National Aeronautics and Space Administration

Scale Resolving Jet Noise Simulations to Reduce Airport Noise

Gerrit-Daniel Stich, Aditya Ghate, Jeffrey Housman, Cetin Kiris NASA Ames Research Center

James Bridges

NASA Glenn Research Center

www.nasa.gov

The Vision For Commercial Supersonic Flight

Pas.

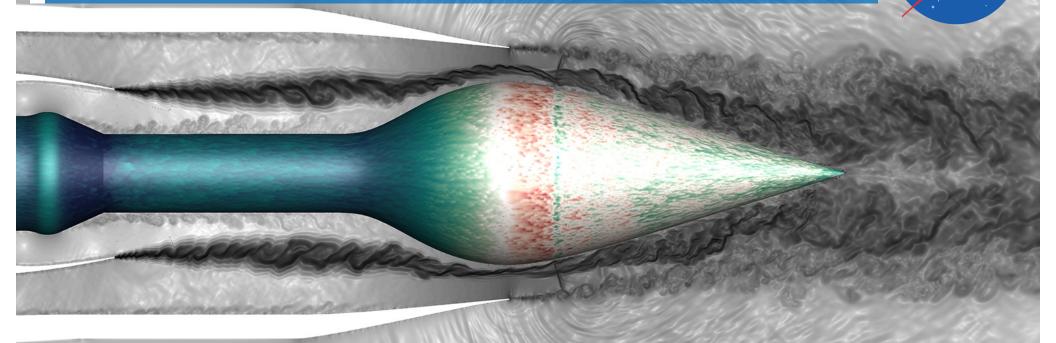
•

An emerging potential market has generated renewed interest in civil supersonic aircraft

 Evidenced by the appearance of several commercial programs despite lack of standards for en route noise or landing and takeoff noise Overland Flight Restrictions based on unacceptable sonic boom noise are viewed as the main barrier to this vision

The vision of the Supersonics Community is a future where fast air travel is available for a broad spectrum of the traveling public

Future supersonic aircraft will not only be able to fly overland without creating an "unacceptable situation" but compared to Concorde and SST will be efficient, affordable, and environmentally responsible National Research and Policy agencies play a central role in developing the data needed for the regulation change that is essential to enabling this new market


NASA

Serrit-Daniel Stich | Scale Resolving, let Noise Simulations to Reduce Airport Noise | Computational Aerosciences Branch (TNA) | NASA Ames Research Center

and the second second

Role of Computational Aeroacoustics (CAA)

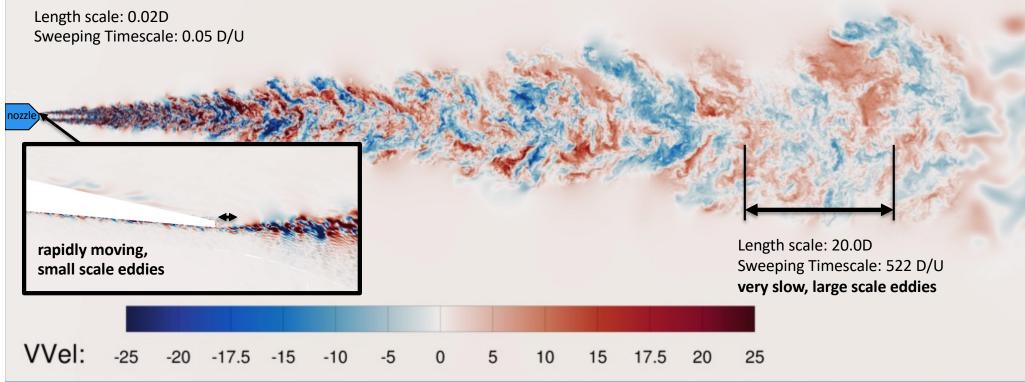
High-fidelity scale resolving simulations conducted at NASA's Ames Research Center with the Launch, Ascent and Vehicle Aerodynamics (LAVA) Solver accurately capture physics of turbulence creating noise.

