

Daniel T. Reese and A. Neal Watkins NASA Langley Research Center

AIAA SciTech Forum and Exposition National Harbor, MD January 25, 2023

This material is a work of the U.S. Government and is not subject to copyright protection in the United States.

Outline

High Reynolds Number Facilities at LaRC

- National Transonic Facility (NTF)
- Transonic Dynamics Tunnel (TDT) ∫
- > Additional Advancements
- Summary & Conclusions

- Wind tunnel facility
- Recent upgrades
- Preliminary results

PSP Background: Technique

Pressure sensitive paint (PSP)

- Powerful optical method providing global measurements of surface pressure.
- Well suited for application in a variety of NASA Langley wind tunnels.
- Can provide time-resolved measurements using a variant of the process known as unsteady PSP (uPSP).

Photophysical Process

- 1. UV light **excites** luminescent probe molecules suspended in a permeable polymer binder.
- 2. Excited molecules return to ground state, releasing photons in the process. (i.e. paint **fluoresces**)
- 3. Emission is **quenched** by oxygen molecules. Higher pressure equates to more O₂, resulting in more quenching.
- Emission is captured by a camera such that darker regions = higher pressure.

NTF: Wind tunnel facility

- National Transonic Facility (NTF)
 - Highest Re_c in the world
 - 146×10⁶/ft at Mach 1
 - Isolate Re_c, M, and q effects
 - Mach 0.2 1.2
 - Air or nitrogen operation
 - T_t: 116K to 322K (-250 °F to 120 °F)
 - P_t: 100 to 830 kPa (15 to 120 psia)
 - Fan driven/closed circuit
 - 2.5 m x 2.5 m (8.2 ft x 8.2 ft) test section
 - Slotted floor/ceiling
- PSP/TSP testing conducted at NTF since late 1990s

NTF is a high pressure, low temperature environment

All equipment hardened for operation in the plenum (environmental enclosures not practical)

NTF: Recent upgrades — lighting

Lighting Improvements

- Over time, existing heating system for LEDs has progressively gotten worse
- Last PSP test showed significant degradation
 - Exposure times increasingly long as tunnel temperature lowered
 - Need for wind-off images showed lighting was extremely unstable
- New heating system devised and implemented for lights
 - Full cryogenic test in 01/2023
 - First used for PSP in 04/2023

OLD

Lighting provided by LED illuminators

- Custom built for NTF optical access
- 400 nm nominal wavelength (~20 nm FWHM)
- Radiant Flux: ~27W (each die)

NTF: Recent upgrades — paint application

Paint application improvements

- Traditionally, PSP applied on basecoat
 - Adds significant time, especially when tunnel is at cryogenic conditions
- Now apply cryogenic PSP directly to model surface [Christian Klein, et al., AIAA 2020-0122]
 - Saves significant application time
 - Shows little degradation during tunnel operation (impacts, dust, oil, etc.)
 - Allows for reapplication
 - Wipe off PSP layer and reapply

TDT: Wind tunnel facility

Transonic Dynamics Tunnel (TDT)

- Continuous-flow, closed-circuit
- 16'×16' slotted test section
- 0.01 atm < P < 1 atm
- 0 < Mach < 1.2
- Max Reynolds number of:
 - 9.6×10^6 /ft (in R-143a)
 - 3×10^6 /ft (in air)
- Max Q: 26 kPa (550 psf) in R-134a
- Optimized for aeroelastic and dynamic testing

TDT is a low pressure, high temperature environment

Only facility in the world capable of testing dynamic aeroelastically-scaled models at matched Mach number.

uPSP slated for initial demonstration January 2023

TDT: Recent upgrades — paint formulation

uPSP for rarefied atmospheres:

- uPSP measurements in the TDT need to be able to work in the heavy gas environment (R-134a)
 - Still need oxygen to function
 - Keep "impurity" (air or oxygen) levels as low as possible
 - Need to be able to function in low tunnel pressure environment
- Calibration chamber set up to provide very low concentrations of air
 - Down to ~50 Pa (~ 1 psf)
 - Balance is nitrogen
- Very little sensitivity with standard uPSP
- Designed a newer uPSP formulation for very low oxygen concentrations
- However, this formulation cannot be used in air mode
 - New uPSP formulation rapidly quenches with increasing oxygen concentration
 - Will need the "standard" uPSP formulation for air mode testing
- Will be used in the upcoming test entry

TDT: Recent upgrades — enclosures

"The Enclosures" allow for uPSP in TDT

- Modular design to house high-speed camera & high-power UV LED lights.
- Constant supply & venting of cooling air maintains internal room P/T as tunnel P reduced & T increased.
- Remotely monitor interior environment and control all equipment contained within from control room.

High-Powered UV Lights

TDT: Recent upgrades — high speed datalink

Capturing TB of data per camera each day needing processing and storage

> High speed datalink between wind tunnel and LaRC's high performance compute resource

- Need way to process/store large datasets quickly ightarrow "10 Gbps" line between TDT and K-Cluster
- Quick turnaround opens the door for "near real time" uPSP results during testing

TDT: Preliminary results

Separation Line

Leading-Edge

Separation Bubble

0.2

x/c

Extracted Skin Friction Field

-0.2

Additional Advancements: Skin friction from PSP

- Qualitative skin friction lines can be calculated from pressure and temperature gradients
- Work currently being done under an SBIR Phase II contract with Innovative Scientific Solutions, Inc. & Western Michigan University
- Requires no additional experimentation
 - If quantified skin friction is required, may need to instrument with a few skin friction sensors
 - Can be used on new or legacy data (in which PSPy/c or TSP information has been acquired)

Skin friction topology extracted from surface pressure data of a supercritical airfoil

Will be implemented in upcoming testing campaigns

[T. Liu, et al., MST 2016]

Summary & Conclusions

- PSP is a powerful measurement technique well suited for application in a variety of NASA Langley wind tunnels
- uPSP provides time-resolved global surface pressure measurements, a vast improvement over the point measurements returned using traditional dynamic pressure sensors
- Refined UV light heating design shows initial 5x improvement over existing standard
- Improved paint application technique in NTF will yield superior cryogenic PSP measurements
- Enclosures will allow for the first uPSP measurements in the TDT facility, even in heavy gas and reduced pressure
- New paint formulation enables sufficient sensitivity for PSP measurements under rarefied/low O₂ conditions
- Established a high-speed datalink between wind tunnel and center HPC, promoting rapid processing and enabling "near-real-time" pressure measurements
- "Bonus" skin friction measurements can be extracted from PSP and/or TSP data as additional capability to any PSP/TSP data collection

- Funding for this work provided by the following programs in NASA:
 - Transformational
 Tools and
 Technologies (TTT)
 Innovative
 Measurements (IM)
 subtask
 - TTT Revolutionary Computational Aerosciences (RCA) subtask
 - Aerosciences
 Evaluation and Test
 Capabilities (AETC)