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Advanced Air Mobility (AAM) aircraft require precision approach and landing systems
(PALS) in several environments, such as urban, suburban, and rural. It is challenging to
implement current state-of-the-art methods approved for automated approach and landing
for AAM operations with challenges such as GPS degradation in urban environments and
visual navigation aids like the glideslope and localizer being narrow and not allowing alternative
incoming landing angles at vertiports. However, existing technology and systems, i.e., the
instrument landing system (ILS) with glideslope and localizer indicators that use vision, IR,
radar, or GPS methods, provide baseline perception and sensing requirements for AAM
aircraft approach and landing. This paper focuses on vision-based PAL and computer vision
feature correspondence methods to demonstrate a baseline navigation system while adhering
to the Federal Aviation Administration requirements and regulations about heliport design
(FAA AC 150/5390-2C), which is one of the closest references for vertiport requirements and
regulations. The coplanar pose from orthography and scaling with iterations (COPOSIT)
algorithm determines pose estimation, which feeds into an Extended Kalman filter that combines
IMU with vision to create a vision-based approach and landing (VAL) sensor fusion navigation
solution for GPS-denied environments. The VAL navigation solution provides promising
simulation results for AAM PALS with Hough circle detection and feature correspondence,
which demonstrate robustness to false positives. This paper incorporates moderately high-
fidelity simulations with computer graphics rendering to show a distributed sensor network to
track an AAM aircraft during approach and landing to compare with the aircraft’s onboard
vision-based navigation solution.

I. Introduction

Advanced Air Mobility (AAM) utilizes revolutionary aircraft models from emerging aviation markets to safely
transport people and cargo in urban, suburban, rural, and regional environments. These AAM aircraft benefit the

public and air transportation sectors, so including autonomy increases their performance capabilities and efficiency.
Implementing autonomy onboard replaces human pilots, which increases payload capacity. Without human pilots, AAM
aircraft will need remote pilots or a safe, reliable, accurate, and autonomous approach and landing system. Current
state-of-the-art automated precision approach and landing (PAL) methods may not be suitable for AAM operations.
AAM PAL can derive baseline perception and sensing requirements from existing technology, sensors, and systems
such as vision, IR, radar, glideslope indicators, and GPS.

The FAA does not have an approved advisory circular for vertiports. However, one of the closest approved references
for vertiport requirements and landing light configuration is their document on heliport design (FAA AC 150/5390-2C
[1]. Another reference for vertiports and light configuration is the FAA Engineering Brief #105, Vertiport Design. It
provides interim guidance for vertiport design, so requirements and standards will change before generating an advisory
circular for vertiport design [2].
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A. Traditional and Current Landing Systems
Several types of traditional and current aircraft landing systems exist for PAL applications. Instrument Landing

Systems (ILS) utilize navigation aids with three components: glideslope, localizer, and marker beacons to assist and
guide aircraft during approach and landing. The glideslope provides a vertical offset from the nominal glidepath, while
the localizer provides a horizontal offset from the nominal glidepath. Finally, the ILS marker beacons provide radio
checks throughout the aircraft’s descent [3].

Visual Approach Slope Indicator (VASI) systems are another form of visual navigation aids that gives approach
slope information during aircraft descent. A common theme for VASI systems utilizes white light beams for flying
above the glidepath and red light beams for flying below the glidepath. The Precision Approach Path Indicator (PAPI)
systems resemble and replace the older VASI systems. They also have more red than white lights to indicate flying
below the glidepath and more white than red lights to indicate above the glidepath. An equal distribution between the
red and white lights means flying on the glidepath. There are variations of glidepath lights such as tri-color: red for
below, green for on, and yellow for above the glidepath, and pulsating lights with red lights for well below the glidepath,
pulsating white lights for well above the glidepath, and steady red or white for smaller glideslope offsets [3].

