Sizing and Design Tool for Tall Lunar Tower

Kyongchan Song,¹ Martin Mikulas,³ Matthew K. Mahlin,¹ and Jacob T. Cassady²

¹Structural Mechanics and Concepts Branch ²Flight Software Systems Branch NASA Langley Research Center Hampton, VA ³National Institute of Aerospace Hampton, VA

> AIAA SciTech Forum January 23 - 27, 2023 National Harbor, MD

Outline

- Tall Lunar Tower (TLT) background
- Analysis process map
- Governing equations of truss tower
- Truss Configuration Utility (TCU) functionality and user interface
- Verification and Validation (V&V) study of TCU
- Summary

Project focus is on structural assembly of a tower structure

- Compact packaging for launch
- Robotic assembly with supervised autonomy
- 50-meter assembled tower height
- High payload capacity (100 kW, communication, science)
- Enabling extreme surface access
- Enabling lunar construction

Analysis Process Map

Governing Equations of TCU

Longeron Euler bucking (P_L)	$P_L = \frac{\pi^2 E_c I_l}{b^2} = \frac{(M_{PL} + M_{truss}) g g_f}{4}$
Tower Euler bucking (P_T)	$P_T = (M_{PL} + 0.3M_{truss}) g g_f = \frac{\pi^2 E_c I_{truss}}{4 H^2}$
Tower mass (<i>M_{truss}</i>) equation	$M_{truss} = A_l H \rho JF \left(4 + 4\beta + 5\sqrt{2}\beta\right)$

Parameters in the governing equations

A_l	Cross-section area of longeron	E_c	Elastic modulus of longeron
b	Length of the longeron	g	Gravitational constant (9.8 m/sec ²)
I_l	Longeron moment of inertia	g_{f}	Planetary gravitational factor (1/6 for moon)
H	Height of tower	M_{PL}	Mass of payload at top of tower
β	Area reduction factor battens and diagonals	ρ	Longeron density
		JF	Factor to account for joint mass

Governing Equations of TCU (Continued)

Minimum moment of inertia (I_b) of the cross section

$$I_{a2} = \frac{t^4 (1 - 6L + 8L^2 - 4L^3 + 2L^4)}{12(2\bar{L} - 1)}$$

Cross section area (A)Length-to-thickness ratio $A_l = (2\bar{L} - 1)t^2$ $\bar{L} = L/t$

Longeron Euler bucking (<i>P</i> _L)	$P_L = \frac{\pi^2 E \ \frac{t^4 (1 - 6\bar{L} + 8\bar{L}^2 - 4\bar{L}^3 + 2\bar{L}^4)}{12(2\bar{L} - 1)}}{b^2 FSL} = \frac{(M_{PL} + M_{truss}) \ g \ g_f}{4}$
Tower Euler bucking (P_{T})	$P_T = (M_{PL} + 0.3M_{truss}) g g_f = \frac{\pi^2 E_c b^2 (2\overline{L} - 1)t^2}{FSE \ 4 \ H^2}$
Tower mass (<i>M_{truss}</i>) equation	$M_{truss} = A_l H \rho JF \left(4 + 4\beta + 5\sqrt{2}\beta\right)$

TCU Functionality and User Interface

.T - Truss Configuration Utility v1.2	_		_
environment gravity structure_type structure_material strut_tensile_modulus poiscons_ratio mass_payload safety_factor_tower_buckling safety_factor_longeron_buckling	g g Ec v MPL FSE FSI	INPUT lunar 1.6356333333333333 angle flange Aluminum 2700.0 0.0 1500.0 1500.0 3 - -	m/s^2 kg/m^3 Pa kg
area_reduction_factor joint_mass_factor tower_height tower_tilt_angle angle_flange_aspect_ratio * strut_vall_tiokness * longeron_and_batten_length * mass	β Jf H e ab t b Mtruss	0.7 5 1.3 5 50.0 5 0.0 5 10 5 None 5 None 5 None 5 VOTPUT	m o m m kg
strut_wall_thickness bongeron_and_batten_length mass volume number_of_bays TowerfLenoth/Diameter1	t b Mtruss Vol Nbays	0.00221851573253449 1.08781441059914 192.834297518942 0.0714201101922007 45.9637227755249 32.5012600631522	m m m^3 bays

- Developed to rapidly explore the preliminary design space and structural requirements in the lunar environment
- The mass of tower, length of strut of each bay, and other modeling parameters are obtained

Tower Euler Bucking Due to Truss Weight (q) and Tip Load (P)

Timoshenko, *Theory of Elastic Stability*

Fundamental Frequency of Tower Due to Tip Mass (MPL) and Distributed Mass (q)

Wahrhaftig, A, et al., "The first frequency of cantilevered bars with geometric effect: a mathematical and experimental evaluation," *J Braz. Soc. Mech. Sci. Eng*, (2013) 35:457–467.

Lateral Deflection of the Tower Tip

Timoshenko, Theory of Elastic Stability

11

Summary

- Tall Lunar Tower (TLT) and the development of a sizing and design tool, the Truss Configuration Utility (TCU) were presented
- Three governing equations of TCU were introduced
- Verification and validation (V&V) studies of the TCU were performed to determine if the TCU reliably sizes the truss structure based on the inputs
- V&V studies of the TCU with finite element models proved that the TCU was capable of defining a TLT structure when given a desired tip payload, structure height, and material properties