
An L1 Adaptive Control Augmentation
for a Lift-Plus-Cruise Vehicle

Andrew Patterson∗, Kasey Ackerman∗, Michael Acheson†, Irene Gregory‡1
1NASA Langley Research Center, Hampton, VA, 23666, USA

This paper presents an L1 adaptive control augmentation for a Lift-Plus-Cruise (L+C)
vehicle. This class of vehicles operates in three flight modes with different dynamic behavior:
vertical, transition, and forward flight. A robust uniform controller is used as a baseline to
stabilize the system throughout these flight modes. The uniform controller is a linear control law
designed around trim conditions of the aircraft and includes control allocation to achieve the
desired forces and moments on the vehicle. The L1 control augmentation is designed for each of
these trim conditions to compensate for the nonlinear time- and state-dependent uncertainties
in the vehicle dynamics. The augmented control output is then added to the desired force and
moment commands on the vehicle. Simulation results demonstrate the effectiveness of control
augmentation for reducing the effects of unmodeled dynamics, reduced actuator effectiveness,
and time-dependent disturbances. Effectiveness is demonstrated through tracking error metrics.

I. Introduction
As populations in urban centers grow, new methods and vehicles are being developed to help decrease transportation

bottlenecks. One method of increasing urban freedom of movement is by making increased use of airspace capacity
with new vehicle configurations. This concept is called Urban Air Mobility (UAM) and is an Advanced Air Mobility
(AAM) concept to augment the existing short connection, intra- and inter-city flights typically provided by small private
helicopters or fixed-wing aircraft. However, traditional aircraft are limited by their configuration. Airplanes require a
long runway, limiting the number of areas that can be connected. Helicopters are often loud and inefficient, making
long connections difficult. New UAM vehicle designs strike a balance between these configurations by including
multiple modes, achieving both the flexibility of vertical take-off and landing (VTOL) and the efficiency of wing-borne
forward flight. Such vehicles are expected to improve public transportation, last-mile delivery, and on-demand mobility,
operating over a wide range of locations, ranges, and price points.

One such vehicle configuration is the Lift-Plus-Cruise (L+C) vehicle, which has vertical propellers for VTOL
operation, and a fixed-wing for efficient forward flight [1]. One benefit of this configuration is that the wing and
propulsors are all fixed, meaning the vehicle kinematics are not changing during flight. This reduces the number of
failure points. Instead, the direction of force on the vehicle is changed by using a combination of both vertical and
horizontal propellers. The model considered in this work is shown in Figure 1. Notice that the VTOL operation is
achieved using the eight vertical propellers while level forward flight is driven by a pusher propeller.

While this vehicle does not need to account for changing kinematics, the transition between vertical and forward
flight is still complicated. Control of this vehicle is performed using a combination of the propellers and aerodynamic
surfaces. Control allocation methods are used to connect motion in a desired direction to the control surfaces, such as
the propellers and aerodynamic surfaces. This control allocation is demonstrated in Ref. [2], where the authors present a
joint allocation and control design method that unifies the controller design for all operating modes of a transitioning
vehicle. This control method is extended to include allocation constraints and applied to the L+C vehicle of this work in
Ref. [3].

While the robust uniform control method performs well during nominal operation of the vehicle, these vehicles will
need to be able to react and respond to many different contingencies and uncertainties during flight [4]. Uncertainties that
may affect the vehicle could be unmodeled dynamics or reduced actuator effectiveness. Furthermore, the aerodynamics
of this transition region are influenced by the propulsive interactions between the propellers and the wings. Advances in
aerodynamic modeling for this class of vehicle can be found in Refs. [5–7]. Any errors or approximations made during
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Fig. 1 Rendering of a Lift+Cruise NASA reference configuration.

modeling and control design may appear as time-dependent disturbances. Additionally, external disturbances, such as
winds, can perturb the normal operation of the vehicle.