Ground Based Augmentation Systems (GBAS) provide an alternative landing method to ILS. and the FAA helped
validate the International Civil Aviation Organization standards and recommended practices for GBAS Approach
Service Type-D for CAT III approaches. Vendors seeking FAA approval for GAST-D GBAS must adhere to these
standards, which were approved in 2018 [4]. GBAS has more advantages than ILS with Viseu airfield as a case study.
Compared to ILS, GBAS has more straightforward installation methods and is more practical since just one GBAS
station can handle several approach angles, i.e., multiple runways at different angles. GBAS also works well in poor
weather conditions and allows simultaneous approaches, which increases flexibility and economic benefits for airports.
There are some circumstances where ILS performs better than GBAS, such as poor GNSS signals [5]. Even though
GBAS has many advantages over ILS, it might not be suitable for AAM due to GPS degradation in urban environments.

Some studies utilize GPS and IR for aircraft navigation and landing. The local area augmentation system improves
airborne accuracy to less than 1 m and guarantees aircraft integrity and continuity during approach by augmenting GPS
[6]. Autopilot designs based on GPS have advantages over ILS methods, such as being less expensive, more flexible by
not being confined to a narrow beam, and three-dimensional GPS sensor measurements work better in an autopilot
system [7]. An alternative triangulation method with IR beacons without any mechanical moving components increases
system robustness and reduces the complexity [8]. Another study utilizes a 3-point IR-guided landing pad system for
autonomously landing unmanned aerial vehicles that contain a monocular camera and an IR filter [9].

Overall, it is difficult to implement traditional visual navigation aids like the glideslope and localizer in confined
urban environments because their beams are narrow and not flexible to accommodate alternative incoming landing
angles at vertiports [10]. It is also challenging for visual navigation aids to maintain sufficient coverage in a dense city
with several buildings, which makes it geometrically complex to maintain a consistent glidepath angle during approach
and landing. Therefore, Alternative Precision Navigation and Timing (APNT) solutions are crucial for AAM PAL in
urban environments with GPS degradation [11].

B. Computer Vision Research
There are computer vision studies that extract the fundamental and essential matrices for pose estimation. Estimating

the fundamental matrix provides information to compute the essential matrix to compute the rotation matrix and
translation vector between two images. The unnormalized and normalized 8-point algorithm, algebraic minimization
algorithm, minimizing the Sampson cost function through an iterative-minimization method, and the Gold Standard
algorithm are some methods that estimate the fundamental matrix [12]. The 5-point algorithm with RANSAC computes
the essential matrix to obtain the transformation between two images [13]. Normalizing the image coordinates for two
images allows computation of the essential matrix with four possible solutions for the second camera matrix, which
contains the relative transformation between the two images [12].

Other computer vision studies directly estimate the rotation matrix and translation vector. The relative transformation
between two sets of points can be computed through a least squares fit of two 3D sets of points with SVD [14]. The
Pose from Orthography and Scaling with Iterations (POSIT) algorithm uses an image’s orthographic projections with
noncoplanar feature points of an object [15]. Constraining the POSIT algorithm for images with coplanar points leads
to a coplanar POSIT algorithm with a limiting factor of having at least four coplanar points [16]. The SoftPOSIT
algorithm merges POSIT with softassign, which solves the image correspondence problem between object and image
points when correspondences are unknown. Then, POSIT iteratively computes the pose estimation by providing the
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transformation from the camera’s center to the object’s origin [17].
Other studies combine computer vision with Kalman filtering techniques for estimating states. Combining the

coplanar POSIT algorithm’s pose estimation with IMU data into an extended Kalman filter (EKF) estimates an AAM
aircraft’s state during approach and landing [18]. Implementing a Kalman filter that estimates the camera pose and 3D
to 2D line correspondences has accurate and efficient performance for the model-to-image registration problem [19].
Another study estimates the position of 3D coplanar points with an EKF when there are four stationary reference points
with known coordinates [20]. A landmark-based vision method with an INS forms a loosely-coupled Kalman filter
navigation solution that can operate in GPS-denied environments [21].