Determining where and how noise is created could help reduce overall jet engine noise. Accurate predictions of jet noise can help shape future FAA guidelines for supersonic vehicle. Before we agree on guidelines we need to agree on our data: Prediction Uncertainty Reduction Challenge (PUR) initiated within NASA's CST Project

The Launch, Ascent and Vehicle Aerodynamics (LAVA) framework Objectives within NASA's CST project for Jet Noise

- Predict jet noise accurately and in short enough turnaround time using scale-resolving simulations methods
- Understand and document uncertainties and shortcomings of scale-resolving wall-modeled LES for jet noise simulations
- Future Impact: complement/replace wind tunnel and flight tests, reduction of associated costs, provides insight into noise reduction technology never-before available. Aide in the creation of FAA guidelines for supersonic vehicles during landing and takeoff

NASA Advanced Supercomputing Division (NAS)

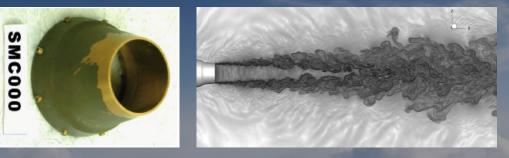

- NASA's supercomputing facility located at NASA's Ames Research Center began operating in 1987
- The NAS Division provides more than 1,500 NASA associated users of the facility with advanced computing technologies, mass storage systems, networking and innovative tools and technologies
- Our in-house solver the Launch Ascent and Vehicle Aerodynamics (LAVA) utilizes state-of-the-art computer science features to enable rapid simulation turnaround times of complex scale-resolving aeroacoustics simulations
- Each simulation utilized 100 AMD Rome nodes (12800 CPUs) on the Aitken supercomputer at NAS resulting in **simulation walltimes between 2-12 hours** to predict broadband jet noise
- Each simulation generated **hundreds of terabytes of data** which is utilized **to advance our knowledge** of jet noise and ultimately result in the **development of new noise reduction technologies**

Why are Scale-Resolving Jet Noise Simulations Challenging/Expensive?

2017-2022: Progress Towards Full Aircraft Jet Noise Predictions

Perform systematic validation effort utilizing scale resolving Computational Fluid Dynamics (CFD) to evaluate aerodynamics for increasingly complex jets

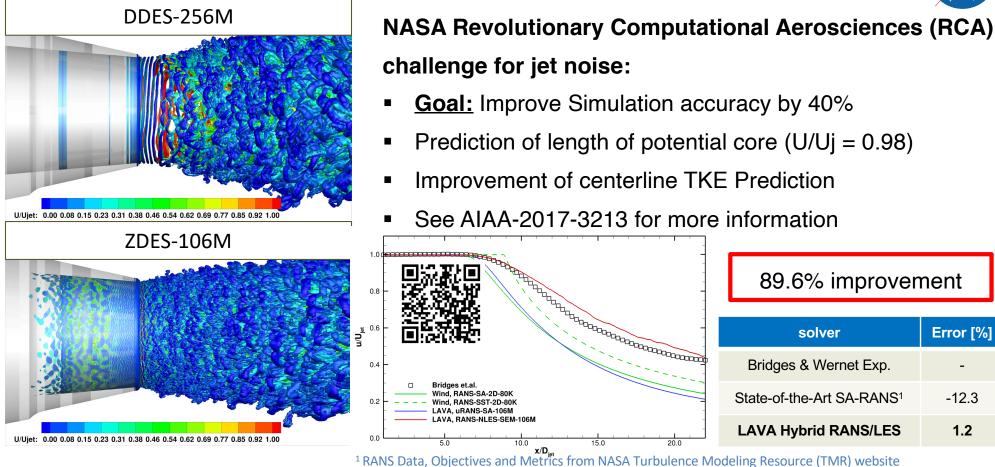
2017-2022: Progress Towards Full Aircraft Jet Noise Predictions