To compensate for the dynamic uncertainties that affect the normal operation of the vehicle, we propose an L1
adaptive controller designed to augment the baseline robust uniform controller on the L+C vehicle. The L1 controller is
chosen because of its proven flight history, ability to adapt quickly to disturbances, and robustness. Furthermore, the
structure of the L1 controller decouples the estimation and control contributions to preserve the robustness of the closed
loop system [8]. The L1 adaptive controller has been successfully applied to many traditional aircraft, such as a 5.5%
scale transport aircraft [9], the Calspan Learjet [10], and an F-16 [11]. Other applications include augmentations for
small unmanned aircraft [12]. The L1 controller has also been designed for a L+C vehicle by the authors of Ref. [13],
where independent projection-based L1 controllers are designed to augment nonlinear dynamic inversion controllers on
angular rate commands.

In this work, we design a piecewise-constant (PWC) L1 adaptive controller to augment a robust uniform control
baseline. This augmentation will adapt and compensate for uncertainties in not only the angular rates but also the linear
velocities of the vehicle. Furthermore, rather than considering all the axes of the system to be independent, the structure
of the uniform control baseline captures the interactions between the linear and rotational velocities. This allows the
uncertainties in this interaction to be captured. Further, the PWC implementation of the controller does not rely on
the projection operator and optimization procedure to adapt to uncertainty. Rather, the adaptation is determined by
the PWC adaptation law, which has proven flight history, better numerical robustness, and can be quickly computed
online [14]. The performance of this controller is demonstrated in simulation.

In this paper, we present: 1) an architecture for uncertainty compensation in both rotational and linear dynamics of a
transitional UAM vehicle; 2) a PWC L1 design for online implementation; 3) verification though simulation of a high
fidelity model. In Section II the L+C vehicle dynamics are described. In Section III the baseline controller is introduced.
Section IV develops the L1 control augmentation and simulation results are shown in Section V. Finally, Section VI
presents a summary of contributions and future work.

II. Vehicle Dynamics
The L+C aircraft shown in Figure 1 is a conceptual VTOL aircraft developed by NASA [1]. The VTOL phases of

flight are handled by the eight vertically mounted propellers, which provide lifting thrust. After transition to forward
flight, the pusher propeller, attached to the tail, provides the forward thrust necessary to maintain flight. During
transition, a combination of the propellers is used to transfer the lift generation from the vertical propellers to the wings
or vice versa.

We consider three frames of reference in this work. The first is the inertial frame, defined by the North-East-Down
(NED) vectors. The second is the body frame, centered at the vehicle center of mass. The body frame is a right-handed
coordinate system with the x-axis pointing out the nose of the aircraft and the z-axis pointing down. The rotation from
the body frame to the inertial frame is given by the rotation matrix R ∈ SO(3). The rotation matrix can be parameterized
in terms of Euler angles, using the 3-2-1 rotation sequence [15]. The vector of Euler angles is composed of roll, pitch
and yaw, denoted 𝜂 = [𝜙, 𝜃, 𝜓]⊤, respectively. The third frame of reference, called the heading frame, is the inertial
frame rotated around its z-axis by 𝜓. The rotation from the body to heading frame is denoted R̄. The overbar indicates
that an associated vector or map is in the heading frame.

The rotational dynamics of the aircraft are given by ¤𝜂 = S𝜔, where 𝜔 = [𝑝, 𝑞, 𝑟]⊤ is the vector of angular rates in
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the body frame and

𝑆 =


1 sin 𝜙 tan 𝜃 cos 𝜙 tan 𝜃
0 cos 𝜙 − sin 𝜙
0 sin 𝜙/cos 𝜃 cos 𝜙/cos 𝜃

 . (1)

The full nonlinear dynamics are then given by the following equations:

