The Impact of Inclination-dependent Attenuation on Ultraviolet Star Formation Rate Tracers

KEITH DOORE ^[D], RAFAEL T. EUFRASIO ^[D], BRET D. LEHMER ^[D], ERIK B. MONSON ^[D], ANTARA BASU-ZYCH ^[D], ^{2,3} AND 2 KRISTEN GAROFALI 3 ¹Department of Physics, University of Arkansas, 226 Physics Building, 825 West Dickson Street, Fayetteville, AR 72701, USA 4 ²NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771, USA ³Center for Space Science and Technology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA ABSTRACT We examine and quantify how hybrid (e.g., UV+IR) star formation rate (SFR) estimators and the 8 $A_{\rm FUV}$ - β relation (i.e., the Meurer et al. 1999 relation) depend on inclination for disk-dominated galaxies using spectral energy distribution modeling that utilizes the inclination-dependent attenuation curves 10 described in Doore et al. (2021). We perform this analysis on a sample of 133 disk-dominated galaxies 11 from the CANDELS fields and 18 disk galaxies from the SINGS and KINGFISH samples. We find that 12 both the hybrid SFR estimators and the $A_{\rm FUV}$ - β relation present clear dependencies on inclination. 13 To quantify this dependence in hybrid SFR estimators, we derive an inclination and FUV-NIR color 14 dependent parametric relation for converting observed UV and IR luminosities into SFRs. For the 15 $A_{\rm FUV}$ - β relation, we introduce an inclination-dependent component that accounts for the majority of 16 the inclination dependence with the scatter of the relation increasing with inclination. We then compare 17 both of these inclination-dependent relations to similar inclination-independent relations found in the 18 literature. From this comparison, we find that the UV+IR correction factor and $A_{\rm FUV}$ for our 19 our hybrid and $A_{\rm FUV}$ - β relations, respectively, result in a reduction in the residual scatter 20 of our sample by approximately a factor of two. Therefore, we demonstrate that inclination 21 must be considered in hybrid SFR estimators and the $A_{\rm FUV}$ - β relation to produce more accurate SFR 22 estimates in disk-dominated galaxies. 23

24 25

26

Keywords: Disk galaxies (391), Extragalactic astronomy (506), Galaxy properties (615), Star formation (1569), Spectral energy distribution (2129)

49

1. INTRODUCTION

Stars are one of the basic building blocks of galaxies,
and measurements of their formation rates are critical
for understanding how galaxies assembled and evolved.
On extragalactic scales, star formation rates (SFRs) are
typically determined for subgalactic star forming regions
(e.g., Bigiel et al. 2008; Leroy et al. 2012; Eufrasio et al.
2014, 2017; Thorp et al. 2019) or, more commonly, entire integrated galaxies (e.g., Kennicutt 1983; Gao &
Solomon 2004; Salim et al. 2007; Arnouts et al. 2013;
Barro et al. 2019). At these scales, SFRs are typically
determined from basic parametric descriptions (e.g. hybrid estimators, Meurer et al. 1999 relation, etc.), rather

Corresponding author: Keith Doore kjdoore@uark.edu

³⁹ than physically based characterizations of the galaxy or
⁴⁰ each star forming region (see Kennicutt & Evans 2012,
⁴¹ for a review). Therefore, to improve estimates of SFRs,
⁴² these parametric descriptions can be expanded to in⁴³ clude dependencies on physical properties relevant to
⁴⁴ the SFR calculation.

⁴⁵ Generally, parameterizations of SFRs use intrinsic ⁴⁶ (i.e., unattenuated) ultraviolet (UV) emission, which is ⁴⁷ almost **exclusively produced by** emission from young ⁴⁸ (\leq few 100 Myr), massive stars:

$$\left(\frac{\text{SFR}}{M_{\odot} \text{ yr}^{-1}}\right) = k_{\text{UV}} \left(\frac{L_{\text{UV}}^{\text{intr}}}{L_{\odot}}\right),\tag{1}$$

⁵⁰ where $k_{\rm UV}$ is the conversion from the intrinsic ⁵¹ monochromatic luminosity in the UV ($L_{\rm UV}^{\rm intr}$, calculated ⁵² as νL_{ν}) to the average SFR over the past 100 Myr (Ken-⁵³ nicutt 1998; Murphy et al. 2011; Kennicutt & Evans ⁵⁴ 2012). The conversion factor $k_{\rm UV}$ is typically deter-

(3)

⁵⁵ mined from stellar population synthesis and depends
⁵⁶ upon the chosen UV bandpass filter, initial mass func⁵⁷ tion (IMF), metallicity, and assumed star formation his⁵⁸ tory (SFH, the SFR as a function of time).

Unlike $k_{\rm UV}$, which can be determined theoretically 59 $_{60}$ with basic assumptions, $L_{\rm UV}^{\rm intr}$ is more difficult to deter-⁶¹ mine since the true intrinsic luminosity cannot be mea- $_{62}$ sured directly due to attenuation by dust. Instead, $L_{\rm UV}^{\rm intr}$ 63 must be estimated by modeling the attenuation of the ⁶⁴ observed emission in the rest-frame UV. There are two ⁶⁵ common methods for doing this, depending on the avail-66 ability of quality infrared (IR) data. If quality IR data is ⁶⁷ available, hybrid SFR estimators are often chosen (e.g., 68 Leroy et al. 2008; Zhu et al. 2008; Hao et al. 2011; Eufra-69 sio et al. 2014; Catalán-Torrecilla et al. 2015; Boquien 70 et al. 2016; Eufrasio et al. 2017). These tracers correct 71 the observed UV luminosity to an intrinsic UV lumi-⁷² nosity by assuming some fraction of the attenuated UV 73 light is absorbed by dust and re-radiated in the IR, or

$$L_{\rm UV}^{\rm intr} = L_{\rm UV}^{\rm obs} + a_{\rm corr} \times L_{\rm IR}^{\rm obs}, \qquad (2)$$

⁷⁵ where $L_{\rm UV}^{\rm obs}$ is the observed rest-frame UV luminosity ⁷⁶ assuming isotropy, $a_{\rm corr}$ is the UV+IR correction fac-⁷⁷ tor that accounts for some fraction of the re-radiated IR ⁷⁸ emission being from the attenuated UV light, and $L_{\rm IR}^{\rm obs}$ ⁷⁹ is the observed emission in a rest-frame IR bandpass or ⁸⁰ the total integrated IR (TIR) luminosity. Many values ⁸¹ of $a_{\rm corr}$ exist in the literature that have been empirically ⁸² derived depending upon the chosen UV and IR band-⁸³ passes, as well as the choice of attenuation curve.

⁸⁴ Another commonly used method for modeling the at-⁸⁵ tenuation of the UV emission, when IR data is not avail-⁸⁶ able, is the $A_{\rm UV}$ - β relation, which is also referred to as ⁸⁷ the Meurer et al. (1999) relation due to its initial deriva-⁸⁸ tion in Meurer et al. (1999). This relation links the slope ⁸⁹ of the observed UV emission (β ; $F_{\lambda} \propto \lambda^{\beta}$) to the UV ⁹⁰ attenuation ($A_{\rm UV}$). Following the notation of Boquien ⁹¹ et al. (2012), a generalized version of the $A_{\rm UV}$ - β relation ⁹² is given by

$$A_{\rm UV} = a_\beta (\beta - \beta_0),$$

⁹⁴ where β_0 is the slope of the unattenuated UV emis-⁹⁵ sion given by the galaxy's **intrinsic properties (i.e.,** ⁹⁶ SFH, IMF, and metallicity), and a_β is defined by ⁹⁷ the shape of the chosen attenuation curve. This relation ⁹⁸ is commonly calibrated using a sample of galaxies that ⁹⁹ have IR measurements to use their "infrared ex-¹⁰⁰ cess" (IRX) as a proxy for $A_{\rm UV}$ (Calzetti et al. 1994; ¹⁰¹ Meurer et al. 1999; Gordon et al. 2000; Kong et al. 2004; ¹⁰² Hao et al. 2011; Boquien et al. 2012; Buat et al. 2012). ¹⁰³ This leads to the so-called IRX- β relation given by

$$\text{IRX} \equiv \log_{10} \left(\frac{L_{\text{IR}}^{\text{obs}}}{L_{\text{UV}}^{\text{obs}}} \right) = \log_{10} \left[\left(10^{0.4a_{\beta}(\beta-\beta_0)} - 1 \right) / a_{\text{corr}} \right]$$
(4)

¹⁰⁵ where $a_{\rm corr}$ is defined in Equation 2. Once a_{β} , β_0 , $a_{\rm corr}$ ¹⁰⁶ have been calibrated, the $A_{\rm UV}$ - β relation can then be ¹⁰⁷ used to determine the de-attenuated, intrinsic UV lumi-¹⁰⁸ nosity for galaxies lacking IR data.

However, both of these methods have a common to caveat. As stated above, the parameters $a_{\rm corr}$ and a_β the strongly depend upon the choice of attenuation curve. Therefore, a simplified or inappropriate choice of the attenuation curve can lead to various biases in these to determine the intrinsic UV emission of disk galaxies, to determine the intrinsic UV emission of disk galaxies, to determine the intrinsic UV emission of disk galaxies, to as the inclination of the disk has been shown to sigif nificantly influence attenuation, with edge-on galaxies (i.e., $i \approx 90^{\circ}$) having increased attenuation compared to face-on galaxies (i.e., $i \approx 0^{\circ}$) (Giovanelli et al. 1994; Driver et al. 2007; Unterborn & Ryden 2008; Conroy et al. 2010; Masters et al. 2010; Wild et al. 2011; Devour & Bell 2016; Battisti et al. 2017; Salim et al. 2018).

As an example, if a disk galaxy could be viewed from ¹²⁴ multiple inclinations, it would be observed that the ¹²⁵ UV emission would decrease with increasing inclination, ¹²⁶ whereas the IR emission would be relatively unchanged ¹²⁷ due to minimal attenuation at these wavelengths. With ¹²⁸ the intrinsic UV emission being independent of incli-¹²⁹ nation, Equation 2 indicates that $a_{\rm corr}$ must be depen-¹³⁰ dent upon inclination to compensate for the inclination-¹³¹ dependence of the observed UV emission. Therefore, in ¹³² order to account for this effect and obtain accurate SFR ¹³³ estimators, it is critical to characterize how inclination ¹³⁴ affects attenuation and scaling relations of disk galaxies.

Recent works by Conroy et al. (2010), Leslie et al. 135 136 (2018b,a), Wang et al. (2018), and Wolf et al. (2018) 137 have investigated how inclination affects the SFRs de-138 rived using UV emission. Specifically, Leslie et al. 139 (2018b,a) and Wolf et al. (2018) showed that inclination-140 based attenuation alone can cause the uncorrected, ob-¹⁴¹ served UV emission to yield underestimated SFRs (by ¹⁴² factors of 2.5–4) for edge-on galaxies compared to face-¹⁴³ on galaxies. Conroy et al. (2010) and Wang et al. ¹⁴⁴ (2018) showed that the IRX- β relation is highly de-145 pendent upon inclination, with nearly edge-on galax-¹⁴⁶ ies having larger IRX values by factors of 1.2–1.5 com-¹⁴⁷ pared to nearly face-on galaxies with the same β . How-¹⁴⁸ ever, Leslie et al. (2018a) showed that hybrid SFR esti-¹⁴⁹ mators, when assuming a constant $a_{\rm corr}$, are relatively ¹⁵⁰ inclination-independent when compared to the galaxy ¹⁵¹ main-sequence (galaxy SFR-stellar mass relation). Yet, ¹⁵² this is not in contradiction with the theoretical stance ¹⁵³ that hybrid SFR estimators, when assuming a constant ¹⁵⁴ $a_{\rm corr}$, should be dependent upon inclination. This is ¹⁵⁵ due to the comparison with the galaxy main-sequence, ¹⁵⁶ which was derived using these same hybrid SFR esti-¹⁵⁷ mators. Therefore, it is expected that any trends with ¹⁵⁸ inclination is masked by using this comparison.

In this paper, we examine and quantify how both hy-159 ¹⁶⁰ brid SFR estimators and the $A_{\rm UV}$ - β relation depend on inclination using spectral energy distribution (SED) 161 ¹⁶² modeling that incorporates the inclination-dependent ¹⁶³ attenuation curves described in Doore et al. (2021), which are based on the Tuffs et al. (2004) inclination-164 ¹⁶⁵ dependent attenuation curves. When examining this de-¹⁶⁶ pendence, we specifically focus on the commonly used Galaxy Evolution Explorer (GALEX) far-UV (FUV) 167 ¹⁶⁸ bandpass and TIR luminosity (L_{TIR}) . We quantify this ¹⁶⁹ inclination dependence using a sample of 133 galax-170 ies from the Cosmic Assembly Near-infrared Deep Ex-171 tragalactic Legacy Survey (CANDELS) fields (Koeke-172 moer et al. 2011; Grogin et al. 2011), along with 18 ¹⁷³ disk galaxies from the SINGS (Spitzer Infrared Nearby 174 Galaxies Survey; Kennicutt et al. 2003; Dale et al. 2005, 2007), and KINGFISH (Key Insights on Nearby Galax-175 176 ies: A Far-Infrared Survey with Herschel; Kennicutt 177 et al. 2011; Dale et al. 2012) samples. We discuss how we selected these galaxies and their photometry in Sec-178 ¹⁷⁹ tion 2. In Section 3, we derive the physical properties ¹⁸⁰ needed for our analysis using SED modeling. In Sec-¹⁸¹ tion 4, we examine, quantify, and present how both the ¹⁸² hybrid SFR estimators and the $A_{\rm FUV}$ - β relation depend 183 on inclination and discuss how this inclination depen-¹⁸⁴ dence compares with results from past studies. Finally, we summarize our results in Section 5. 185

In this work, we assume a Kroupa (2001) IMF with solar metallicity ($Z = Z_{\odot}$) and a flat Λ CDM cosmology where $\Omega_M = 0.30$ and $\Omega_{\Lambda} = 0.70$ with a Hubble constant flag of $H_0 = 70$ km s⁻¹ Mpc⁻¹. Additionally, all quoted magnitudes are in AB magnitudes.

191 2. DATA AND SAMPLE SELECTION

192 2.1. CANDELS sample

Since UV star formation tracers are commonly used to determine the SFRs of galaxies at intermediate redshifts, we utilized a sample of 133 disk-dominated galaxies that are contained within the CANDELS fields, spanning a redshift range of z = 0.09-0.98. Of these galaxies, 38 and 42 galaxies are contained within the Great Observatories Origins Deep Survey North (GOODS-N) and South (GOODS-S) fields (Giavalisco et al. 2004), respectively; 23 are contained within the Extended Groth Strip (EGS; Davis et al. 2007); 25 are contained within ²⁰³ the Cosmic Evolution Survey (COSMOS) field (Scoville ²⁰⁴ et al. 2007); and 5 are contained within the UKIDSS ²⁰⁵ Ultra-Deep Survey (UDS) field (Lawrence et al. 2007; ²⁰⁶ Cirasuolo et al. 2007). To generate this sample of galax-²⁰⁷ ies, we used a similar selection method as presented in ²⁰⁸ Doore et al. (2021), which was shown to have minimal ²⁰⁹ to no selection biases due to inclination.

We briefly summarize this method here. We first se-210 ²¹¹ lected galaxies to have reliable spectroscopic redshifts ²¹² from our compiled spectroscopic redshift catalog, which ²¹³ is described in Appendix A. We then required each 214 galaxy to have at least six photometric measurements ²¹⁵ in the mid-to-far IR (3–1000 μ m), one of which was re-216 quired to be greater than 100 μ m rest frame to con-217 strain the peak of the dust emission. Next, we consid-²¹⁸ ered any galaxy cross-matched within 1" of an X-ray ²¹⁹ detected source in the Chandra X-ray catalogs (Nandra 220 et al. 2015; Civano et al. 2016; Xue et al. 2016; Luo 221 et al. 2017; Kocevski et al. 2018) as potentially harbor-²²² ing an active galactic nucleus (AGN). These potential 223 AGNs were then removed as to prevent any AGN dom-224 inated galaxies from being in the sample. We also re-²²⁵ moved potentially obscured mid-IR AGN using the Don-²²⁶ ley et al. (2012) IRAC selection criteria and Kirkpatrick 227 et al. (2013) Spitzer/Herschel color-color criteria. We ²²⁸ then reduced the sample to only disk-dominated galax-²²⁹ ies (i.e., an approximate bulge-to-disk ratio of zero) via 230 their Sérsic index $n \ (n < 1.2; \text{ Sérsic 1963})$ as measured $_{231}$ by van der Wel et al. $(2012)^1$ in the HST WFC3/F125W ²³² band. We additionally required the Sérsic indices to be 233 from "good fits" (i.e., flag of 0). Finally, a visual in-²³⁴ spection of HST postage stamps was performed, and we ²³⁵ removed any irregular or potentially merging galaxies 236 that survived the Sérsic index cut.