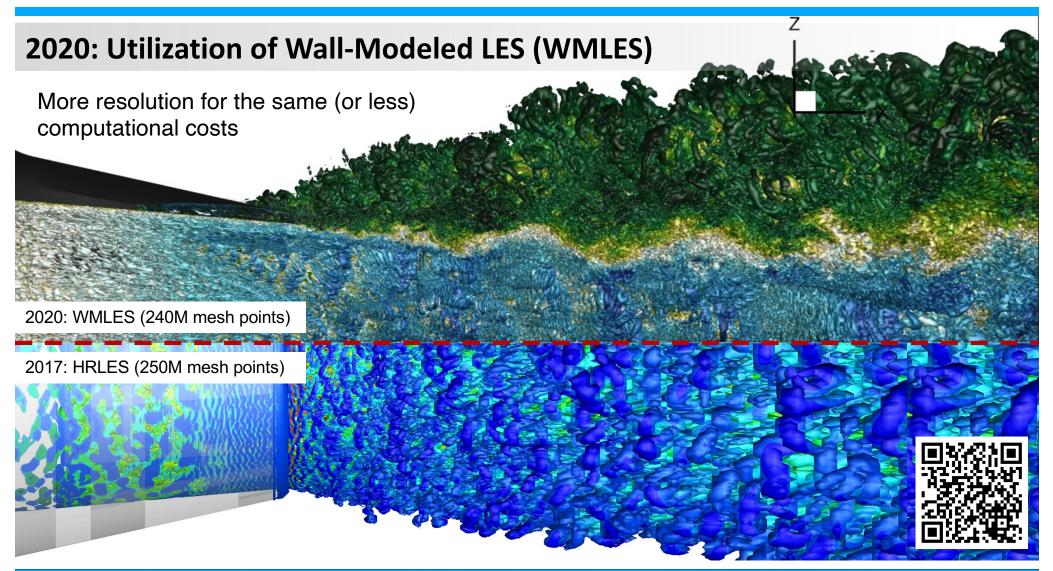

Perform systematic validation effort utilizing scale resolving Computational Fluid Dynamics (CFD) to evaluate aerodynamics for increasingly complex jets

ROUND JET VALIDATION

Detached Delayed Eddy Simulation

- Zonal Hybrid RANS LES
- Development of wall-modeled LES within LAVA

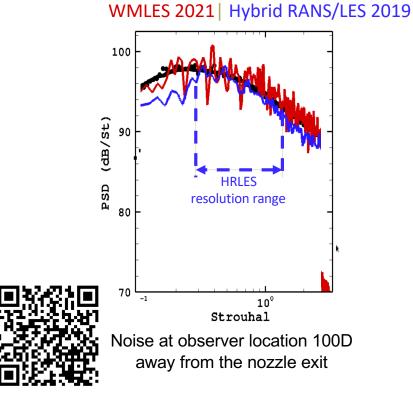

2017: Round Jet Validation - Hybrid RANS/LES

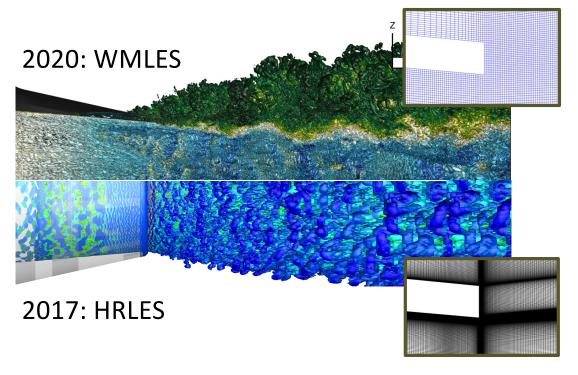


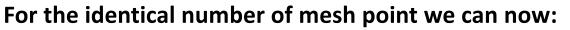
Error [%]