¤𝑝 = v,
¤𝜂 = S𝜔,
¤̄v = − ¤𝜓e3 × v̄ + 𝑔 + 𝑚−1𝐹̄ (𝑋, 𝑢) ,

𝐽 ¤𝜔 = −𝜔 × 𝐽𝜔 + 𝜏 (𝑋, 𝑢) , (2)

where v is the inertial frame velocity of the vehicle, v̄ = [𝑢̄, 𝑣̄, 𝑤̄]⊤ is the heading frame velocity of the vehicle, e3 is a
unit vector aligned with the inertial z-axis, 𝑔 is gravitational acceleration, 𝑚 is the vehicle mass, 𝑢 is the vector of control
inputs, 𝐽 is the vehicle inertia, 𝑋 = [𝑝, 𝜂, v̄, 𝜔]⊤ is the full state vector, and the functions 𝐹̄ and 𝜏 are aerodynamic
propulsive models for the force and torque generated by the actuators. The development of these aerodynamic functions
is provided in Ref. [7].

III. Baseline Controller
The baseline controller is designed for a set of operating conditions within the flight envelope of the vehicle. The

controller is designed by linearizing the dynamics at the operating condition and then finding 1) an appropriate allocation
for the actuators and 2) solving for the minimum energy feedback gains to achieve the desired performance with the
chosen allocation. The full description of this method can be found in Ref. [2] and it is applied to the L+C vehicle in
Ref. [3].

To simplify the linearization process, it is assumed that ¤𝜓 ≡ 0. This condition implies that the vehicle is not turning,
removing the associated cross product term in the velocity dynamics of Equation 2. The second assumption is that
the longitudinal and lateral dynamics are decoupled. Thus, the linearized dynamics can be written as a set of linear
equations:

¤𝑥lon = 𝐴lon𝑥lon + 𝐵lon𝑢,

¤𝑥lat = 𝐴lat𝑥lat + 𝐵lat𝑢, (3)

where 𝐴 and 𝐵 are the system and control matrices produced by the linearization process, 𝑥lon = [𝑢̄, 𝑤̄, 𝑞]⊤,
𝑥lat = [𝑣̄, 𝑝, 𝑟]⊤, and 𝑢 is a vector of actuator commands for the propellers, ailerons, flaps, elevators and rudder.

For both lateral and longitudinal channels, the control matrix of the linearized system can be used to compute a
generalized control input, 𝜇, which expresses acceleration commands for the vehicle. This input change is given, for the
longitudinal channel, by the equation 𝜇lon = 𝐵lon𝑢lon. The value of 𝑢lon, given a generalized control input 𝜇lon, can then
be computed using the generalized weighted inverse of 𝐵lon:

𝑢lon = 𝑊−1
lon𝐵

⊤
lon

(
𝐵lon𝑊

−1
lon𝐵

⊤
lon

)−1
𝜇lon, (4)

where𝑊lon is a weighting matrix. The full control command of the vehicle is then computed, 𝑢 = 𝑢lon + 𝑢lat. Note that
the lateral and longitudinal commands, 𝑢lat and 𝑢lon, are generated by separate controllers but both contribute to all the
actuator commands. The generalized control inputs, 𝜇lat and 𝜇lon, are both independently generated and contribute
directly to independent states. By recasting the system dynamics in terms of these acceleration commands, we can write
the performance system as:

¤𝑥lon = 𝐴lon𝑥lon + 𝜇lon,

¤𝑥lat = 𝐴lat𝑥lat + 𝜇lat. (5)

This computation allows the system actuators to be allocated based on desired force and moment commands and occurs
at each controller time-step.
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The baseline controller calculates the desired control accelerations using this model such that

𝜇lon = −
[
𝐾𝑖,lon, 𝐾𝑥,lon

] [𝑥𝑖,lon

𝑥lon

]
, (6)

where ¤𝑥𝑖,lon = 𝑥𝑖,lon − 𝑅lon describes the integrated error of the system and 𝑟lon is a reference target provided by a
trajectory generation or guidance system. These gains are chosen using LQR methods described in Refs. [2] and [3].