In Figure 1, we show the inclination of each 237 ²³⁸ galaxy as derived from our SED fittings (see Sec-²³⁹ tion 3.1) versus spectroscopic redshift. While 240 there are more highly inclined galaxies com-²⁴¹ pared to low inclination galaxies, no distinguish-²⁴² able trend in inclination with redshift is present. Trends between inclination and redshift are pos-²⁴⁴ sible as edge-on galaxies can be preferentially se-245 lected at higher redshifts compared to face-on ²⁴⁶ galaxies due to their higher surface brightness ²⁴⁷ (Graham & Worley 2008; Sargent et al. 2010; 248 Devour & Bell 2016). We quantitatively con-249 firmed this lack of trend between inclination and ²⁵⁰ redshift by splitting the sample into two groups ²⁵¹ along the median redshift of 0.45 and perform-

¹ https://users.ugent.be/~avdrwel/research.html#candels

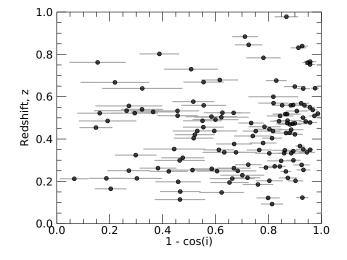


Figure 1. Inclinations derived from Lightning in terms of $1-\cos i$ vs. the spectroscopic redshift of each galaxy in the CANDELS sample. While the sample does contain more inclined galaxies compared to less inclined galaxies, there is no distinguishable trend in inclination with redshift.

²⁵² ing a Kolmogorov-Smirnov test. The test showed ²⁵³ minimal differences in inclination distributions ²⁵⁴ for the high and low redshift groups with a p-²⁵⁵ value > 0.1.

The UV to mid-IR photometry for the 133 galaxies 256 was taken from the CANDELS multiband photometric 257 $_{258}$ catalogs², which are presented in Barro et al. (2019), Guo et al. (2013), Stefanon et al. (2017), Navyeri et al. 259 (2017), and Galametz et al. (2013) for the GOODS-260 ²⁶¹ N, GOODS-S, EGS, COSMOS, and UDS fields, respec-²⁶² tively. We also utilized the far-IR photometry produced ²⁶³ by Barro et al. (2019) for all five of the CANDELS fields. We corrected the photometry for Galactic extinction us-²⁶⁵ ing the Schlafly & Finkbeiner (2011) recalibration of the ²⁶⁶ Schlegel et al. (1998) dust maps and a Fitzpatrick (1999) ²⁶⁷ reddening law with $R_V = 3.1$. The extinction was de-²⁶⁸ termined for the center of each field, and no variation across each field is considered, due to small overall ex-269 270 tinction corrections and minimal variation across each 271 field. We also added fractional calibration uncertain-272 ties to the catalog flux uncertainties to account for any 273 additional sources of uncertainty and potential system²⁷⁴ atic variations in the photometry. These fractional cal-²⁷⁵ ibration uncertainties are 2–15% of the measured flux ²⁷⁶ as described in each instrument's user handbook and ²⁷⁷ are listed in Table 1 along with the mean wavelength, ²⁷⁸ Galactic extinction, and corresponding filters used in ²⁷⁹ each field.

To estimate the inclinations of each galaxy (see Sec-²⁸¹ tion 3.1), we required an axis ratio q with uncertainty. ²⁸² Therefore, we utilized the WFC3/F125W measured ²⁸³ axis ratios from the fits for the Sérsic index by van ²⁸⁴ der Wel et al. (2012). We note that measurements of ²⁸⁵ q have been shown to vary with rest-frame wavelength ²⁸⁶ and redshift (Dalcanton & Bernstein 2002). However, ²⁸⁷ van der Wel et al. (2014) showed that this variation with ²⁸⁸ redshift in the van der Wel et al. (2012) axis ratios is ²⁸⁹ generally smaller than the uncertainty within our ²⁹⁰ redshift range.

2.2. SINGS/KINGFISH sample

We supplemented our CANDELS sample with an ad-292 ²⁹³ ditional 18 local disk-dominated galaxy from the com-²⁹⁴ bined SINGS and KINGFISH sample given in Dale et al. ²⁹⁵ (2017), since UV star formation tracers are also com-²⁹⁶ monly used in local galaxies. We first selected galaxies ²⁹⁷ to be star-forming spiral galaxies (Sa and later types) ²⁹⁸ as given by their optical morphologies in Dale et al. ²⁹⁹ (2017). They were also selected to not be AGN dom-³⁰⁰ inated (i.e., Seyfert galaxies) to limit any contamina-³⁰¹ tion of the photometry by AGN, using the nuclear type 302 given in Kennicutt et al. (2003). Further, we excluded ³⁰³ galaxies with low Galactic latitude (absolute latitude) $_{304} > 15^{\circ}$), as the large number of foreground stars can ³⁰⁵ result in non-negligible contamination of the observed 306 fluxes. We also excluded any galaxies that are ³⁰⁷ known to be or have companion galaxies (e.g., ³⁰⁸ NGC 1097 and NGC 5457), as the interaction ³⁰⁹ between companions could impact disk morphol-³¹⁰ ogy, resulting in distorted inclination estimates. ³¹¹ Finally, we visually inspected images of the remaining 312 galaxies and excluded any that are irregularly shaped, or 313 contain bright or dominant bulges. With these criteria, ³¹⁴ our SINGS/KINGFISH sample includes the following 18 315 galaxies: NGC 24, NGC 337, NGC 628, NGC 925, NGC 316 2403, NGC 2976, NGC 3049, NGC 3184, NGC 3198, 317 NGC 3938, NGC 4236, NGC 4254, NGC 4536, NGC 318 4559, NGC 4631, NGC 5055, NGC 7331, NGC 7793.

² https://archive.stsci.edu/prepds/candels/

${\bf Table \ 1. \ CANDELS \ Multiwavelength \ Coverage}$

Field	Telescope/Band	$\lambda_{ m mean} a \ (\mu{ m m})$	$\begin{array}{c} A_{\lambda}^{\operatorname{Gal}}b\\ (\operatorname{mag}) \end{array}$	$\sigma_{\mathrm{C}}^{\mathrm{cal}\mathcal{C}}$	Field	Telescope/Band	$\lambda_{ m mean} a \ (\mu{ m m})$	$\begin{array}{c} A_{\lambda}^{\operatorname{Gal}}b\\ (\operatorname{mag}) \end{array}$	$\sigma_{\mathrm{C}}^{\mathrm{cal}\mathcal{C}}$
GOODS-N	KPNO $4m$ /Mosaic U	0.3561	0.052	0.05	EGS	CFHT/MegaCam u^*	0.3799	0.032	0.05
	LBT/LBCU	0.3576	0.052	0.10		CFHT/MegaCam q'	0.4806	0.026	0.05
	HST/ACS F435W	0.4296	0.044	0.02		HST /ACS F606W	0.5804	0.020	0.02
	HST/ACS F606W	0.5804	0.031	0.02		CFHT/MegaCam r'	0.6189	0.018	0.05
	HST/ACS F775W	0.7656	0.020	0.02		CFHT/MegaCam i'	0.7571	0.013	0.05
	HST/ACS F814W	0.7979	0.019	0.02		HST /ACS F814W	0.7979	0.012	0.02
	HST/ACS F850LP	0.8990	0.015	0.02		CFHT/MegaCam z'	0.8782	0.011	0.05
	HST/WFC3 F105W	1.0449	0.012	0.02		Mayall/NEWFIRM J_1	1.0432	0.008	0.10
	HST/WFC3 F125W	1.2396	0.009	0.02		Mayall/NEWFIRM J_2	1.1922	0.006	0.10
	HST/WFC3 F140W	1.3784	0.007	0.02		HST /WFC3 F125W	1.2396	0.006	0.02
	HST/WFC3 F160W	1.5302	0.006	0.02		CFHT/WIRCam J	1.2513	0.006	0.05
	$CFHT/WIRCam K_s$	2.1413	0.004	0.05		Mayall/NEWFIRM J_3	1.2757	0.006	0.10
	Subaru/MOIRCS K_s	2.1442	0.004	0.05		HST /WFC3 F140W	1.3784	0.005	0.02
	Spitzer/IRAC1	3.5314	0.002	0.05		HST /WFC3 F160W	1.5302	0.004	0.02
	Spitzer/IRAC2	4.4690	0.000	0.05		Mayall/NEWFIRM H_1	1.5578	0.004	0.10
	Spitzer/IRAC3	5.6820	0.000	0.05		CFHT/WIRCam H	1.6217	0.004	0.05
	Spitzer/IRAC4	7.7546	0.000	0.05		Mayall/NEWFIRM H_2	1.7041	0.004	0.10
	$Spitzer/MIPS 24 \ \mu m$	23.513	0.000	0.05		CFHT/WIRCam K_s	2.1413	0.002	0.05
	$Spitzer/MIPS$ 70 μm	70.389	0.000	0.10		Mayall/NEWFIRM K	2.1639	0.002	0.10
	$Herschel/PACS 100 \ \mu m$	100.05	0.000	0.05		Spitzer/IRAC1	3.5314	0.001	0.05
	$Herschel/PACS 160 \ \mu m$	159.31	0.000	0.05		Spitzer/IRAC2	4.4690	0.000	0.05
	$Herschel/SPIRE~250~\mu{ m m}$	247.21	0.000	0.15		Spitzer/IRAC3	5.6820	0.000	0.05
GOODS-S	Blanco/MOSAIC II U	0.3567	0.034	0.05	-	Spitzer/IRAC4	7.7546	0.000	0.05
	VLT/VIMOS U	0.3709	0.033	0.05		$Spitzer/{\rm MIPS}$ 24 $\mu{\rm m}$	23.513	0.000	0.05
	HST /ACS F435W	0.4296	0.029	0.02		$Spitzer/MIPS$ 70 μm	70.389	0.000	0.10
	HST /ACS F606W	0.5804	0.020	0.02		Herschel/PACS 100 $\mu \rm{m}$	100.05	0.000	0.05
	HST /ACS F775W	0.7656	0.013	0.02		$Herschel/{\rm PACS}$ 160 $\mu{\rm m}$	159.31	0.000	0.05
	HST /ACS F814W	0.7979	0.012	0.02		$Herschel/{\rm SPIRE}$ 250 $\mu{\rm m}$	247.21	0.000	0.15
	HST /ACS F850LP	0.8990	0.010	0.02	COSMOS	CFHT/MegaCam u^\ast	0.3799	0.074	0.05
	HST /WFC3 F098M	0.9826	0.008	0.02		Subaru/Suprime-Cam ${\cal B}$	0.4323	0.066	0.05
	HST /WFC3 F105W	1.0449	0.008	0.02		Subaru/Suprime-Cam g^\prime	0.4634	0.062	0.05
	HST /WFC3 F125W	1.2396	0.006	0.02		CFHT/MegaCam g^\prime	0.4806	0.059	0.05
	HST /WFC3 F160W	1.5302	0.004	0.02		Subaru/Suprime-Cam ${\cal V}$	0.5416	0.051	0.05
	VLT/HAWK-I K_{s}	2.1403	0.002	0.05		HST /ACS F606W	0.5804	0.046	0.02
	VLT/ISAAC ${\cal K}_s$	2.1541	0.002	0.05		CFHT/MegaCam r^\prime	0.6189	0.041	0.05
	Spitzer/IRAC1	3.5314	0.001	0.05		Subaru/Suprime-Cam r^\prime	0.6197	0.041	0.05
	Spitzer/IRAC2	4.4690	0.000	0.05		CFHT/MegaCam i^\prime	0.7571	0.030	0.05
	Spitzer/IRAC3	5.6820	0.000	0.05		Subaru/Suprime-Cam i^\prime	0.7622	0.030	0.05
	Spitzer/IRAC4	7.7546	0.000	0.05		HST /ACS F814W	0.7979	0.028	0.02
	$Spitzer/{\rm MIPS}$ 24 $\mu{\rm m}$	23.513	0.000	0.05		CFHT/MegaCam z^\prime	0.8782	0.024	0.05
	$Spitzer/{\rm MIPS}$ 70 $\mu{\rm m}$	70.389	0.000	0.10		Subaru/Suprime-Cam z^\prime	0.9154	0.023	0.05
	$Herschel/{\rm PACS}$ 100 $\mu{\rm m}$	100.05	0.000	0.05		VISTA/VIRCAM Y	1.0194	0.018	0.05
	$Herschel/{\rm PACS}$ 160 $\mu{\rm m}$	159.31	0.000	0.05		Mayall/NEWFIRM J_1	1.0432	0.018	0.10
	$Herschel/{\rm SPIRE}$ 250 $\mu{\rm m}$	247.21	0.000	0.15		Mayall/NEWFIRM J_2	1.1922	0.014	0.10
UDS	CFHT/MegaCam u^*	0.3799	0.091	0.05	-	HST /WFC3 F125W	1.2396	0.013	0.02

 Table 1 continued

Doore	\mathbf{ET}	AL.
-------	---------------	-----

Table 1 (continued)

Field	Telescope/Band	$\lambda_{ m mean} a$	$A_{\lambda}^{\operatorname{Gal}}b$	$\sigma_{\rm C}^{{\rm cal} {\cal C}}$	Field	Telescope/Band	$\lambda_{ m mean} a$	$A_{\lambda}^{\operatorname{Gal} b}$	$\sigma_{\mathrm{C}}^{\mathrm{cal}\mathcal{C}}$
		(μm)	(mag)				(μm)	(mag)	
	Subaru/Suprime-Cam ${\cal B}$	0.4323	0.081	0.05		VISTA/VIRCAM J	1.2497	0.013	0.05
	Subaru/Suprime-Cam ${\cal V}$	0.5416	0.063	0.05		Mayall/NEWFIRM J_3	1.2757	0.013	0.10
	HST /ACS F606W	0.5804	0.056	0.02		HST /WFC3 F160W	1.5302	0.009	0.02
	Subaru/Suprime-Cam ${\cal R}_c$	0.6471	0.048	0.05		Mayall/NEWFIRM H_1	1.5578	0.009	0.10
	Subaru/Suprime-Cam i^\prime	0.7622	0.037	0.05		VISTA/VIRCAM H	1.6374	0.008	0.05
	HST /ACS F814W	0.7979	0.034	0.02		Mayall/NEWFIRM H_2	1.7041	0.008	0.10
	Subaru/Suprime-Cam z^\prime	0.9154	0.028	0.05		VISTA/VIRCAM K_s	2.1408	0.006	0.05
	VLT/HAWK-I Y	1.0187	0.023	0.05		Mayall/NEWFIRM ${\cal K}$	2.1639	0.006	0.10
	HST /WFC3 F125W	1.2396	0.016	0.02		Spitzer/IRAC1	3.5314	0.003	0.05
	UKIRT/WFCAM J	1.2521	0.016	0.05		Spitzer/IRAC2	4.4690	0.000	0.05
	HST /WFC3 F160W	1.5302	0.011	0.02		Spitzer/IRAC3	5.6820	0.000	0.05
	UKIRT/WFCAM H	1.6406	0.010	0.05		Spitzer/IRAC4	7.7546	0.000	0.05
	VLT/HAWK-I K_s	2.1403	0.007	0.05		$Spitzer/{\rm MIPS}$ 24 $\mu{\rm m}$	23.513	0.000	0.05
	UKIRT/WFCAM K	2.2261	0.007	0.05		$Spitzer/{\rm MIPS}$ 70 $\mu{\rm m}$	70.389	0.000	0.10
	Spitzer/IRAC1	3.5314	0.004	0.05		Herschel/PACS 100 $\mu \rm{m}$	100.05	0.000	0.05
	Spitzer/IRAC2	4.4690	0.000	0.05		$Herschel/{\rm PACS}$ 160 $\mu{\rm m}$	159.31	0.000	0.05
	Spitzer/IRAC3	5.6820	0.000	0.05		Herschel/SPIRE 250 $\mu \rm{m}$	247.21	0.000	0.15
	Spitzer/IRAC4	7.7546	0.000	0.05					
	$Spitzer/MIPS$ 24 μm	23.513	0.000	0.05					
	$Spitzer/MIPS$ 70 μm	70.389	0.000	0.10					
	$Herschel/{\rm PACS}$ 100 $\mu{\rm m}$	100.05	0.000	0.05					
	$Herschel/{\rm PACS}$ 160 $\mu{\rm m}$	159.31	0.000	0.05					
	$Herschel/SPIRE~250~\mu{ m m}$	247.21	0.000	0.15					

^{*a*}Mean wavelength of the filter calculated as $\lambda_{\text{mean}} = \frac{\int \lambda T(\lambda) d\lambda}{\int T(\lambda) d\lambda}$, where $T(\lambda)$ is the filter transmission function.

 b Galactic extinction for the center of the field.

 c Calibration uncertainties as given by the corresponding instrument user handbook.