C. Vision-Based Navigation
There is vision-based navigation research for unmanned aerial vehicles (UAVs). An autonomous vision-based

navigation strategy for unmanned aerial vehicles utilizes natural landmarks to obtain a visual memory of the environment
[22]. A long-term vision-based navigation system for micro helicopters has different sensor modalities, self-calibrates,
and is robust to failure modes [23]. A UAV flying at low altitude builds and updates a virtual 3D model of its environment
with onboard cameras to fly from an initial position to a terminal position [24]. Combining stereo odometry with IMU
measurements provides autonomous capabilities for a quadrotor to fly inside and outside a building through a window
and a door [25].

There are some vision-based navigation methods for AAM. One study analyzes enhanced vision systems for urban
air mobility approach and landing operations with simulations and requirements for approach trajectories [26]. An
AI-enhanced vision navigation architecture provides compatibility with certification requirements for realistic AAM
operations to enable accurate and robust performance [27]. One study demonstrates an eVTOL vehicle landing for the
final approach with a vision-based closed-loop feedback method and generates accuracies less than 1.5 m when less
than 25 m away from the target [? ].

D. Overview of Work
This paper presents a novel Alternative Position Navigation and Timing vision-based navigation solution for AAM

approach and landing by localizing around known feature points in the scenery. It builds on the work of Ref. [18] by
including:

1) moderately high-fidelity simulation for AAM PALS with NASA Reflection software and X-Plane & World Editor
2) computer vision feature correspondence methods
3) distributed sensor network that tracks an AAM aircraft during PAL
4) comparison between the onboard AAM aircraft’s navigation solution with the distributed sensor network’s

tracking solution
5) landing lights on the Fifth & Mission Garage (FMG) rooftop
6) curved approach and landing trajectory from the bay, starting near Oakland Bay Bridge and ending at the rooftop

of FMG
Figure 1 shows the proposed architecture diagram. The black boxes about simulated vehicle sensor data interface

and image processing feature correspondence are updates since Ref. [18], the green boxes work via post-processing,
and the blue boxes about pilot GUI and approach/descent mode flight controller are work-in-progress. Figure 2 shows a
high-level block diagram of the Vision-based Approach and Landing System (VALS) with the main components’ rates,
inputs, and outputs. Figure 3 shows a more detailed block diagram of the VALS. The green blocks are variables or
inputs, the blue blocks are functions, and the black blocks contain computed or critical output variables.

II. Kinematics and Dynamics
This subsection discusses the state vector, coordinate frames, kinematics, and dynamics for AAM aircraft and

follows Ref. [18].

1. State Vector
The state vector of the AAM aircraft is:

𝒔 = [ 𝐸 𝑁 𝑈 𝑣𝐸 𝑣𝑁 𝑣𝑈 𝜙 \ 𝜓 ]𝑇 . (1)
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Fig. 1 Proposed Architecture Diagram

Fig. 2 Vision-based Approach and Landing System (VALS) Block Diagram
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Fig. 3 Vision-based Approach and Landing System (VALS) Detailed Block Diagram

The state vector 𝒔 decomposes to three vectors:

𝒔 =
[
𝒑 𝒗 𝚯

]
, (2)

where each of them is:

𝒑 =

[
𝐸 𝑁 𝑈

]
, 𝒗 =

[
𝑣𝐸 𝑣𝑁 𝑣𝑈

]
, 𝚯 =

[
𝜙 \ 𝜓

]
. (3)

The vector 𝒑 is in East, North, and Up (ENU) coordinates in the inertial frame, fixed on the ground at the helipad
landing site. The translational velocities in 𝒗 are in the inertial frame, while the body frame velocities are: 𝑢, 𝑣, 𝑤.
Finally, the Euler angles are the roll, pitch, and yaw angles (𝜙, \, 𝜓).

2. Coordinate Frames
The world coordinate system (WCS) is an inertial frame fixed on the ground in which gravity points in the negative

U-direction, i.e., down. The vehicle coordinate system (VCS) is on the body frame of the aircraft such that the x-axis
points right, the y-axis point forward, and the z-axis points up in the same direction as the motor axes. The camera
coordinate system (CCS) has the camera fixed to the aircraft’s body, angled down, and pointed in the positive z-axis. Its
x-axis points right, like in VCS, and the y-axis points down and behind the aircraft. Figure 4 shows the WCS axes denoted
by 𝐸, 𝑁,𝑈, the VCS axes represented by 𝑉𝐶𝑆𝑥 , 𝑉𝐶𝑆𝑦 , 𝑉𝐶𝑆𝑧 , and the CCS axes marked by 𝐶𝐶𝑆𝑥 , 𝐶𝐶𝑆𝑦 , 𝐶𝐶𝑆𝑧 .