IV. L1 Design
The ideal performance of the Lift+Cruise vehicle is described by the nonlinear equations in Equation (2). These

equations are linearized at multiple operating points and the baseline controller is designed based on the simplified
performance dynamics given in Equation (5). For clarity, we drop the ‘lat’ and ‘lon’ subscripts from the performance
system and consider both cases simultaneously:

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝜇(𝑡) + 𝜎(𝑡, 𝑥(𝑡)), (7)

where 𝑡 is time and 𝜎(𝑡, 𝑥(𝑡)) represents the time and state dependent uncertainties affecting the system. Notice that all
uncertainties in this formulation can be directly compensated for through the command 𝜇.








 


















Fig. 2 L1 adaptive control augmentation.

To compensate for these uncertainties, this paper considers an L1 adaptive control augmentation, as shown in
Figure 2. The control augmentation is composed of a state predictor, an adaptation law, and a unity DC gain low-pass
filter. The adaptive control law produces an additional command, 𝜇𝑎, which is added to the baseline command, 𝜇𝑏, to
compensate for the uncertainty 𝜎(𝑡, 𝑥(𝑡)).

A. State Predictor
The state predictor is used to predict the state of a reference model based on the applied control input and estimate

of system uncertainty. The state predictor dynamics are given by the equation:

¤̂𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝜇(𝑡) + 𝜎̂(𝑡) + 𝐿𝑥(𝑡), (8)

where 𝑥 is the state estimate, 𝜎̂(𝑡) is the uncertainty estimate, 𝐿 is a negative semi-definite observer gain matrix chosen
such that 𝐴𝑠 ≔ 𝐴 + 𝐿 is a Hurwitz matrix, and 𝑥 ≔ 𝑥 − 𝑥. The gain 𝐿 is a design parameter that can be chosen to
improve the convergence of the state predictor dynamics.

B. Adaptation Law
The adaptation law can be implemented with a feedback gain, rather than a continuously evolving dynamic system,

when considering a linear state-predictor reference model. This formulation is called the piecewise-constant adaptation
law since the uncertainty is assumed to be constant on the scale of a single controller time-step. This assumption allows
the uncertainty estimate to be computed using the analytic solution to the uncertainty dynamics. This analytic solution
frees the designer from having to choose the adaptation gain or evaluate additional dynamic equations numerically.
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From these state predictor dynamics, we can compute the adaptation law gain with the equation:

𝐾𝑎 = −
(
𝐴−1
𝑠 (expm(𝐴𝑠𝑇𝑠) − I)

)−1
expm(𝐴𝑠𝑇𝑠), (9)

where I is an identity matrix of appropriate dimension, and 𝑇𝑠 is the execution rate of the adaptive controller. Note that
there are no 𝐵 matrix terms in the adaptation law since the state predictor inputs have a direct correspondence with the
states.

The state uncertainty is then computed at each controller time step, 𝑖 ∈ N:

𝜎̂(𝑡) = 𝜎̂(𝑖𝑇𝑠) = 𝐾𝑎𝑥(𝑖𝑇𝑠), ∀𝑡 ∈ [𝑖𝑇𝑠 , (𝑖 + 1)𝑇𝑠). (10)

C. Control Law
The control law is given by the frequency-domain equation:

𝜇𝑎 (𝑠) = 𝐶 (𝑠)𝜎̂(𝑠) (11)

where 𝑠 ∈ C and 𝐶 (𝑠) is a low-pass filter of appropriate dimension satisfying 𝐶 (0) = I. This filter prevents high
frequency uncertainty estimates from being sent into the control channel. A more complete description of the filter’s
connection to the robustness and performance of the system can be found in Refs. [14, 16]. In this work we consider a
Butterworth low-pass filter structure and optimize over cutoff frequency 𝜔0 and model orders, with penalties for high
order filters.