The photometry that we used for the 319 320 SINGS/KINGFISH sample was derived by Dale et al. (2017) and is given in their Table 2. We corrected this 321 ³²² photometry for Galactic extinction using the E(B-V)values quoted in Dale et al. (2017) along with their A_V 323 ³²⁴ normalized extinction values by bandpass. These extinc-325 tion values were derived from the Schlafly & Finkbeiner (2011) recalibration of the Schlegel et al. (1998) dust 326 327 maps and assuming a Li & Draine (2001) reddening curve with $R_V = 3.1$. Unlike the CANDELS sample, 328 we do not add any additional fractional calibration 329 330 uncertainties to these flux uncertainties, as fractional calibration uncertainties are already included in the 331 uncertainties given by Dale et al. (2017). 332

The axis ratios for the SINGS/KINGFISH sample are gathered for each galaxy from the HyperLeda ³³⁵ database³ (Makarov et al. 2014). We do not use the ³³⁶ major and minor axis values quoted in Dale et al. ³³⁷ (2017) for our axis ratios as they were chosen ³³⁸ to encapsulate practically all of the fluxes at all ³⁴⁹ measured wavelengths. Instead, the HyperLeda ³⁴⁰ axis ratios and their uncertainties are derived ³⁴¹ from 25 mag/arcsec² *B*-band isophotes, which is ³⁴² more consistent with the axis ratio derivation of ³⁴³ the CANDELS sample.

34. 3. DERIVATION OF PHYSICAL PROPERTIES

3.1. Lightning SED Modeling

We fitted the corrected photometry (as discussed in Section 2) of each galaxy using the SED fitting code Lightning⁴ (Eufrasio et al. 2017; Doore et al. 2021), assuming a 10% model uncertainty for each band. For the

 3 http://leda.univ-lyon1.fr/

⁴ Version 2.0: https://github.com/rafaeleufrasio/lightning

350 fits, we assumed the same model as Doore et al. (2021) when fitting using the inclination-dependent model with ³⁵² an image-based inclination prior. This model consists 353 of a SFH that has of five constant SFR age bins, the ³⁵⁴ inclination-dependent attenuation curves described in ³⁵⁵ Doore et al. (2021), and the dust emission of Draine ³⁵⁶ & Li (2007). A full description of the model, a ³⁵⁷ list of all free parameters and their correspond-³⁵⁸ ing prior distributions, and a description of the ³⁵⁹ inclination-dependent attenuation curves can be ³⁶⁰ found in Section 5, Table 2, and Section 4.3 of Doore et al. (2021), respectively. The only change to the model occurred for the SINGS/KINGFISH sam- $_{363}$ ple, where the lower limit of U_{\min} (the minimum value of $_{364}$ the radiation field intensity U for the dust emission) was 415

changed from 0.7 to 0.1, since the SINGS/KINGFISH 365 ³⁶⁶ sample has rest-frame submillimeter data. For the ³⁶⁷ image-based inclination prior distributions, we derived ³⁶⁸ probability distributions of inclination given our axis ra-³⁶⁹ tios, via the Monte Carlo method presented in Section 3 of Doore et al. (2021). The method creates a distri-370 ³⁷¹ bution of inclination for a given galaxy that accounts ³⁷² for variation in the measured axis ratio due to galaxy intrinsic thickness and asymmetry. 373

Using this model, we fitted the SED of each galaxy us-374 ³⁷⁵ ing the adaptive Markov Chain Monte Carlo (MCMC) procedure in Lightning. We ran each MCMC fit for 376 $\times 10^5$ iterations and tested for convergence of the 377 2 378 chains to a best solution using 10 parallel chains, each ³⁷⁹ started at random starting locations within the param-³⁸⁰ eter ranges. Convergence was tested using the Gelman-381 Rubin test (Gelman & Rubin 1992; Brooks & Gelman 1998) on the last 5000 iterations of the parallel chains. 382 which indicated that the set of parallel chains for all 383 ³⁸⁴ galaxies converged to the same solution (i.e., $\sqrt{\hat{R}} \approx 1$). ³⁸⁵ For each galaxy, we then used the last 5000 iterations of 386 the parallel chain with the minimum χ^2 for our output parameter distributions. Finally, using the minimum χ^2 387 388 of each galaxy, we tested how well our model described the data by performing a χ^2 goodness of fit test. The $_{390}$ results of this test showed a relatively flat $P_{\rm null}$ distri-³⁹¹ bution, which indicates that the model has acceptably 392 fit the SEDs.

361

362

3.2. Derived Physical Properties

From the output parameter distributions of the SED 394 ³⁹⁵ fitting, we derived the various properties needed for our ³⁹⁶ analysis (e.g., inclination, $L_{\rm FUV}$, $A_{\rm FUV}$, $L_{\rm TIR}$, etc.). All of these properties for our sample are given in Table 2. 397 ³⁹⁸ For the bandpass luminosities (calculated as L_{ν}), ³⁹⁹ they were derived by convolving the correspond-400 ing filter transmission function with the atten401 uated rest-frame model spectrum to avoid any 402 redshift dependencies. Additionally, isotropy ⁴⁰³ was assumed when calculating these luminosities 404 from the model spectra, since isotropy is typi-405 cally assumed when converting observed fluxes 406 to luminosities. We note that for the remainder 407 of the paper, when we refer to any attenuated (or ⁴⁰⁸ unattenuated) bandpass luminosity or color, we ⁴⁰⁹ are implicitly referring to these rest-frame model 410 luminosities as given in Table 2. From the proper-⁴¹¹ ties given in Table 2, we derived four additional prop-412 erties needed for our analysis, specifically $a_{\rm corr}$, β , β_0 , a_{13} and a_{β} (see Equations 2 and 3). A detailed description ⁴¹⁴ of how we calculated these properties is given below.

To first asses the accuracy of our derived inclinations, ⁴¹⁶ we compared these inclinations to the image-based in-417 clination priors derived from the axis ratios. We show ⁴¹⁸ this comparison in Figure 2, where the vast majority 419 of galaxies fall along the one-to-one line. However, the ⁴²⁰ small number of galaxies that deviate significantly from ⁴²¹ the one-to-one line are all from the CANDELS sample. $_{422}$ Doore et al. (2021) discussed that the galaxies far from ⁴²³ the one-to-one line may have disks that are significantly 424 thicker and dynamically hotter than galaxies in the 425 local universe, on which the inclination-dependent ⁴²⁶ model was based. Therefore, the inclination-dependent ⁴²⁷ model may not be physically appropriate for these galax-428 ies. However, we continued to use our inclinations de-429 rived from Lightning as our inclination estimates and ⁴³⁰ did not remove those 4–5 galaxies from our sample, as 431 they had a statistically insignificant impact on our re-432 sults.

To derive a_{corr} (see Equation 2), we utilized the at-433 434 tenuated and unattenuated rest-frame model FUV lu- $_{435}$ minosities along with the model L_{TIR} . After convert-436 ing the FUV luminosities to monochromatic luminosities ⁴³⁷ (i.e., νL_{ν}), $a_{\rm corr}$ was calculated following Equation 2. $_{\rm 438}$ Figure 3 shows how $a_{\rm corr}$ varies with inclination. Typ-439 ically, as inclination increases from face-on to edge-on, 440 the value of $a_{\rm corr}$ increases as expected. However, edge-441 on galaxies have a broad range of $a_{\rm corr}$ values, with some 442 having lower $a_{\rm corr}$ values compared to face-on galaxies. 443 As will be discussed in Section 4.1, this variation at ⁴⁴⁴ high inclinations is correlated to the variation in 445 each galaxy's physical properties, specifically the 446 specific SFR (sSFR; defined as the SFR divided by stel-447 lar mass).

Name	R.A. (deg)	Decl. (deg)	D (Mpc)	N	d	$1 - \cos i$	$L_{ m FUV} (L_{\odot}~{ m Hz}^{-1})$	$A_{\rm FUV}$ (mag)	
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	
J123624.82 + 620719.2	189.1034	62.1220	:	0.11	0.591 ± 0.001	0.465 ± 0.096	$(1.471 \pm 0.381) \times 10^{-6}$	0.753 ± 0.234	:
J123723.47 + 621448.3	189.3478	62.2468	:	0.25	0.595 ± 0.034	0.513 ± 0.094	$(1.252 \pm 0.294) \times 10^{-6}$	1.346 ± 0.270	÷
$J123654.64 \pm 621127.1$	189.2277	62.1909	:	0.25	0.118 ± 0.001	0.932 ± 0.026	$(2.106 \pm 0.585) imes 10^{-7}$	3.397 ± 0.280	÷
J123733.50 + 621941.0	189.3896	62.3281	:	0.27	0.243 ± 0.236	0.824 ± 0.041	$(2.591 \pm 0.800) \times 10^{-7}$	3.653 ± 0.326	÷
$J123809.19 {+} 621638.1$	189.5383	62.2772	:	0.28	0.136 ± 0.052	0.925 ± 0.031	$(5.536 \pm 1.342) \times 10^{-7}$	3.124 ± 0.230	÷
J123711.77 + 621514.9	189.2990	62.2541	:	0.30	0.583 ± 0.037	0.464 ± 0.095	$(3.351 \pm 0.651) \times 10^{-6}$	0.835 ± 0.207	÷
$J123745.89 \pm 621435.0$	189.4412	62.2430	:	0.30	0.211 ± 0.057	0.894 ± 0.027	$(1.204 \pm 0.241) \times 10^{-7}$	4.835 ± 0.209	÷
$J123615.96 \pm 621008.2$	189.0665	62.1689	:	0.34	0.500 ± 0.002	0.633 ± 0.081	$(1.883 \pm 0.446) \times 10^{-6}$	2.404 ± 0.300	:
J123654.12 + 621737.8	189.2255	62.2938	:	0.38	0.537 ± 0.024	0.670 ± 0.068	$(1.691 \pm 0.383) \times 10^{-6}$	2.575 ± 0.286	÷
J123701.67 + 621814.4	189.2570	62.3040	:	0.44	0.472 ± 0.069	0.752 ± 0.049	$(1.025 \pm 0.234) \times 10^{-6}$	3.101 ± 0.289	÷
$J123726.54 \pm 621826.3$	189.3606	62.3073	:	0.44	0.555 ± 0.048	0.531 ± 0.093	$(1.803 \pm 0.293) \times 10^{-6}$	1.473 ± 0.231	÷
$J123630.86 \pm 621433.5$	189.1286	62.2426	:	0.44	0.497 ± 0.045	0.595 ± 0.086	$(1.239 \pm 0.214) \times 10^{-6}$	1.867 ± 0.245	•
J123743.50 + 621631.7	189.4312	62.2755	:	0.44	0.212 ± 0.137	0.886 ± 0.046	$(1.635 \pm 0.238) \times 10^{-6}$	2.376 ± 0.172	:
$J123654.16 \pm 620821.4$	189.2257	62.1393	:	0.45	0.282 ± 0.005	0.804 ± 0.048	$(2.716 \pm 0.731) \times 10^{-7}$	3.424 ± 0.343	÷
J123653.60 + 622111.6	189.2233	62.3532	:	0.47	0.231 ± 0.095	0.892 ± 0.063	$(2.570\pm0.378) imes10^{-6}$	2.106 ± 0.172	÷
÷	÷	÷	:	÷	:	:	: :	:	÷
NGC 0024	2.4829	-24.9653	8.20	÷	0.389 ± 0.025	0.670 ± 0.090	$(1.686 \pm 0.207) \times 10^{-7}$	0.785 ± 0.139	÷
NGC 0337	14.9613	-7.5789	19.30	÷	0.647 ± 0.057	0.378 ± 0.096	$(1.088 \pm 0.084) \times 10^{-6}$	1.732 ± 0.100	÷
NGC 0628	24.1767	15.7864	7.20	÷	0.944 ± 0.085	0.123 ± 0.080	$(1.170 \pm 0.117) \times 10^{-6}$	0.987 ± 0.166	÷
NGC 0925	36.8067	33.5844	9.12	÷	0.537 ± 0.038	0.498 ± 0.085	$(1.196 \pm 0.113) \times 10^{-6}$	0.776 ± 0.113	÷
NGC 2403	114.2296	65.5928	3.50	÷	0.505 ± 0.042	0.542 ± 0.079	$(8.678\pm0.928)\times10^{-7}$	0.985 ± 0.100	÷
:::	:	:	÷	÷	:	:		:	÷

Table 2. Galaxy Sample and Properties.

An abbreviated version of the table is displayed here to illustrate its form and content. Col.(1): Adopted galaxy designation. Col.(2): Right ascension in J2000. Col.(3): Declination in J2000. Col.(4): Adopted distance (only for SINGS/KINGFISH sample). Col.(5): Adopted spectroscopic redshift (only for CANDELS sample). Col.(6): Measured axis ratio. Col.(7): Inclination derived from Lightning. Col.(8): Attenuated model rest-frame FUV-band luminosity in terms of L_{ν} . Col.(9): FUV-band attenuation. Col.(10): Attenuated model rest-frame NUV-band luminosity in terms of L_{ν} . Col.(11): NUV-band attenuation. Col.(12): Attenuated model rest-frame $V_{\rm CO}$.(11): NUV-band attenuation. Col.(12): Attenuated model rest-frame $V_{\rm CO}$.(11): NUV-band attenuation. Col.(12): Attenuated model rest-frame $V_{\rm CO}$.(11): NUV-band attenuation. Col.(12): Attenuated model rest-frame $V_{\rm CO}$.(11): NUV-band attenuation. Col.(12): Attenuated model rest-frame $V_{\rm CO}$.(11): NUV-band attenuation. Col.(12): Attenuated model rest-frame $V_{\rm CO}$.(11): NUV-band attenuation. Col.(12): Attenuated model rest-frame $V_{\rm CO}$.(13): WFC3/F275W-band attenuation. Col.(12): Attenuated model rest-frame $V_{\rm CO}$.(13): WFC3/F275W-band attenuation. Col.(12): Attenuated model rest-frame $V_{\rm CO}$.(20): Recent star formation rate of L_{ν} . Col.(13): WFC3/F275W-band attenuation. Col.(12): Attenuated model rest-frame $V_{\rm CO}$.(20): Recent star formation rate of L_{ν} . respectively. Col.(18): Total integrated infrared luminosity. Col.(19): Total stellar mass. Col.(20): Recent star formation rate of last 100 Myr. ž

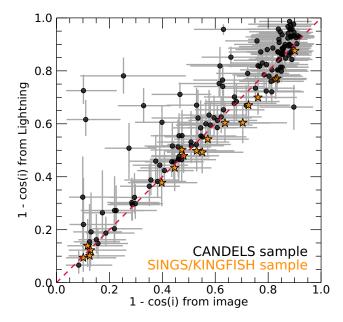


Figure 2. Inclinations derived from Lightning vs. the image-based inclinations derived from the axis ratio using the Monte Carlo method of Doore et al. (2021). The black circles are the inclination estimates for the CANDELS sample of galaxies, and the orange stars are the inclination estimates for the local SINGS/KINGFISH sample of galaxies. All of the SINGS/KINGFISH inclinations and the vast majority of CANDELS inclinations fall along the one-to-one line, indicating that the image-based inclination priors are informative.

Following the procedures of past studies, where 449 typically observations in only two UV bands are 450 available, we derive the UV slope β from

$$\beta = \frac{\log_{10}(L_{\nu,1}/L_{\nu,2})}{\log_{10}(\lambda_1/\lambda_2)} - 2, \tag{5}$$

⁴⁵² where L_{ν} is the attenuated rest-frame model lu-⁴⁵³ minosities for two UV bandpasses⁵, and λ is the ⁴⁵⁴ corresponding central wavelength of the band-⁴⁵⁵ passes. To calculate β_0 , the attenuated rest-⁴⁵⁶ frame model luminosities in Equation 5 can sim-⁴⁵⁷ ply be swapped for the unattenuated rest-frame ⁴⁵⁸ model luminosities, since β_0 is an intrinsic, dust-⁴⁵⁹ free property.

