Performance Evaluation of a Shaped Sonic Boom Detector and Classifier

Blaine M. Harker, Shane V. Lympany, Juliet A. Page183rd Meeting of the Acoustical Society of America6 December 2022


```
INTRODUCTION
```


1. Review Community Noise Testing Workflow

2. Shaped Sonic Boom Detector

3. Shaped Sonic Boom Classifier

4. Preliminary Performance Results

5. Summary

1. Review Community Noise Testing Workflow

2. Shaped Sonic Boom Detector

3. Shaped Sonic Boom Classifier

4. Preliminary Performance Results

5. Summary

COMMUNITY NOISE TESTING WORKFLOW

Community Noise Measurements

Recording Station Host Station

Community Noise Measurements

Community Noise Measurements

- Recording Station Processing Software
 - Sonic Boom Detector
 - Sonic Boom Classifier
 - Sonic Boom Metrics Calculations

1. Review Community Noise Testing Workflow

2. Shaped Sonic Boom Detector

3. Shaped Sonic Boom Classifier

4. Preliminary Performance Results

5. Summary

SHAPED SONIC BOOM DETECTOR

Shaped Sonic Boom Detector

- Goal: Detect sonic boom with temporal accuracy of <100 ms</p>
- Local detection time used to window and calculate sonic boom metrics

SHAPED SONIC BOOM DETECTOR

Select Prior Work

- ▶ BEARS Algorithm (Lee and Downing, 1996)
 - Rise-time-based method for N-waves
- Auto Boom Finder (Hobbs, 2012)
 - Bandpass amplitude detector for N-waves
 - Utilized in WSPR 2011 and QSF18
- Spectral Fingerprint Method (Klos, 2022)
 - Compares the spectrogram of a simulated shaped sonic boom to the waveform spectrogram
 - Highly effective for nontraditional booms

Lee and Downing, "Boom Event Analyzer Recorder: Unmanned Sonic Boom Monitor", J Aircraft 33 (1), pp. 171-175 (1996). Hobbs, "Auto Boom Finder Program (ABF)," Wyle Technical Note TN 12-30, Arlington, Va (2012). Klos, "Finding X-59: A Spectral Fingerprint Based Sonic Boom Finder Algorithm" NASA TM (Unpublished Draft) (2022).

SHAPED SONIC BOOM DETECTOR

Replica Signal Generation

- Replica signal is chosen to most resemble the expected sonic boom waveform
- 200 X-59 Sonic Boom Waveforms (W. Doebler) from C612A (On Design) and propagated using PCBoom

Replica Correlator

1. Review Community Noise Testing Workflow

2. Shaped Sonic Boom Detector

3. Shaped Sonic Boom Classifier

4. Preliminary Performance Results

5. Summary

Sonic Boom Classifier

Why do we need a classifier?

- No guarantee that a GRS will record a sonic boom, but the detector will output the most likely sonic boom detection time
- Need a method to classify a sonic boom in the presence of ambient noise

Key Parameters

- Detector correlation coefficient
- Corresponding sonic boom level (select OTO band levels)

SONIC BOOM CLASSIFIER

Classifier Description

1. Review Community Noise Testing Workflow

2. Shaped Sonic Boom Detector

3. Shaped Sonic Boom Classifier

4. Preliminary Performance Results5. Summary

Datasets

Sonic Boom Simulations

- NASA C612A Cylinder comprises two designs: On Design (Min Loudness) and Max Loudness (Off Design)
- Propagated in various undertrack scenarios via PCBoom for ~10k samples each
- Replica signal will use On-Design case

NASA-Provided Datasets

• Dataset:

- 25,000 samples per set
- 30-second waveforms
- X-59 Sonic boom propagated via PCBoom
- Ambient noise from previous measurement (Galveston, TX)

Dataset	Turbulence	Post boom noise	Impulsive noises
Set 1	No	No	No
Set 2	Yes	No	No
Set 3	Yes	Yes (+0 dB)	No
Set 4	Yes	Yes (–10 dB)	No
Set 5	Yes	Yes (–10 dB)	Yes

Ref: Table 3 of Klos (2022)

Sonic Boom Detector Performance – On Design

- Detection errors in each dataset were relatively similar
- Detection Failure: |Timing discrepancy| > 100 ms
- ► Failure rate was ~0.01% (1:10000)
- Detection times were within ±20 ms of actual time in 99.8% of tests

Failure Rates	Set 1	Set 2	Set 3	Set 4	Set 5
Detection > \pm 20 ms	0.01%	0.16%	0.18%	0.18%	0.16%
Detection > \pm 100 ms	0.01%	0%	0.01%	0.01%	0.01%

Sonic Boom in Ambient Noise Sonic Boom in Ambient Noise + Post-boom noise

Sonic Boom Detector Performance – Max Loudness

- Detection errors in each dataset were relatively similar
- Detection Failure: |Timing discrepancy| > 100 ms
- ► Failure rate was ~0.01% (1:10000)
- Detection times were within ±20 ms of actual time in 95-99% of tests

Failure Rates	Set 1	Set 2	Set 3	Set 4	Set 5
Detection > \pm 20 ms	0.48%	4.17%	4.25%	4.16%	4.18%
Detection > \pm 100 ms	0%	0.01%	0.01%	0%	0.01%

Sonic Boom in Ambient Noise Sonic Boom in Ambient Noise + Post-boom noise

Classifier Performance

Detector performance in high-wind environments

- Detector relies on high SNR in lowfrequency bands
- High-wind ambient recordings
 - 15-22 mph sustained winds
 - 27-38 mph gusts
- ~20 min of ambient recordings
 - Ground microphones
 - Large windscreens (23 cm diameter)

X-59 Sonic Boom and Ambient Noise Spectra

Signal to Noise Ratio for Different Noise Datasets

BRRC

1. Review Community Noise Testing Workflow

2. Shaped Sonic Boom Detector

3. Shaped Sonic Boom Classifier

4. Preliminary Performance Results

5. Summary

SUMMARY

Summary

Shaped Sonic Boom Detector

- Replica correlator design
- Replica signal based on simulation—generalizable to any signal
- ► Failure rate 1:10,000

Shaped Sonic Boom Classifier

- Input detection correlation coefficient and bandlimited levels at detection
- ► True positive rate ~0.9999 with False Positive Rate ~0.0024
- Expect >20 dB SNR in frequency band of interest, 35 dB SNR Typical

Backup Slides

ROC Curves for Different Ambient Noise Datasets