-12.3

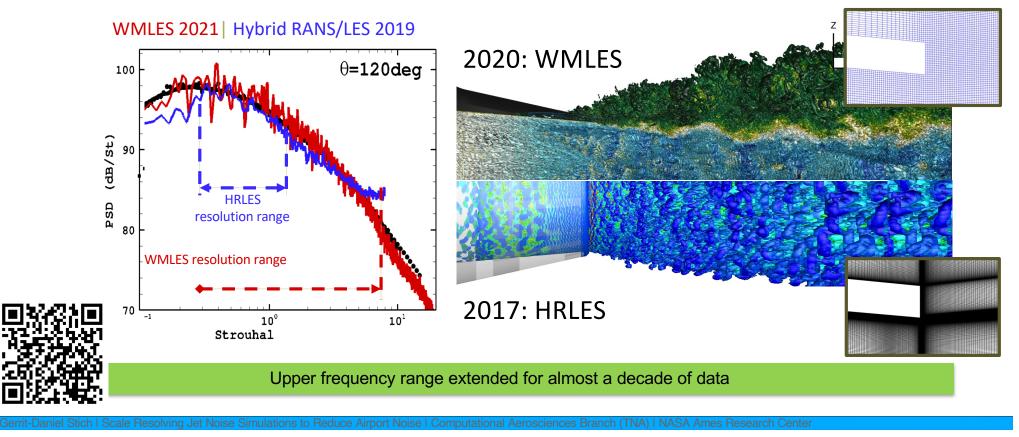
1.2

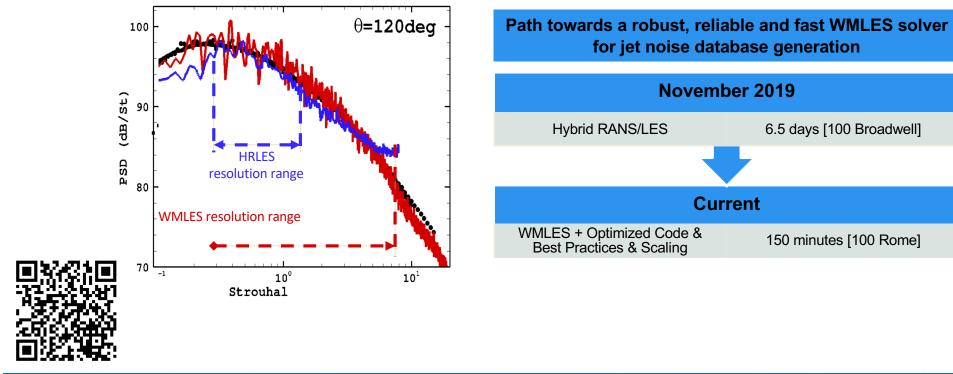




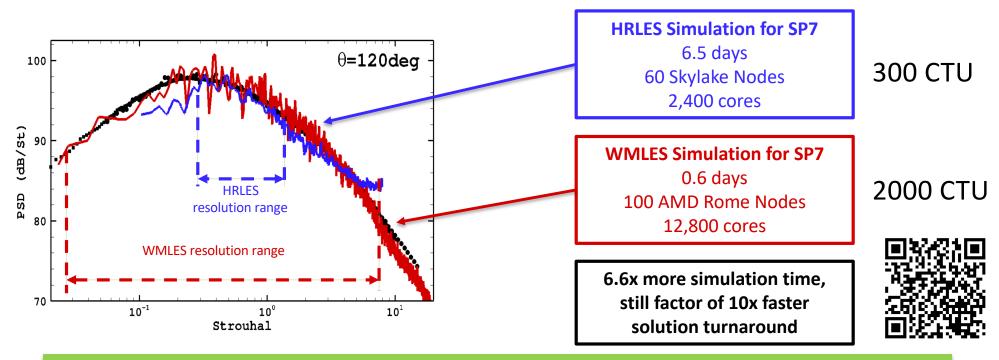


For the identical number of mesh point we can now:


• Redistribute points over a wider area

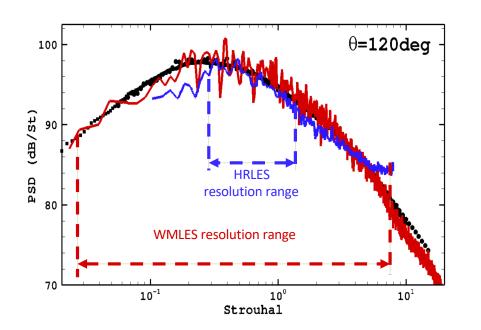

• Redistribute points over a wider area \rightarrow increased high frequency resolution

For identical simulation time cost (CPUh) we can now:


• Increase simulation time interval

For identical simulation time cost (CPUh) we can now:

• Increase simulation time interval \rightarrow extend lower frequency resolution range



Upper and lower frequency range extended for almost a decade each way

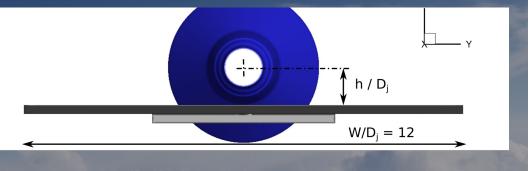
For the identical simulation time cost (CPUh) we can now:

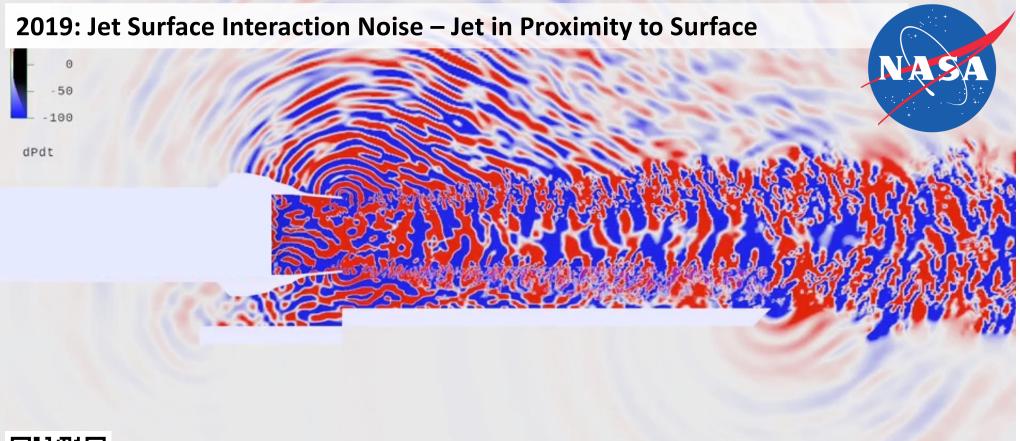
• Increase number of simulations in the same amount of time

	Set Point	Ma	Mj	M_{∞}	NPR	NTR	Exp.	Data
	SP	[-]	[-]	[-]	[-]	[-]	PIV	MIC
static	3	0.50	0.51	0.0	1.197	0.96	1	✓
	7	0.90	0.98	0.0	1.852	0.84	1	1
	23	0.50	0.38	0.0	1.102	1.76	1	1
	27	0.90	0.68	0.0	1.368	1.76	1	1
	29	1.33	1.00	0.0	1.898	1.76	1	1
	38	1.33	0.88	0.0	1.664	2.27	X	1
	46	0.90	0.56	0.0	1.219	2.70	1	1
	49	1.48	0.90	0.0	1.697	2.70	1	1
	101240	1.14	0.85	0.0	1.608	1.78	X	1
Ľ	100084	1.32	1.09	0.3	2.110	1.48	X	1
<u>io</u>	100024	1.01	0.85	0.3	1.616	1.40	×	1
In-flight	100274	1.20	0.99	0.3	1.875	1.47	X	1
-	101244	1.13	0.85	0.3	1.603	1.78	X	1