⁴⁶⁰ To derive a_{β} , we substituted Equation 5 for both ⁴⁶¹ β and β_0 into Equation 3 along with $A_{\lambda} =$ ⁴⁶² $-2.5 \log_{10}(L_{\nu}/L_{\nu,0})$. For the FUV-band attenuation ⁴⁶³ ($A_{\rm FUV}$), this gives

$$a_{\beta} = \frac{A_{\rm FUV} \log_{10}(\lambda_1/\lambda_2)}{0.4(A_{\lambda,2} - A_{\lambda,1})},$$
 (6)

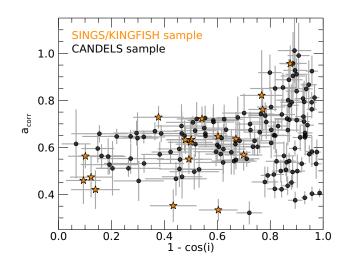


Figure 3. Inclinations derived from Lightning vs. $a_{\rm corr}$. The black circles represent the CANDELS sample of galaxies, and the orange stars represent the local SINGS/KINGFISH sample of galaxies. As inclination increases from face-on to edge-on, the value of $a_{\rm corr}$ tends to increase as expected. However, edge-on galaxies have a wider variation compared to face-on galaxies, due to the variation in each galaxy's physical properties.

465 where, $A_{\lambda,i}$ is the attenuation for the *i*th UV bandpass 466 at λ_i in Equation 5. From Equation 6, a_β can be seen 467 to depend primarily on the attenuation curve, but ad-468 ditionally it depends on the choice of UV band-⁴⁶⁹ passes. This same UV bandpass dependence is 470 also present in Equation 5 for β (and similarly $_{471}$ β_0), and it can have a significant impact on the ⁴⁷² derived values of both β and a_{β} . For example, 473 if one of the selected UV bandpasses contains 474 the rest-frame 2175 Å bump feature, which is 475 present in our attenuation curves, then the mea-476 surements of β will be biased to smaller, more 477 negative values (Burgarella et al. 2005; Boquien et al. 478 2009; Conroy et al. 2010; Wild et al. 2011; Kriek & Con-479 roy 2013; Battisti et al. 2017; Popping et al. 2017; Tress $_{480}$ et al. 2018) and a_{β} to larger values.

Since rest-frame observations that avoid the UV bump are not always available, we calculated two sets of valare not always available, we calculated two sets of valare not always available, we calculated two sets of valare not always available, we calculated two sets of valare not always available, we calculated two sets of valare not always available, we calculated two sets of valare not always available, we calculated two sets of valare not always available, we calculated two sets of valare not always available, we calculated two sets funcare not always available to galaxies that have observational bands that contain the rest-frame UV bump feational bands that contain the rest-frame UV bump feational bands that contain the second set, we used the **rest**are **model** GALEX FUV and HST WFC3/F275W and the bump ($\lambda = 2690$ Å) bandpasses, both of which avoid the bump

⁵ For observations, the fluxes (F_{ν}) can simply be swapped for the luminosities, since isotropic luminosities have the property of $L_{\nu} \propto F_{\nu}$.

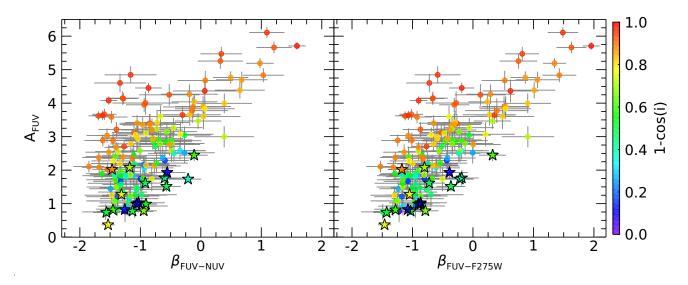


Figure 4. $A_{\rm FUV}$ vs. β for the galaxies in our sample, with the right panel β being calculated using the **rest-frame model** FUV and NUV bands ($\beta_{\rm FUV-NUV}$), and the left panel β being calculated using the **rest-frame model** FUV and F275W bands ($\beta_{\rm FUV-F275W}$). The circles are the galaxies in the CANDELS sample, and the stars are the galaxies in the SINGS/KINGFISH sample. Both are colored based on their inclination as derived by Lightning. A clear transition can be seen in $A_{\rm FUV}$ as inclination increases for a fixed value of β .

⁴⁹³ feature. The choice of the WFC3/F275W band is mo-⁴⁹⁴ tivated by Popping et al. (2017), who showed that the ⁴⁹⁵ WFC3/F275W band has minimal overlap with the UV ⁴⁹⁶ bump, and, when used in combination with the GALEX ⁴⁹⁷ FUV, calculated values of β are minimally impacted by ⁴⁹⁸ the UV bump feature. Therefore, this set will be appli-⁴⁹⁹ cable to galaxies whose observations are relatively free ⁵⁰⁰ of any bump feature contamination.

Figure 4 shows $A_{\rm FUV}$ (derived from the SED fits) ver-501 sus both sets of β for the galaxies in our sample, with 502 each galaxy being colored by its inclination derived from 503 ⁵⁰⁴ Lightning. The values of β in the left panel, which rere derived from Equation 5 using the FUV and NUV 505 bands, can be seen to be more negative than those in 506 the right panel, which were derived with the FUV and 507 ⁵⁰⁸ F275W bands. Additionally, a clear inclination depen-⁵⁰⁹ dence can be seen in $A_{\rm FUV}$ for a fixed value of β . This ⁵¹⁰ variation with inclination is caused by a_{β} , the shape of ⁵¹¹ the attenuation curve, being inclination dependent.

Figure 5 shows how the two sets of a_{β} vary with infination. The orange circles and stars represent the CANDELS and SINGS/KINGFISH sample of galaxies, Fis respectively, whose a_{β} values were derived using the FUV and NUV bands. The blue circles and stars repfir resent the CANDELS and SINGS/KINGFISH sample figure of galaxies, respectively, whose a_{β} values were derived sing the FUV and F275W bands. Both sets show an expected trend of increasing with inclination, but the values of a_{β} derived using the NUV band can clearly be seen to have larger values compared to those using the ⁵²³ F275W band. These larger values of a_{β} are due to the ⁵²⁴ UV bump, the presence of which causes an increase in ⁵²⁵ attenuation in the NUV. The scatter that is present ⁵²⁶ in both sets of a_{β} values is due to other attenua-⁵²⁷ tion parameters (i.e., the face-on optical depth in ⁵²⁸ the *B*-band, τ_B^f , and the galaxy clumpiness fac-⁵²⁹ tor, *F*) influencing the value of a_{β} . The value of ⁵³⁰ τ_B^f can also affect the strength of the UV bump, ⁵³¹ which causes larger scatter by approximately a ⁵³² factor of two at all inclinations in the values of a_{β} ⁵³³ derived using the NUV band compared to those ⁵³⁴ using the F275W band.

3.3. Simulated Data

As can be inferred from Figures 1, 2, 3, and 5, our 536 537 sample of galaxies does not have an expected randomly-538 selected distribution in inclination (uniform in $1 - \cos i$ ⁵³⁹ space), instead having more highly inclined galaxies 540 compared to nearly face-on galaxies. This bias is due 541 to the visual inspection process in our sample selec-542 tion, since edge-on galaxies are less likely to be con-⁵⁴³ fused for irregular galaxies compared to face-on spirals. ⁵⁴⁴ To more fully sample inclination space and to 545 better quantify inclination-dependent trends in ⁵⁴⁶ $a_{\rm corr}$ and the $A_{\rm FUV}$ - β relation in Sections 4.1.2 ⁵⁴⁷ and 4.2.2, respectively, we simulated how all galaxies ⁵⁴⁸ in our sample would appear if observed over a full range 549 of possible inclinations. To achieve this, we used our ⁵⁵⁰ solutions for the SFHs of our galaxies, along with our ⁵⁵¹ inclination-dependent attenuation curves, to construct ⁵⁵² emergent **rest-frame** SEDs of our galaxies across a grid

596

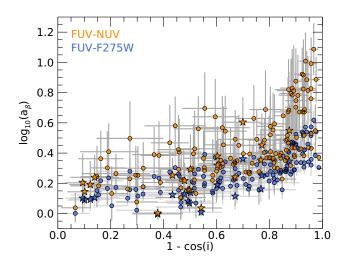


Figure 5. Inclinations derived from Lightning vs. a_{β} . The orange circles and stars represent the CANDELS and SINGS/KINGFISH sample of galaxies, respectively, whose a_{β} values were derived using the **rest-frame model** FUV and NUV bands. The blue circles and stars represent the CANDELS and SINGS/KINGFISH sample of galaxies, respectively, whose a_{β} values were derived using the **restframe model** FUV and F275W bands. The difference between sets of a_{β} values is due the NUV band being contaminated by the 2175 Å bump feature, which biases a_{β} to higher values. The scatter that is present in both sets of a_{β} values is due to other attenuation parameters besides inclination influencing the value of a_{β} .

⁵⁵³ of inclinations. Thus, these simulated models allow for ⁵⁵⁴ our sample's variety of SFHs to be available at all in-⁵⁵⁵ clinations, rather than the SFHs being limited to the ⁵⁵⁶ corresponding measured inclination of each galaxy.

557 To generate the simulated data for a given galaxy, we utilized the output parameters distributions (i.e., the re-558 ⁵⁵⁹ sulting 5000 element Markov chain of each parameter) ⁵⁶⁰ of the SED fitting. For a given element in the chain, all parameters excluding inclination were fixed, and atten-561 uated rest-frame models were generated for a grid of 562 inclinations (0–1 in steps of 0.01 in $\cos i$ space). From these attenuated models, the necessary physical proper-564 ties for our study (e.g., $L_{\rm FUV}$, $A_{\rm FUV}$, $a_{\rm corr}$, β , etc.) were 566 derived and recorded. This process was performed for ⁵⁶⁷ all 5000 elements in the chain and, subsequently, each ⁵⁶⁸ galaxy in the sample. Therefore, the simulated data set ⁵⁶⁹ for a given physical property consists of a unique distri-⁵⁷⁰ bution for each galaxy in our sample at each inclination ⁵⁷¹ grid point. We note that, since inclination only affects 572 attenuation, unattenuated stellar models did not need 573 to be simulated as they would be the same at all incli-574 nations.

An example of the simulated data for the randomly 575 576 selected SINGS/KINGFISH galaxy, NGC 3184, is dis-⁵⁷⁷ played in Figure 6. For both panels, the background ⁵⁷⁸ rainbow image is the averaged inclination of the simu-579 lated data points contained within each pixel. These ⁵⁸⁰ images show how the distribution of each parameter ⁵⁸¹ changes as inclination is varied from face-on to edge-on, ⁵⁸² with the solid (dashed) black lines showing the median 583 (1 σ spread) of each parameter distribution for each in-⁵⁸⁴ clination grid point. The left panel shows a clear tran-585 sition to larger values of $a_{\rm corr}$ and rest-frame FUV-586 H color (the reasoning for using color is discussed in ⁵⁸⁷ Section 4.1.1) as inclination increases. As for the right ⁵⁸⁸ panel, which shows $A_{\rm FUV}$ versus β , $A_{\rm FUV}$ transitions 589 to large values with inclination as expected. While β , ⁵⁹⁰ calculated from the **rest-frame** FUV and NUV bands, ⁵⁹¹ does increase in value with inclination, this transition is ⁵⁹² minor compared to its spread.

4. ANALYSIS AND DISCUSSION

4.1. Inclination Dependence of a_{corr} in Hybrid SFR Estimators

4.1.1. Influence of Inclination and SFH

Besides being dependent on inclination and other at-597 ⁵⁹⁸ tenuation properties, the value of $a_{\rm corr}$ for a given galaxy ⁵⁹⁹ is also dependent upon the underlying stellar population ⁶⁰⁰ or SFH (Leja et al. 2021). While the FUV emission pri-⁶⁰¹ marily samples young massive stars with stellar lifetimes $_{602}$ < 100 Myr, the $L_{\rm TIR}$ samples the entire radiation field $_{\rm 603}$ that is absorbed by dust, which is generated by stars ⁶⁰⁴ of all stellar ages. Therefore, based on Equation 2, if ⁶⁰⁵ we were to fix the attenuation and the luminosity of the ⁶⁰⁶ young population (the FUV emission) while increasing ⁶⁰⁷ the luminosity of the old population (the optical-to-NIR a_{corr} emission), we would expect a_{corr} to decrease in response, $_{609}$ since L_{TIR} can be significantly impacted by the old stel-610 lar population (Kennicutt et al. 2009). Alternatively, ₆₁₁ if the L_{TIR} was fixed instead, we would expect a_{corr} to 612 increase with an increase in the young FUV emitting 613 population.

These trends with $a_{\rm corr}$ for our sample of galaxies can be seen in Figure 7, which shows $a_{\rm corr}$ versus the total stellar mass (M_{\star}) , the SFR averaged over the last 100 Myr (SFR₁₀₀), and the sSFR averaged over the last 100 Myr (sSFR₁₀₀ \equiv SFR₁₀₀/ M_{\star}). The total stellar mass seen to generally decrease with increasing M_{\star} , with a Spearman correlation coefficient of $\rho = -0.29$. As for SFR₁₀₀, which is dominated by the young population, scorr can be seen to generally increase with increasing SFR₁₀₀ ($\rho = 0.29$). However, these trends are both relatively weak, since M_{\star} and SFR₁₀₀ are usually

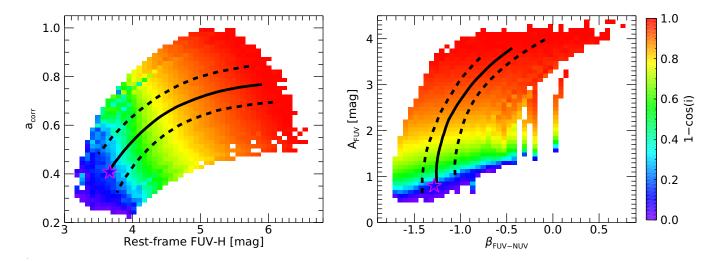


Figure 6. (Left) a_{corr} vs. rest-frame model FUV-H color. (Right) A_{FUV} vs. β calculated using the rest-frame model FUV and NUV bands ($\beta_{\text{FUV}-\text{NUV}}$). Each panel shows the simulated data for NGC 3184. The rainbow background image in each panel is the averaged inclination of the simulated data points contained within each pixel. The solid (dashed) black lines show the median (1σ spread) of each parameter distribution for each inclination grid point, and the colored star highlighted in magenta is the best fit data point from the original parameter distribution chains. In each panel, the rainbow transition indicates how each parameter changes in parameter space with inclination.

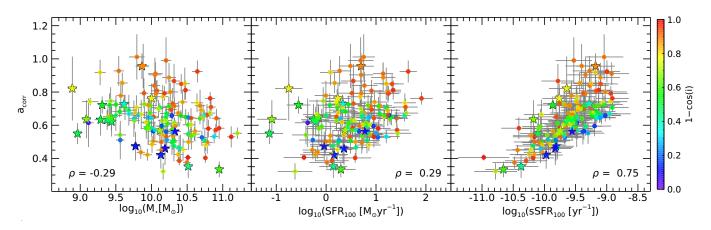


Figure 7. Each panel shows a_{corr} vs. a different physical property for the galaxies in our sample. Each galaxy is colored based on its median inclination as derived by Lightning. The circle points are the CANDELS sample of galaxies, while the stars are the SINGS/KINGFISH sample. The Spearman correlation coefficient of each property vs. a_{corr} is shown in the lower corner of each panel. (*Left*) a_{corr} vs. the total stellar mass (M_{\star}). The slight negative trend indicates that larger galaxies, which may have larger older populations, tend to have smaller values of a_{corr} , with no clear trend with inclination. (*Center*) a_{corr} vs. SFR averaged over the last 100 Myr (SFR₁₀₀). The slight positive trend indicates that galaxies with younger populations tend to have larger values of a_{corr} , with no clear trend with inclination. (*Right*) a_{corr} vs. the sSFR averaged over the last 100 Myr (sSFR₁₀₀). For a fixed sSFR₁₀₀, galaxies that are more inclined typically have larger values of a_{corr} .

⁶²⁶ highly correlated. A better measure of the underlying ⁶²⁷ stellar population, besides the SFH itself, would be the ⁶²⁸ sSFR₁₀₀. Its trend with $a_{\rm corr}$ can be seen to be strong ⁶²⁹ ($\rho = 0.75$) and highly significant (p-value < 10^{-25}).