3. Euler Angles
This paper utilizes the direction cosine matrix sequence in Ref. [28] from Appendix C of Ref. [29] to rotate the

body-fixed frame (u,v,w) to the inertial ENU frame (WCS) by the roll, pitch, and yaw Euler angles:

R =


𝑠𝜓𝑐\ 𝑐𝜙𝑐𝜓 + 𝑠𝜙𝑠𝜓𝑠\ −𝑠𝜙𝑐𝜓 + 𝑐𝜙𝑠𝜓𝑠\
𝑐𝜓𝑐\ −𝑐𝜙𝑠𝜓 + 𝑠𝜙𝑐𝜓𝑠\ 𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑐𝜓𝑠\
𝑠\ −𝑠𝜙𝑐\ −𝑐𝜙𝑐\

 . (4)

in which 𝑐\ and 𝑠\ denote cos \ and sin \ respectively.
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Fig. 4 Inertial, Body, and Camera Frames of AAM Aircraft

Transposing Eqn. (4) yields the rotation from the inertial ENU frame (WCS) to the body-fixed frame (u,v,w). The
rotation between the angular velocity and Euler angular rates for the (3-1-2) direction cosine matrix sequence is [30]:

Ω =


0 cos 𝜙 − cos \ sin 𝜙
1 0 sin \
0 sin 𝜙 cos \ cos 𝜙


¤Θ (5)

in which Ω = [𝑟𝑞𝑝]𝑇 and ¤Θ = [ ¤𝜓 ¤\ ¤𝜙]𝑇 .

4. Translational Dynamics
This subsection follows the translational dynamics for AAM aircraft in Ref. [18]:

𝐹𝑥 = 𝑚( ¤𝑢 + 𝑞𝑤 − 𝑟𝑣) + 𝑚𝑔 sin \
𝐹𝑦 = 𝑚( ¤𝑣 + 𝑟𝑢 − 𝑝𝑤) − 𝑚𝑔 cos \ sin 𝜙
𝐹𝑧 = 𝑚( ¤𝑤 + 𝑝𝑣 − 𝑞𝑢) − 𝑚𝑔 cos \ cos 𝜙 ,

(6)

such that 𝑚 is the mass, 𝑔 is the acceleration due to gravity, 𝐹𝑥 , 𝐹𝑦 , 𝐹𝑧 are the aerodynamic forces, 𝑢, 𝑣, 𝑤 are the body
frame velocities, 𝑝, 𝑞, 𝑟 are the body frame angular velocities, and 𝜙, \, 𝜓 are the roll, pitch, and yaw Euler angles.
Modeling specific forces as accelerometer measurements at the AAM aircraft’s center of gravity yields the specific
aerodynamic forces as: [31]

𝐹𝑥 = 𝐴𝑥𝑚 , 𝐹𝑦 = 𝐴𝑦𝑚 , 𝐹𝑧 = 𝐴𝑧𝑚 (7)

such that 𝐴𝑥 , 𝐴𝑦 , 𝐴𝑧 are the accelerometer measurements at the aircraft’s center of gravity. Inserting Eq. (6) into Eq.
(7) yields:

¤𝑢 = 𝐴𝑥 − 𝑔 sin \ − 𝑞𝑤 + 𝑟𝑣 ,
¤𝑣 = 𝐴𝑦 − 𝑔 cos \ sin 𝜙 − 𝑟𝑢 + 𝑝𝑤 ,
¤𝑤 = 𝐴𝑧 + 𝑔 cos \ cos 𝜙 − 𝑝𝑣 + 𝑞𝑢.