V. Results
The simulation is performed in the high-fidelity simulator used for the development of the benchmark problems

described in [4]. The simulator includes several vehicle models, and results are shown for the Lift+Cruise vehicle model.
To demonstrate performance in multiple flight modes, we will consider trajectories that cover VTOL, transition, and
forward flight. One such trajectory is shown in Figure 3. In this figure, the reference trajectory is shown as the black
line. The baseline tracking performance is shown as a blue line. The ground tracks are shown as dashed lines on the
ground plane. During the first leg of the flight, the vehicle takes off vertically up to about 700 ft altitude and then begins
to transition to forward flight before reaching the cruise altitude of 1000 ft. Finally, the vehicle turns in forward flight
and increases speed before beginning a final descent. This trajectory demonstrates the different phases of flight of the
vehicle how each controller performs in a specific mission.

A. Performance Metrics
Performance is captured in terms of two metrics. The first metric is mean velocity tracking error (MVTE). The

second metric is the maximum velocity tracking error (XVTE). These metrics are defined by the equations:

MVTE(𝑟, v̄) = mean (∥𝑟𝑣 (𝑇) − v̄(𝑇)∥2)
XVTE(𝑟, v̄) = max (∥𝑟𝑣 (𝑇) − v̄(𝑇)∥2) , (12)

where 𝑟𝑣 is the subset of the guidance command containing velocity targets in the heading frame, 𝑇 is a discrete set
of times where the vehicle state is evaluated, the norm,∥·∥2, is taken over the spatial dimensions, and the mean and
maximum operations are evaluated over the temporal dimensions.

B. Nominal Performance
To isolate and compare the performance of baseline and adaptive controllers in each phase of flight, we consider

seven experiments. These experiments are tabulated in Table 1. All experiments take place over the span of 50 seconds,
allowing both the transient and steady-state performance to be captured. The first experiment targets the hover
performance of the vehicle by commanding a position hold. Experiments 2-4 demonstrate performance during forward
flight, tracking a constant velocity target. The final set of experimental trajectories capture the dynamic performance
of the vehicle. These trajectories are transitions from hover mode, with zero forward velocity, to forward flight with
different forward velocities. The fixed duration of 50 seconds requires faster acceleration and faster transitions for
subsequent experiments.
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Fig. 3 Spatial trajectory tracking performance. The reference trajectory is shown in black, the vehicle center of
mass trajectory is shown in blue for the L1 controller, and the trajectory flown by the baseline controller is shown
in red. The dashed lines are the ground track lines for each trajectory.

Exp. No. Description Percent Improvement

1 Position hold 11%
2 Fwd velocity: 50 fps 8%
3 Fwd velocity: 100 fps 18%
4 Fwd velocity: 200 fps 31%
5 Accelerate: 0 to 50 fps 15%
6 Accelerate: 0 to 100 fps 21%
7 Accelerate: 0 to 200 fps 33%

Table 1 Experiment descriptions and percent improvement in mean velocity tracking performance due to
adaptation. Each experiment is run for 50 seconds regardless of the trajectory being tested.
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Three different types of uncertainties are considered in all experiments. The first is due to the scheduled nature of
the controller. The controller is designed around an operating point but deviations from the operating point introduce
parameter uncertainties that reduce the controller performance. These uncertainties will also arise when the non-turning
assumption is violated. The second set of uncertainties is due to actuator dynamics. These represent unmodeled
dynamics, with new states that can affect the performance of the baseline controller. In this work, we consider a
first-order actuator model. The final uncertainty considered is a time-varying wind gust disturbance. The wind
disturbances are implemented using a Dryden gust model [17]. At the low altitudes of flight considered, these wind
gusts are approximately 30 fps wind-speed variations around a nominal 50 fps nominal wind-speed.