This same trend between $a_{\rm corr}$ and ${\rm sSFR}_{100}$, ignoring inclination, was also found in several previous studies (e.g., Eufrasio et al. 2014; Boquien et al. 2016; Eufrasio et al. 2017; Leja et al. 2021). Notably, Boquien (34 et al. (2016) found a similarly strong trend in their ⁶³⁵ sample of 8 galaxies from KINGFISH. However, their ⁶³⁶ sample was selected to exclude highly inclined galax-⁶³⁷ ies $(1 - \cos i < 0.5)$, which minimizes the inclination-⁶³⁸ dependent attenuation effects on $a_{\rm corr}$ seen in Figure 3. ⁶³⁹ As can be seen in the right panel of Figure 7, $a_{\rm corr}$ typi-⁶⁴⁰ cally takes on a larger value as inclination increases for a ⁶⁴¹ fixed sSFR₁₀₀. Therefore, any parameterization of $a_{\rm corr}$ ⁶⁴² must depend on both inclination and the sSFR₁₀₀.

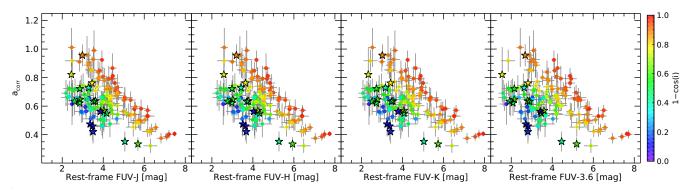


Figure 8. Each panel shows a_{corr} vs. a rest-frame model FUV–NIR color (FUV–J, FUV–H, FUV–K, FUV-3.6 μ m from left to right) for the galaxies in our sample. Each galaxy is colored based on its median inclination as derived by Lightning. The circle points are the CANDELS sample of galaxies, while the stars are the SINGS/KINGFISH sample. In all panels, a clear stratification can be seen in a_{corr} -color space for galaxies of different inclinations.

As noted in Boquien et al. (2016), a parametrization 643 $_{644}$ of $a_{\rm corr}$ with sSFR₁₀₀ would not be a practical solution, $_{645}$ as the sSFR₁₀₀ is a derived physical property rather 646 than an observed quantity. Therefore, we utilized **rest**-⁶⁴⁷ frame FUV–NIR colors as in Boquien et al. (2016) in-⁶⁴⁸ stead of sSFR₁₀₀, since FUV–NIR colors are observable 649 quantities and have been shown to be good tracers of 650 sSFR₁₀₀ (Salim et al. 2005; Boquien et al. 2016). Fig- $_{651}$ ure 8 shows a_{corr} versus the rest-frame model FUV–J, $_{652}$ FUV-K, FUV-H, and FUV-3.6 μm colors for the galax-⁶⁵³ ies in our sample, where J, H, and K are the 2MASS J, H, and Ks bandpasses, and 3.6 μ m is Spitzer/IRAC 654 $_{655}$ 3.6 μ m bandpass. In each panel of the figure, a clear $_{\rm 656}$ stratification can be seen in the $a_{\rm corr}\text{-}{\rm color}$ space, where ₆₅₇ high inclination galaxies $(1 - \cos i \gtrsim 0.6)$ populate re- $_{658}$ gions of higher $a_{\rm corr}$ and FUV–NIR color compared to ⁶⁵⁹ low inclination galaxies $(1 - \cos i \leq 0.6)$. This striking 660 trend can also be seen clearly in the simulated data in left panel of Figure 6. In both the simulated data and 661 ₆₆₂ Figure 8, the stratification of $a_{\rm corr}$ and FUV–NIR color 663 with inclination is more pronounced at higher inclinations compared to lower inclinations, due to attenuation 664 665 effects of inclination becoming more significant for inclinations of $1 - \cos i \gtrsim 0.6$ (Chevallard et al. 2013; Doore 666 et al. 2021; Zuckerman et al. 2021). 667

4.1.2. Relation between a_{corr} and Inclination

Following the observed trends in Figure 8, we parametrized a_{corr} as a linear function of restframe FUV–NIR color for a given inclination ustrend the functional form of

$$a_{corr} = b + m \times (FUV - NIR), \tag{7}$$

⁶⁷⁴ where the linear coefficients b and m are both functions ⁶⁷⁵ of inclination and unique to each FUV–NIR color. To ⁶⁷⁶ derive these coefficients, we utilized our simulated data ⁶⁷⁷ distributions described in Section 3.3, since **using** the 678 data shown in Figure 8 would result in a sparse popula a_{79} tion of inclination- a_{corr} -color space. The simulated data 680 increased the amount of data at each inclination, since 681 each galaxy was simulated for a grid of viewing angles. 682 For each inclination grid point of the simulated data, we used the median of the distributions of $a_{\rm corr}$ and 683 ⁶⁸⁴ FUV–NIR color of each galaxy (e.g., the solid black ⁶⁸⁵ line in the left panel of Figure 6) as data points and fitted the linear relationship of Equation 7 687 to these median values. The corresponding stana dard deviations of the a_{corr} and FUV–NIR color 689 distributions were included as uncertainties dur-⁶⁹⁰ ing the fitting process. The fitting was repeated for ⁶⁹¹ each inclination grid point, resulting in derived b and m⁶⁹² values with corresponding uncertainties at each of the ⁶⁹³ inclination grid points. An example of this process can ⁶⁹⁴ be seen in Figure 9, which shows the simulated data $_{\rm 695}$ and best fit $a_{\rm corr}$ versus FUV–NIR color relation at var-⁶⁹⁶ ious inclination grid points. From the figure, the slope 697 and intercept of the linear relation can be seen to de-⁶⁹⁸ crease and increase with inclination, respectively. These $_{699}$ resulting trends in b and m versus inclination can be ⁷⁰⁰ more clearly seen in Figure 10 for each FUV–NIR color. ⁷⁰¹ For each color, the linear coefficients show very similar ⁷⁰² trends, with more rapid changes in value occurring at ⁷⁰³ high inclinations $(1 - \cos i > 0.7)$ where the attenuation 704 effects of inclination become more significant.

To account for the variation in b and m with inclirot nation, we fitted polynomials to the derived b and mrot values utilizing their corresponding uncertainties. The rot degree of the polynomial was selected by minimizing the rot Akaike information criterion (AIC). For all FUV–NIR rot colors, this resulted in fourth and third order polynorin mials being chosen for the b and m parameters, respecrot tively. Incorporating this inclination dependence on b

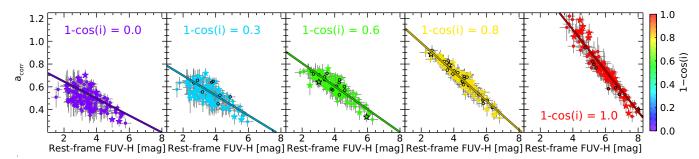


Figure 9. Each panel shows a_{corr} vs. rest-frame FUV-H color for our simulated data for a span of inclination grid points, with the data in each panel being colored based on its inclination grid value $(1 - \cos i = [0.0, 0.3, 0.6, 0.8, 1.0]$, from left to right). The circle points are the CANDELS sample of galaxies, while the stars are the SINGS/KINGFISH sample. Points highlighted with a black outline indicate galaxies whose measured inclinations, in terms of $1 - \cos i$, are within ± 0.05 of the grid value. Each panel can be considered how the sample would appear if all galaxies were viewed from the respective inclination. The best fit linear relation to the simulated data is shown in each panel. As inclination is increased from face-on to edge-on, the slope and intercept of the best fit linear relations can be seen to decrease and increase, respectively.

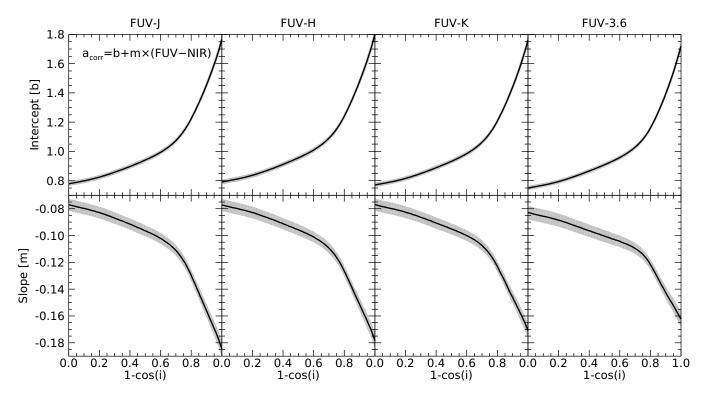


Figure 10. The linear coefficients for Equation 7 vs. inclination for the four **rest-frame** FUV–NIR colors. The black line shows the derived values at each inclination with the gray shaded region giving the derived uncertainties.

⁷¹³ and m, Equation 7 can be rewritten as

714

 $a_{\rm corr} = \sum_{n=0}^{4} b_n (1 - \cos i)^n + \sum_{n=0}^{3} m_n (1 - \cos i)^n \times (\text{FUV} - \text{NIR}),$ (8)

⁷¹⁵ where b_n and m_n are the polynomial coefficients of b and ⁷¹⁶ m, which can be found in Table 3 along with their corre-⁷¹⁷ sponding uncertainty for each FUV–NIR color. There⁷¹⁸ fore, Equation 8 gives a parametric estimation of $a_{\rm corr}$ ⁷¹⁹ that only depends on the observable quantities of FUV– ⁷²⁰ NIR color and inclination, allowing for an easy-to-use ⁷²¹ inclination-dependent hybrid SFR estimator.

4.1.3. Comparison with Past Studies

The parametric estimation of a_{corr} as a function of inrest-frame FUV–NIR color can be seen rest in the upper row of Figure 11. This upper row is the rate same as Figure 8, but it now includes the parametric

		Polynomial	l Coefficients for in	ntercept b	
Color	b_0	b_1	b_2	b_3	b_4
FUV–J	0.7820 ± 0.0075	0.0298 ± 0.1090	1.4679 ± 0.4645	-3.1348 ± 0.7284	2.6395 ± 0.3762
FUV-H	0.7950 ± 0.0078	0.0081 ± 0.1137	1.6177 ± 0.4840	-3.4210 ± 0.7578	2.8188 ± 0.3908
FUV–K	0.7759 ± 0.0073	-0.0248 ± 0.1065	1.7531 ± 0.4544	-3.6430 ± 0.7130	2.9165 ± 0.3684
FUV-3.6	0.7579 ± 0.0070	-0.1099 ± 0.1022	2.2370 ± 0.4365	-4.5584 ± 0.6857	3.4086 ± 0.3548
		Polynomi	al Coefficients for	slope m	
Color	m_0	m_1	m_2	m_3	
FUV–J	-0.0741 ± 0.0017	-0.0819 ± 0.0149	0.1931 ± 0.0351	-0.2230 ± 0.0235	
FUV-H	-0.0743 ± 0.0017	-0.0797 ± 0.0149	0.1865 ± 0.0349	-0.2118 ± 0.0232	
FUV–K	-0.0742 ± 0.0017	-0.0774 ± 0.0148	0.1770 ± 0.0345	-0.1974 ± 0.0229	
FUV-3.6	-0.0797 ± 0.0019	-0.0832 ± 0.0161	0.1835 ± 0.0371	-0.1847 ± 0.0244	

Table 3. Polynomial Coefficients to estimate a_{corr} as a function of inclination and **rest-frame** FUV–NIR color via Equation 8.

 $_{727}$ estimation of $a_{\rm corr}$ from Equation 8 as the solid colored 728 lines, with the color indicating the inclination used in the $_{729}$ calculation. Additionally, the corresponding $a_{\rm corr}$ value ⁷³⁰ from Hao et al. (2011) and $a_{\rm corr}$ -color relation from Bo-⁷³¹ quien et al. (2016) for the FUV and L_{TIR} are shown 732 as the dash-dotted and dashed lines, respectively. From ⁷³³ this upper row, it can be seen that the value of $a_{\rm corr}$ from ⁷³⁴ Hao et al. (2011) is much lower than the derived $a_{\rm corr}$ 735 values for the vast majority of our galaxies. This discrep-⁷³⁶ ancy is caused by the differences in the utilized galaxy ⁷³⁷ samples. Hao et al. (2011) used a sample of galaxies in-738 cluding both late and early type galaxies, where we se-739 lected only late type, star-forming galaxies. Therefore, 740 our sample will, on average, have galaxies with higher ⁷⁴¹ sSFR, which will correspondingly result in larger values 742 of $a_{\rm corr}$.

As for the Boquien et al. (2016) $a_{\rm corr}$ -color relation, 743 744 the upper row of panels show near agreement with our ₇₄₅ parameterization for $1 - \cos i \approx 0.6$ $(i \approx 66^{\circ})$. This ⁷⁴⁶ coinciding inclination reassures our methodology, since ⁷⁴⁷ the majority of the Boquien et al. (2016) galaxy sample ⁷⁴⁸ had $i = 50^{\circ}-60^{\circ}$. In the bottom two rows of Figure 11, ⁷⁴⁹ we show residuals of $a_{\rm corr}$ ($\Delta a_{\rm corr}$; the difference between $_{750}$ $a_{\rm corr}$ derived from Lightning and $a_{\rm corr}$ derived from the 751 Boquien et al. 2016 relation or the parametric relation ⁷⁵² in this work) versus FUV–NIR color. From these panels, 753 it can be seen that the Boquien et al. (2016) relation, ⁷⁵⁴ on average, is consistent with our data, but results ⁷⁵⁵ in large scatter that has a clear inclination dependence, ⁷⁵⁶ with more face-on galaxies typically having their $a_{\rm corr}$ 757 overestimated and more edge-on galaxies having their $a_{\rm corr}$ underestimated. However, the parameterization in 759 this work results in residuals that have a scatter that is $_{760}$ less than half that from the Boquien et al. (2016) rela-⁷⁶¹ tion and no inclination dependence, implying the effects

⁷⁶² of inclination are being properly accounted for in our re-⁷⁶³ lation. Therefore, our parameterization is the first to our ⁷⁶⁴ knowledge that accounts for both the effects of SFH and ⁷⁶⁵ inclination that are expected to be present when deter-⁷⁶⁶ mining $a_{\rm corr}$. We note, however, that the $a_{\rm corr}$ relation ⁷⁶⁷ presented above has a specific range of applicability and ⁷⁶⁸ a few caveats, which are discussed in Section 4.3.

⁷⁶⁹ 4.2. Inclination Dependence of the A_{FUV}-β Relation ⁷⁷⁰ 4.2.1. Influence of Inclination and SFH

Based on the definition of the $A_{\rm FUV}$ - β relation used 771 ⁷⁷² in Equation 3, the calibrated parameter a_β should 773 solely depend on the choice of attenuation curve, ⁷⁷⁴ and β_0 should only depend on the SFH of the 775 galaxy, since we assumed a fixed metallicity 776 and IMF. In our study, we chose to use inclination-777 dependent attenuation curves, which depend on three ⁷⁷⁸ free parameters, τ_B^f (the face-on optical depth in the $_{779}$ B-band), F (the galaxy clumpiness factor), and inclina-780 tion. While inclination is a quantity that can be readily 781 determined from basic observations, τ_B^f and F are in-782 trinsic properties that can only be derived from model-783 ing. Therefore, our parameterization of a_{β} can only be ⁷⁸⁴ a function of inclination, since it is the only observable 785 property, and any scatter in the parameterization will 786 be due to the variation in other attenuation parameters 787 at a given inclination.

As for β_0 , in theory, its value will be unique for each galaxy, since it is dependent on the SFH. However, in application, a fixed value of β_0 for a sample of galaxies is generally utilized (e.g., Meurer et al. 1999; Overzier et al. 2011; Boquien et al. 2012; Wang et al. 2018), since the SFH of a galaxy is not an observable property. While FIV –NIR or a comparable color, the $A_{\rm FUV}$ - β relation rest-frame is typically helpful when minimal UV observational data

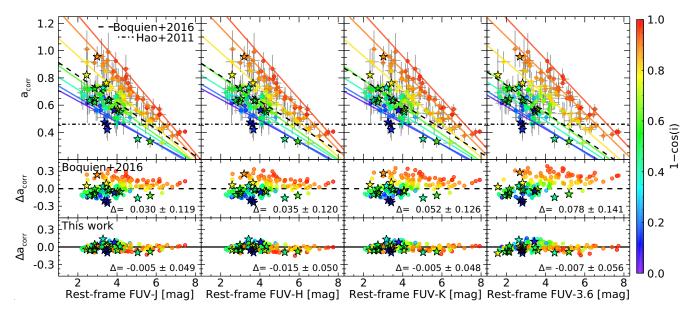


Figure 11. In all panels, the circle points are the CANDELS sample of galaxies, while the stars are the SINGS/KINGFISH sample. Each galaxy is colored based on its median inclination as derived by Lightning. (Upper row) Each panel shows a_{corr} vs. a rest-frame model FUV–NIR color (FUV–J, FUV–H, FUV–K, FUV-3.6 μ m from left to right) for the galaxies in our sample. The parametric estimation of a_{corr} from this study is shown as the solid colored lines, with the color indicating the inclination used in the calculation $(1 - \cos i = [0.05, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95])$. The dash-dotted and dashed lines are the a_{corr} value from Hao et al. (2011) and a_{corr} -color relation from Boquien et al. (2016), respectively, for the FUV and L_{TIR} . (Middle row) The difference between a_{corr} derived from Lightning and a_{corr} derived from the Boquien et al. (2016) relation vs. a FUV–NIR color. The delta in the lower right is the mean and standard deviation of Δa_{corr} derived from the parametric relation in this work vs. a FUV–NIR color. The delta in the lower right is the mean and standard deviation of Δa_{corr} derived from the parametric relation in this work vs. a FUV–NIR color. The delta in the lower right is the mean and standard deviation of Δa_{corr} .