(8)

Since Eqn. (8) lacks mass, moments of inertia, and forces, it forms a general set of kinematic equations for all types of
AAM aircraft regardless of mass and moments of inertia. Thus, VAL is vehicle agnostic and applies to different AAM
aircraft configurations, i.e., multirotor, fixed-wing, lift-plus-cruise, etc.
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III. Distributed Cameras: Azimuth and Elevation Angles
Let the East North Up (ENU) world coordinate system,𝑊𝐶𝑆, be defined as an inertial frame fixed on the ground

with an origin, 𝑂𝑊𝐶𝑆 . Let the sensor frame, 𝑠, be defined as an x-fwd, y-right, z-down axis system such that its origin
𝑂𝑠 is at the center of projection for the sensor with the x-axis pointing in the direction of the sensor, the z-axis pointing
down from the point of view of the sensor, and the y axis pointing to the right to complete a right-handed system.

Figure 5a shows the unit vectors, 𝒊𝑠 , 𝒋𝑠 , �̂�𝑠 in the direction of the x, y, z sensor frame directions, respectively. Given
a target point P, let 𝑽𝑠𝑝 be the vector from 𝑂𝑠 to the target point P. Let the vector 𝒓𝑥𝑦 be the projection of 𝑽𝑠𝑝 to the XY
sensor axis plane. Let the azimuth angle 𝛽 be the angle between 𝒊𝑠 and 𝒓𝑥𝑦 , defined as positive right-hand rotation
around �̂�𝑠 . Let the elevation angle be defined as the angle 𝛼 between 𝒓𝑥𝑦 and 𝑽𝑠𝑝 , positive right from 𝒓𝑥𝑦 to 𝑽𝑠𝑝 (i.e.,
positive rotation around the cross-product of 𝒓𝑥𝑦 × 𝑽𝑠𝑝).

Projecting the point onto the X-Z plane yields an elevation angle 𝛼𝑥𝑧 in the XZ plane, as shown in Figure 5b. This
convention resembles the angle of attack and sideslip angles in a body-fixed frame. Ultimately, computing the azimuth

(a) Point in 3D Space: Azimuth and Elevation (b) Projected Point onto the X-Z Plane: Azimuth and Elevation

Fig. 5 Azimuth and Elevation Angles

and elevation angles of the target leads to computing the pixel coordinates (see Figure 6). Conversely, it is possible to
do the opposite by computing the azimuth and elevation angles from pixel coordinates. Finally, Eqns. (9)-(11) are
associated with Fig. 6.

𝑊/2
𝑟𝑥

= tan
𝐹𝑂𝑉𝑥

2
, 𝑟𝑥 =

𝑊/2
tan 𝐹𝑂𝑉𝑥

2

(constant) (9)

𝑑𝑥 = 𝑟𝑥 tan𝛼𝑥𝑧 (10)

𝑢 =
𝑊

2
+ 𝑑𝑥 (11)
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Fig. 6 Azimuth and Elevation Angles to Pixel Coordinates: 1) get the image plane distance, 𝑟𝑥 (Eqn. (9)), 2)
compute the horizontal pixel offset, 𝑑𝑥 (Eqn. (10)), 3) compute the horizontal pixels, 𝑢 (Eqn. (11))

IV. Simulation Setup
A. Camera Model and Parameters

The camera model in this paper utilizes a perspective matrix camera model ∗ to transform camera coordinates to
normalized camera coordinates and then to pixel coordinates. Some of the parameters in "Landing Light Configuration"
of Ref. [18] are also used in this paper, and Table 1 summarizes the simulated camera parameters utilized for this paper
with 𝐹𝑂𝑉ℎ and 𝐹𝑂𝑉𝑣 defined as the horizontal and vertical field of view angles, respectively.

Table 1 Camera Model Parameters
Parameter Image Size Pitch Angle (◦) Near Plane (m) Far Plane (m) 𝐹𝑂𝑉ℎ (◦) 𝐹𝑂𝑉𝑣 (◦)
Value 1920 × 1080 -9 1 4000 60 33.75

B. Reflection and X-Plane Interface
The NASA ARC Reflection software contains simulated AAM aircraft models and vertiport approach and landing

trajectories. X-Plane is a flight simulator with 3D rendering capabilities and acts as the visualization tool for the
simulated AAM aircraft and trajectory generated in Reflection. The "X-Plane Interface (XPI)" block in Fig. 1 establishes
a UDP connection with X-Plane for real-time implementation, and more details of the interface between Reflection and
X-Plane are in Ref. [32].