Code improvements enable new frontiers in WMLES for jet noise

2017-2022: Progress Towards Full Aircraft Jet Noise Predictions


Perform systematic validation effort utilizing scale resolving Computational Fluid Dynamics (CFD) to evaluate aerodynamics for increasingly complex jets



SHIELDING CONCEPTS

jet-surface interaction noise

 Same round jet configuration utilized with plate mounted underneath

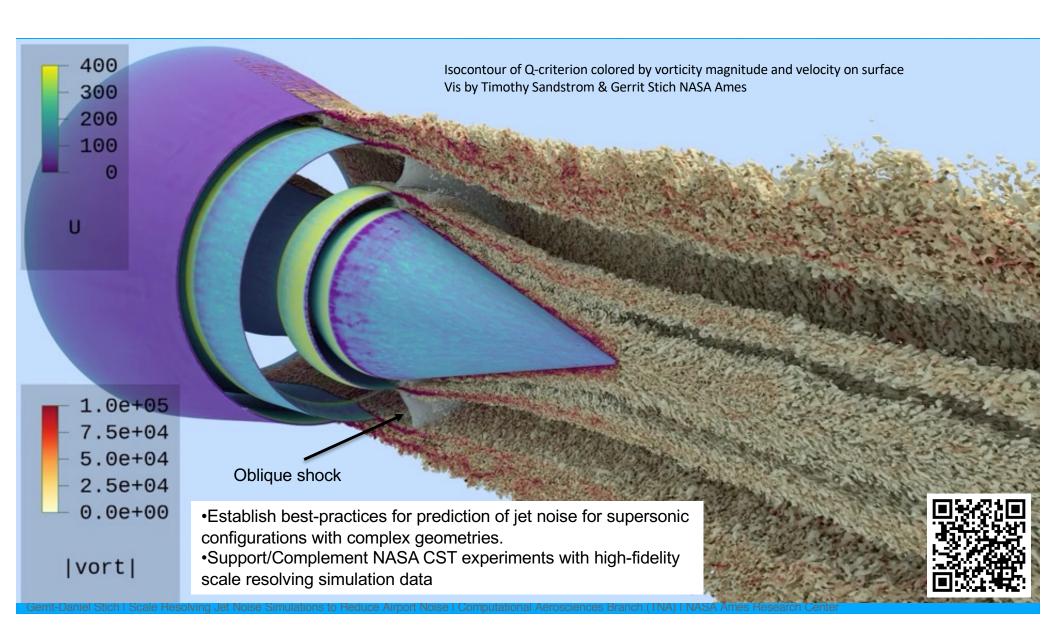
See AIAA2019-2475: Large-Eddy Simulation of Jet Surface Interaction Noise

Determining where and how noise is created and how noise can be "shielded" from the observer could help reduce overall jet engine noise.

Flow Visualization by Timothy Sandstrom NASA Ames Research Center

2017-2022: Progress Towards Full Aircraft Jet Noise Predictions

Perform systematic validation effort utilizing scale resolving Computational Fluid Dynamics (CFD) to evaluate aerodynamic for increasingly complex jets


INCREASINGLY COMPLEX GEOMETRY (Chevron, Plug, Multi-stream)

Increase geometric and numerical complexity
 Three-stream plug nozzle with heated primary stream

Timings and Code Improvements

Time savings due to algorithm, code improvements and development

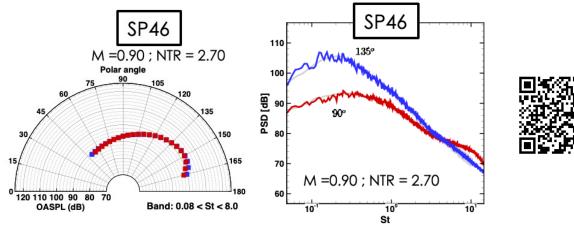
Date	Method	Mesh size [10 ⁶]	Δt/c ∞	CPU	Time/CTU [CPUh]	Time to solution 150 / 300 convective units	Speedup (November baseline)
November 2019	Hybrid RANS/LES (ZDES III)	225	0.007	60 Skylake (2400 cores)	995	3.2 day / 6.5 day	
March 2020	Wall-stress WMLES	254	0.0005	60 Skylake (2400 cores)	430	26.8 hr / 2.3 day	2.8x
November 2020	Wall-stress WMLES	110	0.001	60 Skylake (2400 core)	69	4.3 hr / 8.6 hr	18x
March 2022	Wall-stress WMLES	250	0.0007	100 Rome (12800 core)	106	75min / 150 min	62X