⁷⁹⁷ are available, preventing use of a SFH proxy. Therefore, ⁷⁹⁸ we do not include any color dependence in our $A_{\rm FUV}$ - β ⁷⁹⁹ relation and note that additional scatter and potential ⁸⁰⁰ systematic effects will be present in the relation due to ⁸⁰¹ not incorporating any SFH dependence on β_0 .

Finally, as discussed in Section 3.2, a_{β} and β_0 will 802 depend on the choice of UV bandpasses utilized in the 803 calculation. While β_0 will have minimal variation from 804 the choice of UV bandpasses due to it being a dust-free 805 property, a_{β} can be biased to larger values if a chosen 806 V bandpass is contaminated by the 2175 Å bump fea-807 ture. Therefore, in the next section, we derive two 808 inclination dependent $A_{\rm FUV}$ - β relations using the com-809 bination of bandpasses discussed in Section 3.2. The 810 first uses the combination of the GALEX FUV and NUV 811 ⁸¹² bands, which will suffer from UV bump contamination. The second uses the combination of the GALEX FUV 813 and HST WFC3/F275W bands, neither of which overlap 814 ^{\$15} the bump feature region.

4.2.2. Inclination Dependent $A_{\rm FUV}$ - β Relation

Since the relation between $A_{\rm FUV}$ and β given in Equasis tion 3 is linear, we followed the same method as in Secsis tion 4.1.2 when deriving a_{β} and β_0 for the $A_{\rm FUV}$ - β relations. This method again relied on our simulated data ⁸²¹ distributions at each inclination. For each inclination ⁸²² grid point of the simulated data, we utilized the median ⁸²³ of the distributions of $A_{\rm FUV}$ and β of each galaxy (e.g., ⁸²⁴ the solid black line in the right panel of Figure 6) ⁸²⁵ as data points and fitted the linear relationship ⁸²⁶ of Equation 3 to this data. The corresponding ⁸²⁷ standard deviations of the $A_{\rm FUV}$ and β distribu-⁸²⁸ tions were included as uncertainties during the ⁸²⁹ fitting process. The fitting was repeated for each incli-⁸³⁰ nation grid point, resulting in derived a_{β} and β_0 values ⁸³¹ with corresponding uncertainties at each of the inclina-⁸³² tion grid points. An example of the process can be seen ⁸³³ in Figure 12, which shows the simulated data and best ⁸³⁴ fit relation at various inclination grid points.

The resulting trends in a_{β} and β_0 versus inclination are shown in Figure 13 for the two sets of UV bandpasses used when calculating β . For both sets of bandpasses, a_{β} and β_0 show similar trends. As expected, a_{β} increases in value as inclination increases from faceon to edge-on. However, above $1 - \cos i \approx 0.9$, a_{β} begins to decrease with increasing inclination. This decrease is correlated to the unexpected result of $a_{3\beta} \beta_0$ decreasing at $1 - \cos i > 0.75$. Theoretically, β_0 and is expected to be inclination independent, since it is a base for the unexpected to be constant as

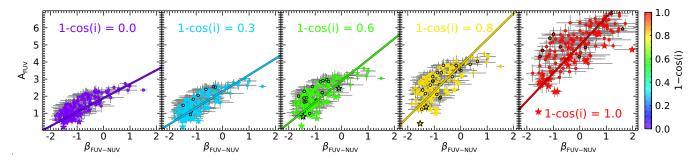


Figure 12. Each panel shows A_{FUV} vs. β , calculated from the rest-frame model FUV and NUV bands ($\beta_{\text{FUV-NUV}}$), for our simulated data for a span of inclination grid points, with the data in each panel being colored based on its inclination grid value (1 - cos i = [0.0, 0.3, 0.6, 0.8, 1.0], from left to right). The circle points are the CANDELS sample of galaxies, while the stars are the SINGS/KINGFISH sample. Points highlighted with a black outline indicate galaxies whose measured inclinations, in terms of 1 - cos i, are within ± 0.05 of the grid value. Each panel can be considered how the sample would appear if all galaxies were viewed from the respective inclination. The best fit linear relation to the simulated data is shown in each panel. As inclination is increased from face-on to edge-on, the slope of the best fit linear relations can be seen to also increase, while the β -intercept only decreases at the largest inclinations.

⁸⁴⁶ a function of inclination, and the observed decrease at ⁸⁴⁷ high inclinations could be due to our various simplify-⁸⁴⁸ ing assumptions. For example, the SFH dependence of ⁸⁴⁹ β_0 could be disguised as an inclination dependence at ⁸⁵⁰ these high inclinations. Additionally, the assumption in ⁸⁵¹ the $A_{\rm FUV}$ - β relation that the UV slope is linearly re-⁸⁵² lated to UV attenuation could be too simplified for high ⁸⁵³ inclination galaxies.

Rather than attempting to correct for these simplify-854 ⁸⁵⁵ ing assumptions (i.e., adding a SFH dependence, changing from a linear relation, etc.), we only add an inclina-856 so tion dependence to a_{β} and β_0 to maintain the $A_{\rm FUV}$ - β ⁸⁵⁸ relation's simplistic format. To account for the variation in a_{β} and β_0 with inclination for **both sets of UV** 859 bandpasses, we fitted polynomials to the corre-860 sponding a_{β} and β_0 values in Figure 13 utilizing 861 their derived uncertainties. We selected the degree 862 of the polynomials by minimizing the AIC. For both 863 ⁸⁶⁴ sets of bandpasses, this resulted in fifth and fourth or-⁸⁶⁵ der polynomials being chosen for a_β and β_0 , respectively. ⁸⁶⁶ Incorporating this inclination dependence on a_{β} and β_0 , ⁸⁶⁷ Equation 3 can be rewritten as

868

$$A_{\rm FUV} = \sum_{n=0}^{4} a_{\beta,n} (1 - \cos i)^n \times \left(\beta - \sum_{n=0}^{4} \beta_{0,n} (1 - \cos i)^n\right)$$
(9)

⁸⁶⁹ where $a_{\beta,n}$ and $\beta_{0,n}$ are the polynomial coefficients of ⁸⁷⁰ a_{β} and β_{0} , which can be found in Table 4 along with ⁸⁷¹ their corresponding uncertainty for each set of UV band-⁸⁷² passes.

4.2.3. Comparison with Past Studies

Table 4. Polynomial Coefficients to estimate $A_{\rm FUV}$ as a function of β and inclination via Equation 9.

	UV Bump	No UV Bump
Coefficients	FUV-NUV	FUV-F275W
$a_{eta,0}$	0.8564 ± 0.0230	0.8507 ± 0.0206
$a_{eta,1}$	-0.4759 ± 0.5065	-0.3892 ± 0.4447
$a_{eta,2}$	7.0243 ± 3.3703	5.8447 ± 2.9072
$a_{eta,3}$	-21.4069 ± 9.0246	-17.6998 ± 7.6714
$a_{eta,4}$	29.5716 ± 10.3862	24.0990 ± 8.7243
$a_{eta,5}$	-14.0028 ± 4.2785	-11.2503 ± 3.5597
$\beta_{0,0}$	-2.4084 ± 0.0596	-2.2972 ± 0.0508
$\beta_{0,1}$	0.9974 ± 0.8306	0.9985 ± 0.6937
$\beta_{0,2}$	-5.7388 ± 3.4059	-5.2784 ± 2.7990
$\beta_{0,3}$	11.5513 ± 5.1544	10.4165 ± 4.1830
$\beta_{0,4}$	-7.5682 ± 2.5757	-6.6026 ± 2.0700

The inclination-dependent $A_{\rm FUV}$ - β relations for each 875 set of UV bandpasses are shown in the upper row of 876 Figure 14. This upper row is the same as Figure 3, 877 but now includes these inclination-dependent relations 878 as the solid colored lines, with the color indicating the in-879 clination used in the calculation. Additionally, we show 880 different $A_{\rm FUV}$ - β relations derived in past studies.

In the left column, we compare our results with the two relations derived in Overzier et al. (2011): one derived from their sample of Lyman break analogs (LBAs), and the other from the same sample of galaxies in Meurer et al. (1999). These relations were calibrated using the IRX- β relation, where the β values were calculated using the GALEX FUV and NUV bands which will share the same bias as our inclination-dependent relation calculated using these bands. We find that the LBA sample relation has a similar β_0 value

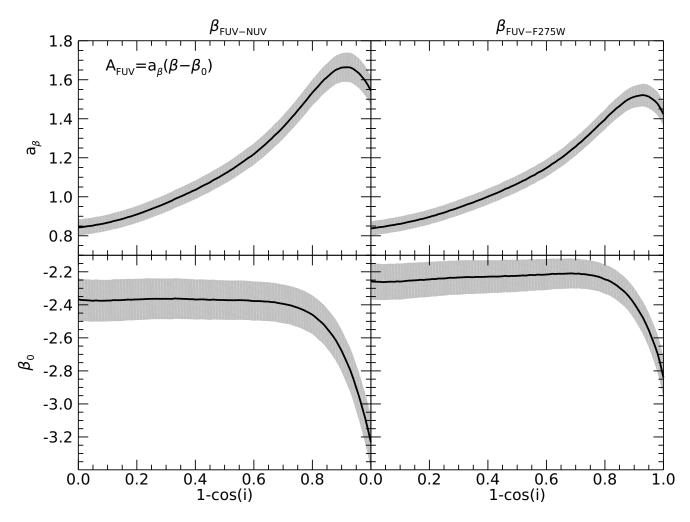


Figure 13. The linear coefficients, a_{β} and β_0 , for Equation 3 vs. inclination for the two combinations of UV bandpasses. The black line shows the derived values at each inclination with the gray shaded region giving the derived uncertainties.

⁸⁹¹ ($\beta_0 = -2.22$) as that of our relation at low to mod-⁸⁹² erate inclinations ($\beta_0 \approx -2.35$), while the Meurer et al. (1999) sample relation is significantly higher ($\beta_0 =$ 893 1.96). Therefore, in the middle panel of the left col-894 umn, we show residuals of $A_{\rm FUV}$ ($\Delta A_{\rm FUV}$; the differ-895 ⁸⁹⁶ ence between $A_{\rm FUV}$ derived from Lightning and $A_{\rm FUV}$ derived from the LBA relation) versus β for the LBA 897 ⁸⁹⁸ relation. From this panel, it can be seen that the LBA ⁸⁹⁹ relation from Overzier et al. (2011) has a clear inclination dependence in the residuals, with low inclination 900 $_{901}$ galaxies typically having their $A_{\rm FUV}$ overestimated and ⁹⁰² high inclination galaxies typically having theirs underestimated. However, the relation in our work results 903 ⁹⁰⁴ in residuals (bottom left panel of Figure 14) with ⁹⁰⁵ minimal inclination dependence. Also, the scatter ⁹⁰⁶ in the residuals of our relation is smaller than the resid-⁹⁰⁷ uals of the LBA relation by a factor ≈ 1.5 , indicating ⁹⁰⁸ that its inclination dependence is accounting for some ⁹⁰⁹ additional variation present in the $A_{\rm FUV}$ - β relation.

In the right column of Figure 14, we compare our re-910 ⁹¹¹ sults to the inclination-dependent $A_{\rm FUV}$ - β relation from ⁹¹² Wang et al. (2018), which utilized axis ratio (q = b/a;q = 0 is edge-on and q = 1 is face-on) rather than incli-⁹¹⁴ nation. To briefly explain the derivation of this relation, ⁹¹⁵ its inclination dependence was derived by first assuming ⁹¹⁶ hybrid SFR estimators are inclination independent, and ⁹¹⁷ then using this assumption to correct the $A_{\rm FUV}$ - β rela-⁹¹⁸ tion for inclination. This inclination correction was then ⁹¹⁹ added to the β_0 term, while a_β was fixed to a constant $_{920}$ value. Also, the β values used in the derivation were ⁹²¹ calculated by fitting a power law to three observed UV ⁹²² photometric data points, all of which were selected to ⁹²³ avoid the UV bump feature. Therefore, we compared ⁹²⁴ this relation to our relation calculated using the FUV ⁹²⁵ and F275W bands, since both relations should avoid the ⁹²⁶ bias introduced by the presence of the UV bump.

⁹²⁷ The upper right panel of Figure 14 shows the ⁹²⁸ inclination-dependent Wang et al. (2018) relation as the

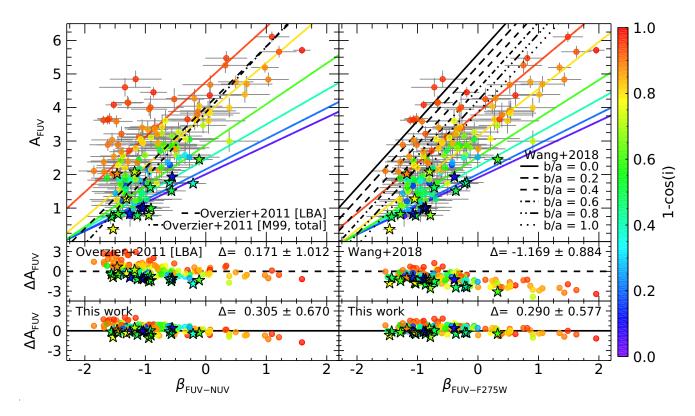


Figure 14. In all panels, the circle points are the CANDELS sample of galaxies, while the stars are the SINGS/KINGFISH sample. Each galaxy is colored based on its median inclination as derived by Lightning. (Upper row) Each panel shows $A_{\rm FUV}$ vs. β calculated using the rest-frame model FUV and NUV bands ($\beta_{\rm FUV-NUV}$) and rest-frame model FUV and F275W bands ($\beta_{\rm FUV-F275W}$) in the left and right, respectively. The corresponding inclination-dependent $A_{\rm FUV}$ - β relations from this study are shown as the solid colored lines, with the color indicating the inclination used in the calculation $(1 - \cos i)$ [0.05, 0.2, 0.4, 0.6, 0.75]). The dashed and dash-dotted lines in the right panel are the relations from Overzier et al. (2011) for their LBA sample and Meurer et al. (1999) sample, respectively. The black lines of changing linestyle in the left panel are the inclination-dependent Wang et al. (2018) relation, where each linestyle represents a different value of axis ratio. (Middle row) The difference between $A_{\rm FUV}$ derived from Lightning and $A_{\rm FUV}$ derived from the Overzier et al. (2011) LBA relation and the Wang et al. (2018) relation utilizing each galaxies' measured axis ratio on the left and right, respectively. The delta in the upper right is the mean and standard deviation of $\Delta A_{\rm FUV}$ (i.e., the mean and scatter of the residuals). (Lower row) The difference between $A_{\rm FUV}$ derived from Lightning and $A_{\rm FUV}$ derived from the inclination-dependent $A_{\rm FUV}$ - β relations in this work. The delta in the upper right is the mean and standard deviation of $\Delta A_{\rm FUV}$.

⁹²⁹ black lines of changing linestyle, where each linestyle 930 represents a different value of axis ratio. From this 931 panel, it can be seen that the Wang et al. (2018) rela- $_{932}$ tion overestimates $A_{\rm FUV}$ for practically all of the galax-⁹³³ ies in our sample. This is clearly seen in the residuals 934 for the Wang et al. (2018) relation shown in the mid- $_{935}$ dle panel, where the $A_{\rm FUV}$ values from the Wang et al. (2018) relation were calculated utilizing the axis ratios 936 ⁹³⁷ of our galaxies as described in Section 2. The reason $_{938}$ for this overestimation by the Wang et al. (2018) rela-⁹³⁹ tion for our sample comes from their critical assumption ⁹⁴⁰ that hybrid SFR estimators are inclination independent, ⁹⁴¹ which this paper has shown to not be the case. Ignoring ⁹⁴² this inclination dependence in their calculation is caus- $_{943}$ ing overestimates of $A_{\rm FUV}$, especially at low inclinations,

⁹⁴⁴ where the hybrid SFR estimator is likely overestimating 945 the SFR.

