instruments (SDO/HMI, DKIST), more investments should be dedicated to track the smallest 

observable magnetic tracers (<= 1 arcsec).  

Current simulations of the photospheric convection do not include a large enough spectrum to 

include the supergranulation, whose effect on the transport of magnetic flux is not fully 

understood. While supergranular cells are ubiquitous within Quiet Sun flows, they are still lacking 

in current simulations of the Quiet Sun. In addition, simulations of active regions currently rely 

on artificial boundary conditions which may not be representative of all observed sunspot 

configurations (Rempel, 2012).Thus, it is not possible to reliably evaluate the capacity of the 

tracking methods to reconstruct the supergranulation flows and the flow of moving magnetic 

features in active regions.   

Finally, neural networks built with supervised learning will propagate any bias of the simulation 

into the inferred flows, thus they cannot guarantee that the flows output by the model, when it 

is applied to real observations, is physical despite being presented physical examples during 

training (Tremblay et al., 2020, Figure 7). 

https://ui.adsabs.harvard.edu/abs/2014ApJ...785...90R/abstract
https://ui.adsabs.harvard.edu/abs/2012ApJ...753L..13S/abstract
https://ui.adsabs.harvard.edu/abs/2012ApJ...753L..13S/abstract
https://ui.adsabs.harvard.edu/abs/2018SoPh..293...57T/abstract
https://www.aanda.org/articles/aa/abs/2001/38/aadg034/aadg034.html
https://www.nature.com/articles/335238a0
https://www.aanda.org/articles/aa/abs/2009/02/aa11258-08/aa11258-08.html
https://ui.adsabs.harvard.edu/abs/2012ApJ...750...62R/abstract
https://spd51-aas.ipostersessions.com/default.aspx?s=95-00-95-EF-1A-20-83-9E-EB-96-8A-94-C9-96-38-83
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Figure 6: Photospheric vortex flows at 

between supergranular boundaries, driving 

oppositive polarity magnetic flux (red and 

green) at the center of the vortex, where 

helicity can efficiently be injected. As an 

example of free energy built up by the 

vortical motions, a relatively intense energy 

is released as an x-ray brightening, seen as 

the black spot in the gray-scale.  

 

To summarize, our ability to measure the sun’s magnetic stress will plateau unless we improve 

(i) the simulations used to evaluate the performance of current flow tracking algorithms, (ii) 

the quality of the observations on which the tracking algorithms are applied, and (iii) the 

architecture of the tracking algorithms: 

Simulations: Current tracking methods rely on testing the reconstruction of the flow fields and 
the flux transport velocity using MHD simulations, by comparing the “ground truth” velocity of 
the simulation with the velocity inferred by the tracking method. Due to the high impact of the 
photospheric drivers on the energetics of the sun, a high priority should be directed toward the 
determination of the accuracy of the flow tracking methods by using more realistic MHD 
simulations. The closer the simulation is to the real sun, the more confident we will be on the 
accuracy of the algorithm applied to the real observations. We stress two avenues of 
improvements: 

1) Augmenting the capacity of the simulation to include (i) the physics and scales of 
supergranulation (30 Mm at least), and (ii) more realistic flows in and around sunspots will 
enable much more reliable error analysis of all the photospheric flow tracking methods 
(Figure 7). We do realize this may be a “chicken and egg” problem as the results of the flow 
tracking methods are meant to be used to better constrain the models that we seek to 
improve. Nonetheless, through an iterative process, such improvement is very likely to 
happen.  

2) In the more specific case of the physics-based methods (method 3), the induction equation is 
central to the inference of the flux transport velocity. But opacity effects of the photosphere 
can make the observations non-inductive. In addition, these effects can be scale-dependent, 
which reinforces the need to include larger convection scales in the simulations. Therefore, 
the simulations and the flow tracking methods must address the problem of the non-ideal 
inductive nature of real photospheric observations. Without such improvement, a 
simulation proving even perfect reconstruction of the photospheric flow field or the flux 
transport vector by induction-based methods will have limited value when applied to real 
observations. 
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Figure 7: On the left, failed 
attempt at mapping the 
supergranular cells using the 
DeepVelU trained on an MHD 
simulation that lacks the 
supergranulation. On the 
right, using the same input 
data, supergranules revealed 
by the Balltracking algorithm.  

 

 

Flow tracking methods: Investments in deep learning are necessary to improve the neural 

networks' ability to infer velocity from real observations at higher resolution than what the other 

methods can achieve. In particular, unsupervised physics-informed neural networks should be 

explored further to infer physical flows. E.g., PINNs (Raissi et al., 2019) minimize the residuals of 

physical equations in their cost function (e.g., the Navier-Stokes equation in fluid mechanics: Jin 

et al., 2021). In the context of solar flows, PINNs could account for the continuity principle, or the 

vertical component of the magnetic induction equation as done by the Minimum Energy Fit (MEF: 

Longcope, 2004) or DAVE4VM (Schuck, 2008).  

Observations:  To address the fundamental question of how inductive the sun is, imaging vector 

magnetograms with greater dynamic range and precision would significantly help. Although 

DKIST’s high-resolution observations will help significantly, as mentioned earlier there is currently 

no algorithm able to measure the rotation of axisymmetric magnetic patches, regardless of the 

resolution of the observations, making the quantification of this fundamental source of magnetic 

stress (by twisting) inaccessible using current observations. In addition, stress-prone flows may 

be fundamentally different at the poles, where we have a highly foreshortened view of the 

magnetic field, an inescapable limitation when observed from Earth.  

To break free from these observational barriers, we recommend NASA to research on how 

magnetic fields move in the photosphere, and to research on stereoscopic (3D) 

spectropolarimeters to get simultaneous high-resolution Doppler measurements and vector 

magnetograms targeting the transport of the magnetic flux from different vantage points, 

including the polar view. The motion of single magnetic patches will then be characterized by 

line shifts from different viewing angles, by which we can reconstruct the 3D motion vector of 

the magnetic flux. While this may take more than a decade to research, we also recommend 

continued funding for SDO/HMI to fix current artifacts in the magnetograms to resolve the 

smallest possible sources of magnetic stress, which will require more investments in inversion 

techniques. 

  

https://ui.adsabs.harvard.edu/abs/2019JCoPh.378..686R/abstract
https://ui.adsabs.harvard.edu/abs/2020arXiv200306496J/abstract
https://ui.adsabs.harvard.edu/abs/2020arXiv200306496J/abstract
https://ui.adsabs.harvard.edu/abs/2004ApJ...612.1181L/abstract
https://arxiv.org/abs/0803.3472
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