Each controller is benchmarked using 48 trials for each experimental configuration. The gust model is the only
source of randomness in the trials and both the baseline and adaptive controllers trials are run with the same random
seeds. The performance of each controller in each trial is given in terms of MVTE and XVTE. The results for each
experiment are shown in Figure 4. Figure 4a shows the distribution of MVTEs from each of the runs of an experiment.
These distributions are shown as histograms along the vertical axis, showing the extent of errors. In this figure we can
see two trends associated with changes in experiment conditions. The most obvious is associated with the speed of the
aircraft. The highest speed is held during Experiment 4 and we see that it has the highest average MVTE across all
trials and the largest distribution of errors. The second trend is in the performance of the L1 adaptive controller, which
performs better in all experiments. We can note that the L1 controller exhibits better behavior in terms of average MVTE
across all trials for each experiment: the spread of the MVTE histogram is tighter, and the increase in vehicle velocity
leads to a greater increase in error for the baseline than the L1 controller. This final trend leads to the L1 controller
performing better in almost all trials of Experiments 4 and 7 than the best-performing trial for the baseline controller.
The percent improvement of the L1 controller over the baseline controller in terms of average MVTE is given in Table 1.

The XVTE is shown in Figure 4b. Note that while the trend of increasing error with increasing velocity continues,
the maximum errors are more spread out and improvement of the adaptive controller is less obvious at lower velocities.
This difference in XVTE is likely due to transient behavior where the initial compensation for the constant wind term
appears as an error spike.

The position tracking error caused by these velocity errors is shown in Figure 5. In this figure, the average position
tracking error trajectory is shown for Experiment 4. This trajectory is a pointwise-in-time average of all the position error
trajectories from all of the trials in Experiment 4. Here we can see that while the MVTE and XVTE are comparable, the
peak position error is almost doubled for the baseline controller.
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(a) Mean velocity tracking error for each trial.
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(b) Maximum velocity tracking error for each trial.

Fig. 4 Nominal performance plots. The blue histograms are associated with the L1 controller and the red
histograms are associated with the baseline controller. The black point marks the average of the distribution.
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Fig. 5 Position tracking error. The blue line shows the L1 controller tracking error and the red line represents
the baseline error trajectory.

C. Rotor Failure Compensation
The Lift+Cruise configuration shown in Figure 1 has nine propellers, eight lifting propellers and one pusher propeller.

One benefit of having a large number of propellers is redundancy, allowing the vehicle to compensate for failures. In
this section, we will demonstrate the L1 adaptive controller compensating for sudden rotor failures.

One limitation of traditional fault estimation and re-allocation methods is that correctly identifying a fault can take
time, during which the vehicle is unstable. Adaptive control can reduce the effect of the failure, maintaining stability
while fault detection algorithms are running. To demonstrate this capability, we consider a failure during Experiment 3,
where the vehicle is flying forward at 100 fps in turbulent conditions. Two seconds into this experiment, propellers two
and four lose power and their rotation rate drops. These propellers are located in the front row of propellers, directly to
the left and right of the cabin. The time-history of engine speeds is shown in Figure 6 when flown with the L1 controller.
These propellers are used for damping out the longitudinal oscillatory modes of the aircraft before the vehicle is moving
fast enough for the control surfaces to be fully effective. When using the baseline controller only, losing these propellers
at this time, causes the vehicle to go unstable.

When the experiment is run with the L1 controller, the vehicle is able to compensate for the loss of these two
propellers and maintain stability. The velocity tracking error time-history is shown in Figure 7. Recall that the average
XVTE for Experiment 3 is around 7 fps, in this figure we note that the vehicle has an initial jump in error to about 6 fps
then failure leads subsequent larger spikes up to almost 11 fps. Despite these errors, the vehicle is stable and the error
converges for an MVTE of 3.5 fps.

VI. Conclusion
This paper demonstrates the design and evaluation of an L1 adaptive controller within the uniform control framework.

The L1 controller augments the baseline uniform controller at the level of the desired forces and moments, allowing it to
be easily used with multiple aircraft configurations without changing the controller structure. The L1 controller reduces
the effect of disturbances and uncertainties during flight, as shown in a set of experiments performed in simulation. The
L1 controller performs better than the baseline alone in all cases and is demonstrated to maintain stability in a failure
case where the baseline goes unstable.

Future work will consider integrating L1 with a nonlinear baseline controller and will include compensation for
learned information during flight.
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