4.3. Range of Applicability and Caveats

It is important to stress that the relations for unatten-947 ⁹⁴⁸ uating the FUV luminosity presented in this paper were ⁹⁴⁹ derived from a specific sample of disk-dominated galax-⁹⁵⁰ ies (see Section 2). Therefore, their use should be lim-⁹⁵¹ ited to galaxies whose physical properties fall within the ⁹⁵² range of our sample. Extrapolating their use to galaxies ⁹⁵³ outside this range could result in unrealistic unattenu-⁹⁵⁴ ated luminosities. For the inclination and color depen-955 dent hybrid SFR estimator, the rest-frame FUV-NIR ⁹⁵⁶ colors should be within the following ranges:

$$\begin{array}{ll} 2.18 < \mathrm{FUV-J} < 7.48 \ \mathrm{mag}, \\ 2.26 < \mathrm{FUV-H} < 7.74 \ \mathrm{mag}, \end{array}$$

Figure 15. Histogram of $k_{\rm FUV}$ for the CANDELS and SINGS/KINGFISH samples. The dashed red line gives the the value of $k_{\rm FUV}$ assuming a constant SFR over the last 100 Myr ($k_{\rm FUV} = 1.6 \times 10^{-10}$), and the dashed black line gives the sample median.

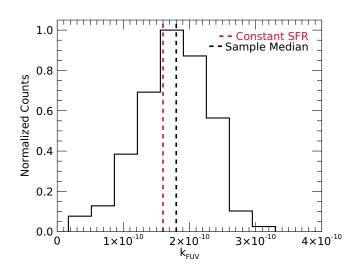
959	2.07 < FUV-K < 7.93 mag
960	1.56 < FUV-3.6 < 7.72 mag.

⁹⁶¹ As for the inclination-dependent $A_{\rm FUV}$ - β relation, β val-⁹⁶² ues should fall within

963 $-1.85 < \beta_{\text{Bump}} < 1.59,$ 964 $-1.53 < \beta_{\text{No Bump}} < 1.96,$

⁹⁶⁵ for galaxies that have and do not have UV bump ⁹⁶⁶ contaminated observations, respectively. Additionally, ⁹⁶⁷ galaxies, as per Section 2, should be star-forming disk ⁹⁶⁸ galaxies with a minimal bulge component and reside at ⁹⁶⁹ redshifts of z < 1. The morphology can either be deter-⁹⁷⁰ mined from visual inspection or meeting the sample se-⁹⁷¹ lection requirement of a Sersic index of n < 1.2. Finally, ⁹⁷² the relations should not be applied to galaxies classified ⁹⁷³ as having AGN, as the AGN could contaminate obser-⁹⁷⁴ vations from the FUV to IR (Ciesla et al. 2015).

Additionally, the inclination estimates used in this 975 976 study rely on the various assumptions made in Doore et al. (2021) to convert axis ratio to inclination. If 977 978 alternative methods and assumptions are used, they have been shown to typically result in com-979 parable inclination estimates. However, they 980 tend to underestimate the uncertainty on incli-981 ⁹⁸² nation when simply propagating the axis ratio ⁹⁸³ uncertainty (see Section 3 of Doore et al. 2021) for details). Therefore, the relations presented in this 985 study will be applicable even if inclinations are esti-⁹⁸⁶ mated from an axis ratio via a different method.


⁹⁸⁷ While the relations presented in this paper derive an ⁹⁸⁸ unattenuated FUV luminosity, the actual quantity of

989 interest is the SFR. To determine the SFR from the ⁹⁹⁰ unattenuated FUV luminosity, a conversion factor $k_{\rm UV}$ ⁹⁹¹ (specifically, $k_{\rm FUV}$) for use in Equation 1 must be se-992 lected. A variety of values can be theoretically de-⁹⁹³ termined depending on the assumed IMF, metallicity, ⁹⁹⁴ and SFH, with a constant SFH over the last 100 Myr ⁹⁹⁵ typically being assumed (e.g., Kennicutt 1998; Murphy 996 et al. 2011; Kennicutt & Evans 2012). For our as-⁹⁹⁷ sumed IMF and metallicity, this constant SFH results ⁹⁹⁸ in $k_{\rm FUV} = 1.6 \times 10^{-10}$. However, while the galaxies in ⁹⁹⁹ our sample assume the same IMF and metallicity, they ¹⁰⁰⁰ each have a unique SFH, which will result in each galaxy 1001 having a unique value of $k_{\rm FUV}$. In Figure 15, we show 1002 how these unique $k_{\rm FUV}$ values compare to the constant ¹⁰⁰³ value of $k_{\rm FUV}$ assuming a constant SFH, which is shown 1004 as the dashed red line. On average, the galaxies in our 1005 sample have a higher $k_{\rm FUV}$ than this constant value, but 1006 are consistent when considering the relatively large un-¹⁰⁰⁷ certainty with a sample median and standard deviation 1008 of $k_{\rm FUV} = (1.80 \pm 0.54) \times 10^{-10}$. Since $k_{\rm FUV}$ is depen-1009 dent on the SFH, we investigated parameterizing $_{1010}$ $k_{\rm FUV}$ as function of FUV–NIR color. However, ¹⁰¹¹ we found that any parameterization of $k_{\rm FUV}$ with ¹⁰¹² color yielded results consistent with those for a ¹⁰¹³ constant value of $k_{\rm FUV}$. Therefore, we recommend us-¹⁰¹⁴ ing the theoretical constant value of $k_{\rm FUV} = 1.6 \times 10^{-10}$ ¹⁰¹⁵ with a propagated uncertainty of 0.54×10^{-10} when us-¹⁰¹⁶ ing our relations to convert FUV luminosity to SFR.

5. SUMMARY

We analyzed how both hybrid SFR estimators and ¹⁰¹⁹ the $A_{\rm FUV}$ - β relation depend on inclination and derived ¹⁰²⁰ new relations to account for this inclination depen-¹⁰²¹ dence. This analysis utilized the inclination-dependent ¹⁰²² attenuation module in the SED fitting code Lightning, ¹⁰²³ which was applied to a sample of 133 galaxies from the ¹⁰²⁴ CANDELS fields along with 18 local galaxies from the ¹⁰²⁵ SINGS/KINGFISH sample in Dale et al. (2017). All ¹⁰²⁶ galaxies were selected to be disk-dominated via their ¹⁰²⁷ Sersic index and/or a visual inspection.

For the hybrid SFR estimators, we found that the 1029 UV+IR correction factor a_{corr} was found to be 1030 highly dependent on the inclination of a galaxy 1031 in addition to its sSFR. Since the sSFR is not an 1032 observable quantity, a rest-frame FUV–NIR color was 1033 used as a proxy along with inclination to derive the para-1034 metric relation for a_{corr} given in Equation 8. The rela-1035 tion was a simple linear fit of FUV–NIR color to a_{corr} , 1036 with the linear coefficients being polynomials of incli-1037 nation. These polynomial coefficient were presented in 1038 Table 3 for four different FUV–NIR colors. These re-1039 lations were shown to predict values of a_{corr} that were

¹⁰⁴⁰ highly consistent with the data and properly account for ¹⁰⁴¹ any inclination dependence.

As for the $A_{\rm FUV}$ - β relation, we derived two different 1042 ¹⁰⁴³ sets of β to account for the potential contamination of observations by the rest-frame UV bump feature. The 1044 1045 first set includes the rest-frame GALEX FUV ¹⁰⁴⁶ and NUV bandpasses, with the NUV bandpass ¹⁰⁴⁷ overlapping with the UV bump. The second 1048 set includes the rest-frame GALEX FUV and 1049 HST WFC3/F275W bandpasses, both of which 1050 avoid the bump feature. For both sets of β , we found that there is a definite inclination depen-1051 dence with edge-on galaxies having a higher $A_{\rm FUV}$ 1052 ¹⁰⁵³ by 1-2 mag for a given value of β compared to ¹⁰⁵⁴ more face-on galaxies. To derive our inclinationdependent $A_{\rm FUV}$ - β relation for each set, we fit the 1055 relation given in Equation 3 to our data. These 1056 1057 fits resulted in the expected trends of an increase in a_{β} and a constant β_0 with inclination for 1058 $-\cos i \leq 0.75$. However, at higher inclinations, 1059 1 1060 a_{β} and β_0 deviated from these expected trends, with both decreasing with increasing inclination. 1061 We accounted these deviations to various simplifying as-1062 sumptions within the $A_{\rm FUV}$ - β relation. Regardless, we 1063 1064 fitted polynomials for the full range of inclination to a_{β} 1065 and β_0 , whose coefficients were presented in Table 4, and noted that the linearity of the $A_{\rm FUV}$ - β relation is likely 1066 too simplified for highly inclined galaxies. 1067

The results of this work illustrate that inclination can significantly affect the derived SFR in disk-dominated galaxies when using UV SFR ori tracers. We find that including an inclination accurate SFR estimates. In future work, we plan accurate SFR estimates. In future work, we plan to apply the inclination-dependent attenuation module in Lightning to a more complete sam1076 ple of galaxies that have sizable bulge compo1077 nents, rather than a purely disk-dominated sam1078 ple. We intend to see how the bulge component
1079 of a galaxy affects the inclination dependence of
1080 our results and check if similar relations apply to
1081 the broader disk-galaxy population.

¹⁰⁸² We acknowledge and thank the anonymous referee for 1083 their valuable and insightful comments, which helped ¹⁰⁸⁴ improve the quality of this paper. We gratefully ¹⁰⁸⁵ acknowledge support from the NASA Astrophysics 1086 Data Analysis Program (ADAP) grant 80NSSC20K0444 1087 (KD, RTE, BDL, EBM) and NASA award number 1088 80GSFC21M0002 (AB). KG was supported by an ap-1089 pointment to the NASA Postdoctoral Program at God-¹⁰⁹⁰ dard Space Flight Center, administered by Oak Ridge ¹⁰⁹¹ Associated Universities under contract with NASA. This ¹⁰⁹² work is based on observations taken by the CANDELS ¹⁰⁹³ Multi-Cycle Treasury Program with the NASA/ESA ¹⁰⁹⁴ HST, which is operated by the Association of Univer-¹⁰⁹⁵ sities for Research in Astronomy, Inc., under NASA ¹⁰⁹⁶ contract NAS5-26555. This work has made use of the ¹⁰⁹⁷ NASA/IPAC Extragalactic Database (NED), which is ¹⁰⁹⁸ funded by the National Aeronautics and Space Adminis-¹⁰⁹⁹ tration and operated by the California Institute of Tech-¹¹⁰⁰ nology; and the Arkansas High Performance Computing ¹¹⁰¹ Center, which is funded through multiple National Sci-¹¹⁰² ence Foundation grants and the Arkansas Economic De-¹¹⁰³ velopment Commission. We acknowledge the usage of ¹¹⁰⁴ the HyperLeda database (http://leda.univ-lyon1.fr).

Facilities: HST, Spitzer, Herschel, Blanco,
CFHT, ESO:VISTA, LBT, Mayall, Subaru, UKIRT,
VLT:Melipal, VLT:Yepun

¹¹⁰⁸ Software: Lightning (Eufrasio et al. 2017; Doore et ¹¹⁰⁹ al. 2021)

REFERENCES

- Arnouts, S., Le Floc'h, E., Chevallard, J., et al. 2013, A&A,
 558, A67, doi: 10.1051/0004-6361/201321768
- 1112 Barro, G., Pérez-González, P. G., Cava, A., et al. 2019,
- ApJS, 243, 22, doi: 10.3847/1538-4365/ab23f2
- Battisti, A. J., Calzetti, D., & Chary, R. R. 2017, ApJ, 851,
 90, doi: 10.3847/1538-4357/aa9a43
- ¹¹¹⁶ Bigiel, F., Leroy, A., Walter, F., et al. 2008, AJ, 136, 2846,
 ¹¹¹⁷ doi: 10.1088/0004-6256/136/6/2846
- ¹¹¹⁸ Boquien, M., Calzetti, D., Kennicutt, R., et al. 2009, ApJ,
- ¹¹¹⁹ 706, 553, doi: 10.1088/0004-637X/706/1/553
- 1120 Boquien, M., Buat, V., Boselli, A., et al. 2012, A&A, 539,
- 1121 A145, doi: 10.1051/0004-6361/201118624

- ¹¹²² Boquien, M., Kennicutt, R., Calzetti, D., et al. 2016, A&A,
 ¹¹²³ 591, A6, doi: 10.1051/0004-6361/201527759
- 1124 Bradshaw, E. J., Almaini, O., Hartley, W. G., et al. 2013,
- ¹¹²⁵ MNRAS, 433, 194, doi: 10.1093/mnras/stt715
- 1126 Brooks, S. P., & Gelman, A. 1998, Journal of
- Computational and Graphical Statistics, 7, 434,
 doi: 10.1080/10618600.1998.10474787
- Buat, V., Noll, S., Burgarella, D., et al. 2012, A&A, 545,
 A141, doi: 10.1051/0004-6361/201219405
- ¹¹³¹ Burgarella, D., Buat, V., & Iglesias-Páramo, J. 2005,
- 1132 MNRAS, 360, 1413,
- doi: 10.1111/j.1365-2966.2005.09131.x

- 1134 Calzetti, D., Kinney, A. L., & Storchi-Bergmann, T. 1994, ApJ, 429, 582, doi: 10.1086/174346 1183 1135 1136 Catalán-Torrecilla, C., Gil de Paz, A., Castillo-Morales, A., 1184 et al. 2015, A&A, 584, A87, 1137 doi: 10.1051/0004-6361/201526023 1186 1138 1139 Chevallard, J., Charlot, S., Wandelt, B., & Wild, V. 2013, MNRAS, 432, 2061, doi: 10.1093/mnras/stt523 1188 1140 Ciesla, L., Charmandaris, V., Georgakakis, A., et al. 2015, 1141 A&A, 576, A10, doi: 10.1051/0004-6361/201425252 1190 1142 1143 Cirasuolo, M., McLure, R. J., Dunlop, J. S., et al. 2007, 1191 MNRAS, 380, 585, doi: 10.1111/j.1365-2966.2007.12038.x 1144 1193 1145 Civano, F., Marchesi, S., Comastri, A., et al. 2016, ApJ, 1194 819, 62, doi: 10.3847/0004-637X/819/1/62 1146 1195 1147 Coil, A. L., Davis, M., Madgwick, D. S., et al. 2004, ApJ, 609, 525, doi: 10.1086/421337 1148 1197 Conroy, C., Schiminovich, D., & Blanton, M. R. 2010, ApJ, 1149 1198 718, 184, doi: 10.1088/0004-637X/718/1/184 1150 1199 Cooper, M. C., Aird, J. A., Coil, A. L., et al. 2011, ApJS, 1151 1200 193, 14, doi: 10.1088/0067-0049/193/1/14 1152 1201 1153 Cooper, M. C., Yan, R., Dickinson, M., et al. 2012a, 1202 MNRAS, 425, 2116, 1154 1203 doi: 10.1111/j.1365-2966.2012.21524.x 1155 Cooper, M. C., Griffith, R. L., Newman, J. A., et al. 2012b, 1156 1205 MNRAS, 419, 3018, 1157 doi: 10.1111/j.1365-2966.2011.19938.x 1158 1207 1159 Dalcanton, J. J., & Bernstein, R. A. 2002, AJ, 124, 1328, doi: 10.1086/342286 1160 1209 1161 Dale, D. A., Bendo, G. J., Engelbracht, C. W., et al. 2005, ApJ, 633, 857, doi: 10.1086/491642 1162 1211 1163 Dale, D. A., Gil de Paz, A., Gordon, K. D., et al. 2007, ApJ, 655, 863, doi: 10.1086/510362 1164 1213 1165 Dale, D. A., Aniano, G., Engelbracht, C. W., et al. 2012, ApJ, 745, 95, doi: 10.1088/0004-637X/745/1/95 1166 1215 1167 Dale, D. A., Cook, D. O., Roussel, H., et al. 2017, ApJ, 837, 90, doi: 10.3847/1538-4357/aa6032 1168 1217 Damjanov, I., Zahid, H. J., Geller, M. J., Fabricant, D. G., 1169 & Hwang, H. S. 2018, ApJS, 234, 21, 1170 1219 doi: 10.3847/1538-4365/aaa01c 1171 1172 Davis, M., Guhathakurta, P., Konidaris, N. P., et al. 2007, 1221 ApJL, 660, L1, doi: 10.1086/517931 1173 1222 1174 Devour, B. M., & Bell, E. F. 2016, MNRAS, 459, 2054, doi: 10.1093/mnras/stw754 1175 1224 1176 Donley, J. L., Koekemoer, A. M., Brusa, M., et al. 2012, ApJ, 748, 142, doi: 10.1088/0004-637X/748/2/142 1177 1226 1178 Doore, K., Eufrasio, R. T., Lehmer, B. D., et al. 2021, ApJ, 923, 26, doi: 10.3847/1538-4357/ac25f3 1179 1228
 - ¹¹⁸⁰ Draine, B. T., & Li, A. 2007, ApJ, 657, 810,
 - 1181 doi: 10.1086/511055