CTU: Convective Flow Through Unit

* Timings include high frequency (sampling rate 200kHz) i/o output for solution

** Substantially better temporal resolution and spatial resolution (azimuth, stream) achieved compared to baseline November 2019

*** Improvements possible due to improved scalability of code (scales well up to 10-20k pnts/core)



Generation of Jet Noise Database to Assess Prediction Uncertainties

Set Point	Ma	M_{j}	M_{∞}	NPR	NTR	Exp.	Data
SP	[-]	[-]	[-]	[-]	[-]	PIV	MIC
3	0.50	0.51	0.0	1.197	0.96	1	1
7	0.90	0.98	0.0	1.852	0.84	1	1
23	0.50	0.38	0.0	1.102	1.76	1	1
27	0.90	0.68	0.0	1.368	1.76	1	1
29	1.33	1.00	0.0	1.898	1.76	1	1
38	1.33	0.88	0.0	1.664	2.27	X	1
46	0.90	0.56	0.0	1.219	2.70	1	1
49	1.48	0.90	0.0	1.697	2.70	1	1
101240	1.14	0.85	0.0	1.608	1.78	×	1
100084	1.32	1.09	0.3	2.110	1.48	X	1
100024	1.01	0.85	0.3	1.616	1.40	X	1
100274	1.20	0.99	0.3	1.875	1.47	X	1
101244	1.13	0.85	0.3	1.603	1.78	X	1

- Successfully generated WMLES database for static and inflight jet noise simulations within NASA PUR Challenge
- □ Simulations can be performed in **short turnaround time**
- Excellent agreement with experiments:
 Comparable to experimental rig-to-rig data deviations
- Data delivered to project to reduce prediction uncertainties of LES for jet noise simulations

For More Information

This work was partially funded by the Commercial Supersonics Technology (CST) Project and the Transformational Tools and Technology (TTT) project under the Aeronautics Research Mission Directorate (ARMD)

POC: <u>Gerrit-Daniel.Stich@nasa.gov</u> <u>Cetin.C.Kiris@nasa.gov</u>

NASA LAVA Jet Noise @SC22:

https://www.nas.nasa.gov/SC22

NASA LAVA Jet Noise @Advanced Modeling and Simulation Series (AMS):

https://www.nas.nasa.gov/pubs/ams.html

NASA LAVA Jet Noise @Publications: https://scholar.google.com/gerrit-daniel.stich

SC22 Presentation @ NASA Booth Theater B:

Tuesday 15th 11:00 – 11:40 AM Wednesday 16th 4:20 – 5:00 PM Thursday 17th 2:30 – 3:00 PM

For More Information

This work was partially funded by the Commercial Supersonics Technology (CST) Project and the Transformational Tools and Technology (TTT) project under the Aeronautics Research Mission Directorate (ARMD)

POC: <u>Gerrit-Daniel.Stich@nasa.gov</u> <u>Cetin.C.Kiris@nasa.gov</u>

NASA LAVA Jet Noise @SC22:

https://www.nas.nasa.gov/SC22

NASA LAVA Jet Noise @Advanced Modeling and Simulation Series (AMS):

https://www.nas.nasa.gov/pubs/ams.html

NASA LAVA Jet Noise @Publications: https://scholar.google.com/gerrit-daniel.stich

SC22 Presentation @ NASA Booth Theater B:

Tuesday 15th - Thursday 17th