- ¹¹⁸² Driver, S. P., Popescu, C. C., Tuffs, R. J., et al. 2007,
 ¹¹⁸³ MNRAS, 379, 1022.
- doi: 10.1111/j.1365-2966.2007.11862.x
- ¹¹⁸⁵ Eufrasio, R. T., Dwek, E., Arendt, R. G., et al. 2014, ApJ,
 ¹¹⁸⁶ 795, 89, doi: 10.1088/0004-637X/795/1/89
- ¹¹⁸⁷ Eufrasio, R. T., Lehmer, B. D., Zezas, A., et al. 2017, ApJ,
 ¹¹⁸⁸ 851, 10, doi: 10.3847/1538-4357/aa9569
- 1189 Fitzpatrick, E. L. 1999, PASP, 111, 63, doi: 10.1086/316293
 - 90 Galametz, A., Grazian, A., Fontana, A., et al. 2013, ApJS,
- ¹¹⁹¹ 206, 10, doi: 10.1088/0067-0049/206/2/10 ¹¹⁹² Gao, Y., & Solomon, P. M. 2004, ApJ, 606, 271,
 - doi: 10.1086/382999
 - Garilli, B., McLure, R., Pentericci, L., et al. 2021, A&A,
 647, A150, doi: 10.1051/0004-6361/202040059
 - Gelman, A., & Rubin, D. B. 1992, Statistical Science, 7,
 457, doi: 10.1214/ss/1177011136
 - Giavalisco, M., Ferguson, H. C., Koekemoer, A. M., et al.
 2004, ApJL, 600, L93, doi: 10.1086/379232
 - Giovanelli, R., Haynes, M. P., Salzer, J. J., et al. 1994, AJ,
 107, 2036, doi: 10.1086/117014
 - 202 Gordon, K. D., Clayton, G. C., Witt, A. N., & Misselt,
 - K. A. 2000, ApJ, 533, 236, doi: 10.1086/308668
 - Graham, A. W., & Worley, C. C. 2008, MNRAS, 388, 1708,
 doi: 10.1111/j.1365-2966.2008.13506.x
 - 1206 Grogin, N. A., Kocevski, D. D., Faber, S. M., et al. 2011,
 - ApJS, 197, 35, doi: 10.1088/0067-0049/197/2/35
 - ¹²⁰⁸ Guo, Y., Ferguson, H. C., Giavalisco, M., et al. 2013, ApJS,
 ¹²⁰⁹ 207, 24, doi: 10.1088/0067-0049/207/2/24
 - 1210 Hao, C.-N., Kennicutt, R. C., Johnson, B. D., et al. 2011,
 - ApJ, 741, 124, doi: 10.1088/0004-637X/741/2/124
 - Hasinger, G., Capak, P., Salvato, M., et al. 2018, ApJ, 858,
 77, doi: 10.3847/1538-4357/aabacf
 - 1214 Kennicutt, R. C., J. 1983, ApJ, 272, 54,
 - 1215 doi: 10.1086/161261
 - 1216 Kennicutt, Robert C., J. 1998, ARA&A, 36, 189,
 - 217 doi: 10.1146/annurev.astro.36.1.189
 - ¹²¹⁸ Kennicutt, Robert C., J., Armus, L., Bendo, G., et al. 2003,
 ¹²¹⁹ PASP, 115, 928, doi: 10.1086/376941
 - 1220 Kennicutt, Robert C., J., Hao, C.-N., Calzetti, D., et al.
 - ¹²²¹ 2009, ApJ, 703, 1672,
 - doi: 10.1088/0004-637X/703/2/1672
 - 1223 Kennicutt, R. C., & Evans, N. J. 2012, ARA&A, 50, 531,
 1224 doi: 10.1146/annurev-astro-081811-125610
 - 1225 Kennicutt, R. C., Calzetti, D., Aniano, G., et al. 2011,
 - 1226 PASP, 123, 1347, doi: 10.1086/663818
 - Kirkpatrick, A., Pope, A., Charmandaris, V., et al. 2013,
 ApJ, 763, 123, doi: 10.1088/0004-637X/763/2/123
 - ¹²²⁹ Kocevski, D. D., Hasinger, G., Brightman, M., et al. 2018,
 ¹²³⁰ ApJS, 236, 48, doi: 10.3847/1538-4365/aab9b4

- 1231 Koekemoer, A. M., Faber, S. M., Ferguson, H. C., et al.
- 1232 2011, ApJS, 197, 36, doi: 10.1088/0067-0049/197/2/36
- 1233 Kong, X., Charlot, S., Brinchmann, J., & Fall, S. M. 2004,
- 1234 MNRAS, 349, 769, doi: 10.1111/j.1365-2966.2004.07556.x
- ¹²³⁵ Kriek, M., & Conroy, C. 2013, ApJL, 775, L16,
- 1236 doi: 10.1088/2041-8205/775/1/L16
- ¹²³⁷ Kroupa, P. 2001, MNRAS, 322, 231,
- 1238 doi: 10.1046/j.1365-8711.2001.04022.x
- 1239 Lawrence, A., Warren, S. J., Almaini, O., et al. 2007,
- 1240 MNRAS, 379, 1599,
- doi: 10.1111/j.1365-2966.2007.12040.x
- Leja, J., Speagle, J. S., Ting, Y.-S., et al. 2021, arXiv
 e-prints, arXiv:2110.04314.
- 1244 https://arxiv.org/abs/2110.04314
- Leroy, A. K., Walter, F., Brinks, E., et al. 2008, AJ, 136,
 2782, doi: 10.1088/0004-6256/136/6/2782
- 1247 Leroy, A. K., Bigiel, F., de Blok, W. J. G., et al. 2012, AJ,
- 1248 144, 3, doi: 10.1088/0004-6256/144/1/3
- Leslie, S. K., Schinnerer, E., Groves, B., et al. 2018a, A&A,
 616, A157, doi: 10.1051/0004-6361/201833114
- Leslie, S. K., Sargent, M. T., Schinnerer, E., et al. 2018b,
 A&A, 615, A7, doi: 10.1051/0004-6361/201732255
- 1253 Li, A., & Draine, B. T. 2001, ApJ, 554, 778,
- 1254 doi: 10.1086/323147
- Lilly, S. J., Le Brun, V., Maier, C., et al. 2009, ApJS, 184,
 218, doi: 10.1088/0067-0049/184/2/218
- Luo, B., Brandt, W. N., Xue, Y. Q., et al. 2017, ApJS, 228,
 2, doi: 10.3847/1538-4365/228/1/2
- 1259 Makarov, D., Prugniel, P., Terekhova, N., Courtois, H., &
- ¹²⁶⁰ Vauglin, I. 2014, A&A, 570, A13,
- 1261 doi: 10.1051/0004-6361/201423496
- 1262 Masters, D. C., Stern, D. K., Cohen, J. G., et al. 2019,
- 1263 ApJ, 877, 81, doi: 10.3847/1538-4357/ab184d
- 1264 Masters, K. L., Nichol, R., Bamford, S., et al. 2010,
- ¹²⁶⁵ MNRAS, 404, 792, doi: 10.1111/j.1365-2966.2010.16335.x ¹²⁶⁶ McLure, R. J., Pearce, H. J., Dunlop, J. S., et al. 2013,
- McLure, R. J., Pearce, H. J., Dunlop, J. S., et al. 2
 MNRAS, 428, 1088, doi: 10.1093/mnras/sts092
- 1267 MNRAS, 428, 1088, doi: 10.1093/mnras/sts092
- ¹²⁶⁸ Meurer, G. R., Heckman, T. M., & Calzetti, D. 1999, ApJ,
 ¹²⁶⁹ 521, 64, doi: 10.1086/307523
- 1270 Murphy, E. J., Condon, J. J., Schinnerer, E., et al. 2011,
- 1271 ApJ, 737, 67, doi: 10.1088/0004-637X/737/2/67
- 1272 Nandra, K., Laird, E. S., Aird, J. A., et al. 2015, ApJS,
- 1273 220, 10, doi: 10.1088/0067-0049/220/1/10
- ¹²⁷⁴ Nayyeri, H., Hemmati, S., Mobasher, B., et al. 2017, ApJS,
 ¹²⁷⁵ 228, 7, doi: 10.3847/1538-4365/228/1/7
- 1276 Newman, J. A., Cooper, M. C., Davis, M., et al. 2013,
- 1277 ApJS, 208, 5, doi: 10.1088/0067-0049/208/1/5
- 1278 Overzier, R. A., Heckman, T. M., Wang, J., et al. 2011,
- 1279 ApJL, 726, L7, doi: 10.1088/2041-8205/726/1/L7

- Popping, G., Puglisi, A., & Norman, C. A. 2017, MNRAS,
 472, 2315, doi: 10.1093/mnras/stx2202
- 1282 Salim, S., Boquien, M., & Lee, J. C. 2018, ApJ, 859, 11,
 1283 doi: 10.3847/1538-4357/aabf3c
- 1284 Salim, S., Charlot, S., Rich, R. M., et al. 2005, ApJL, 619,
 L39, doi: 10.1086/424800
- 1286 Salim, S., Rich, R. M., Charlot, S., et al. 2007, ApJS, 173,
 267, doi: 10.1086/519218
- 1288 Santini, P., Ferguson, H. C., Fontana, A., et al. 2015, ApJ,
 1289 801, 97, doi: 10.1088/0004-637X/801/2/97
- ¹²⁹⁰ Sargent, M. T., Carollo, C. M., Kampczyk, P., et al. 2010,
 ¹²⁹¹ ApJL, 714, L113, doi: 10.1088/2041-8205/714/1/L113
- ¹²⁹² Schlafly, E. F., & Finkbeiner, D. P. 2011, ApJ, 737, 103,
 ¹²⁹³ doi: 10.1088/0004-637X/737/2/103
- ¹²⁹⁴ Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ,
 ¹²⁹⁵ 500, 525, doi: 10.1086/305772
- ¹²⁹⁶ Scoville, N., Aussel, H., Brusa, M., et al. 2007, ApJS, 172,
 ¹²⁹⁷ 1, doi: 10.1086/516585
- 1298 Sérsic, J. L. 1963, Boletin de la Asociacion Argentina de1299 Astronomia La Plata Argentina, 6, 41
- ¹³⁰⁰ Silverman, J. D., Kashino, D., Sanders, D., et al. 2015,
 ¹³⁰¹ ApJS, 220, 12, doi: 10.1088/0067-0049/220/1/12
- ison (1000/0001-0045/220/1/12
- 1302 Stefanon, M., Yan, H., Mobasher, B., et al. 2017, ApJS,
 1303 229, 32, doi: 10.3847/1538-4365/aa66cb
- ¹³⁰⁴ Thorp, M. D., Ellison, S. L., Simard, L., Sánchez, S. F., &
 ¹³⁰⁵ Antonio, B. 2019, MNRAS, 482, L55,
- 1306 doi: 10.1093/mnrasl/sly185
- ¹³⁰⁷ Tress, M., Mármol-Queraltó, E., Ferreras, I., et al. 2018,
 ¹³⁰⁸ MNRAS, 475, 2363, doi: 10.1093/mnras/stx3334
- 1309 Trump, J. R., Impey, C. D., Elvis, M., et al. 2009, ApJ,
- 1310 696, 1195, doi: 10.1088/0004-637X/696/2/1195
- 1311 Tuffs, R. J., Popescu, C. C., Völk, H. J., Kylafis, N. D., &
- ¹³¹² Dopita, M. A. 2004, A&A, 419, 821,
- doi: 10.1051/0004-6361:20035689
- ¹³¹⁴ Unterborn, C. T., & Ryden, B. S. 2008, ApJ, 687, 976,
 ¹³¹⁵ doi: 10.1086/591898
- ¹³¹⁶ van der Wel, A., Bell, E. F., Häussler, B., et al. 2012, ApJS,
 ¹³¹⁷ 203, 24, doi: 10.1088/0067-0049/203/2/24
- ¹³¹⁸ van der Wel, A., Chang, Y.-Y., Bell, E. F., et al. 2014,
 ¹³¹⁹ ApJL, 792, L6, doi: 10.1088/2041-8205/792/1/L6
- ¹³²⁰ van der Wel, A., Noeske, K., Bezanson, R., et al. 2016,
 ¹³²¹ ApJS, 223, 29, doi: 10.3847/0067-0049/223/2/29
- ¹³²² Wang, W., Kassin, S. A., Pacifici, C., et al. 2018, ApJ, 869,
 ¹³²³ 161, doi: 10.3847/1538-4357/aaef79
- Wild, V., Charlot, S., Brinchmann, J., et al. 2011, MNRAS,
 417, 1760, doi: 10.1111/j.1365-2966.2011.19367.x
- Willner, S. P., Coil, A. L., Goss, W. M., et al. 2006, AJ,
 1327 132, 2159, doi: 10.1086/508202
- 1328 Wolf, C., Weinzirl, T., Aragón-Salamanca, A., et al. 2018,
- 1329 MNRAS, 480, 3788, doi: 10.1093/mnras/sty2112

- ¹³³⁰ Xue, Y. Q., Luo, B., Brandt, W. N., et al. 2016, ApJS, 224,
 ¹³³¹ 15, doi: 10.3847/0067-0049/224/2/15
- ¹³³² Zhu, Y.-N., Wu, H., Cao, C., & Li, H.-N. 2008, ApJ, 686,
 ¹³³³ 155, doi: 10.1086/591121
- ¹³³⁴ Zuckerman, L. D., Belli, S., Leja, J., & Tacchella, S. 2021,
- 1335 ApJL, 922, L32, doi: 10.3847/2041-8213/ac3831

APPENDIX

1337

1336

A. SPECTROSCOPIC REDSHIFT CATALOG

The spectroscopic redshifts assigned to sources in the CANDELS fields were compiled from various sources. For 1338 the GOODS-N, we used the relatively comprehensive CANDELS redshift catalog from Barro et al. (2019). For the 1339 GOODS-S, we compiled spectroscopic redshifts from the *Chandra* Deep Field-South "master spectroscopic catalog"⁶, 1340 ACES (Cooper et al. 2012a), and VANDELS spectroscopic survey (Garilli et al. 2021) that were not already included in 1341 the GOODS-S CANDELS redshift and mass catalog (Santini et al. 2015). These sources were then cross-matched to the 1342 nearest CANDELS source within 0.5". If a source in the master catalog, ACES, or VANDELS had a higher reliability 1343 flag than what was in the CANDELS catalog, we replaced the CANDELS spectroscopic redshift with the more reliable 1344 measurement. For the EGS, we cross-matched spectroscopic redshift sources from the DEEP2+3 surveys data release $(DR4; Coil et al. 2004; Willner et al. 2006; Cooper et al. 2011, 2012b; Newman et al. 2013)^7$ to the nearest source 4 1346 within 0.5" in the CANDELS EGS multiband catalog. For the COSMOS field, we cross-matched spectroscopic redshift 1347 sources from IMACS (Trump et al. 2009), zCOSMOS data release 3 (DR3; Lilly et al. 2009)⁸, FMOS (Silverman et al. 1348 2015), LEGA-C DR3 (van der Wel et al. 2016)⁹, hCOSMOS (Damjanov et al. 2018), DEIMOS (Hasinger et al. 2018), 1349 and C3R2 (Masters et al. 2019) to the nearest source within 0.5" in the CANDELS COSMOS multiband catalog. If a 1350 galaxy had redshifts from multiple surveys, then the most reliable redshift was used. For the UDS field, we included any 1351 spectroscopic redshifts from the UDSz spectroscopic catalog (Bradshaw et al. 2013; McLure et al. 2013)¹⁰, VANDELS 1352 spectroscopic survey, and C3R2 that were not already included in the UDS CANDELS redshift and mass catalog 1353 (Santini et al. 2015) by cross-matching them to the nearest source within 0.5". If a source in UDSz, VANDELS, or 1354 C3R2 had a higher reliability flag than what was in the CANDELS catalog, we replaced the CANDELS spectroscopic 1356 redshift with the more reliable measurement.

⁶ https://www.eso.org/sci/activities/garching/projects/goods/ MasterSpectroscopy.html

- ⁸ https://www.eso.org/qi/catalog/show/65
- ⁹ https://www.eso.org/qi/catalog/show/379
- ¹⁰ https://www.nottingham.ac.uk/astronomy/UDS/UDSz/

 $^{^{7}}$ https://deep.ps.uci.edu