C. X-Plane and World Editor
Figure 7 shows a screenshot of the simulated FMG vertiport, created in X-Plane’s 2D airport editor called World

Editor for editing and creating customized airports and scenery. The landing lights in World Editor follow the guidelines
presented in the FAA Advisory Circular on Heliport Design [1]. Since the FMG vertiport has a limited surface area, it
lacks the bottom rows with four and five landing lights of the heliport approach landing system lights. Future iterations

∗https://learn.microsoft.com/en-us/windows/win32/opengl/glfrustum
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of the simulation can utilize the vertiport landing light configuration tentatively proposed in the FAA Vertiport Design
Engineering Brief No. 105 in Ref. [2] or the approved vertiport design advisory circular when it becomes publicly
available.

Figure 8 shows an X-Plane simulation of a static ground-based camera that tracks an AAM aircraft. Combining
multiple camera fields of view provides visual coverage and overlap for incoming AAM aircraft during approach and
landing. More details will be revealed later about distributed cameras for tracking AAM aircraft in subsection VII.C.

(a) FMG building and landing lights with orthophoto (top) (b) FMG helipad: zoomed in version of a)

Fig. 7 X-Plane & World Editor: FMG Vertiport

(a) X-Plane Static Camera Test (b) X-Plane Static Camera Tracking Test

Fig. 8 X-Plane Static Camera Test: (b) occurs at a different time than (a); (b) shows a red circle and green x to
indicate the location of the tracked aircraft and has a black vertical line to indicate how close the tracked aircraft
is relative to the vertical center of the image

D. Trajectory and Distributed Cameras
Figure 9 shows the nominal trajectory and distributed cameras in Google Earth. Waypoints were carefully placed

throughout the path to avoid buildings in San Francisco, and the X-Plane World Editor rendered the FMG building (see
Fig. 7). Table 2 shows the FMG curved trajectory’s distributed camera locations and viewing angles.
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(a) X-Plane & World Editor: Simulated FMG Trajectory (b) FMG Curved Trajectory and Distributed Cameras

Fig. 9 Nominal Trajectory: X-Plane Rendering and Google Earth

Table 2 Distributed Camera Locations and Angles

Camera Name Latitude (◦) Longitude (◦) Abs. Alt. (m) Heading (◦) Elev. (◦)
Fifth & Mission Garage (FMG) 37.783379 -122.405077 26.0 45.0 16.9
San Francisco Chronicle (SFC) 37.782546 -122.406520 34.0 45.0 16.9
San Francisco Intercontinental (SFI) 37.781944 -122.404722 110.0 345 -15.0
Marriot Marquis Hotel (MMH) 37.785278 -122.404167 135 165 -45.0
Market & Fourth Street (MFS) 37.784684 -122.405732 76.0 165 -10.0
Salesforce Tower (SFT) 37.789782 -122.396968 326 225 -10.0

V. Feature Detection and Correspondence

A. Feature Detection Methods
Figure 10 shows preliminary results with Hough circle detection, which has promising results for detecting the

circular landing lights. However, it also detects the background lights on the horizon, which is not ideal, as shown in
Fig. 10b. Other feature detection methods such as SURF, Harris corner detection, FAST, template matching, and image
registration did not detect the landing lights as well as Hough circle detection.

(a) X-Plane: Middle Harbor Shoreline Park (b) Hough Circle Detection

Fig. 10 Original and Processed Images for Hough Circle Detection

B. Feature Correspondence
Combining Hough circle detection with a custom feature descriptor that finds the closest Hough circle detections to

the estimated landing light locations gives better results because it ignores the farther and undesired background lights
in the horizon (see Figure 11).
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Frame 19: Predicted & Detected Lights
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Fig. 11 X-Plane: Middle Harbor Shoreline Park Custom Feature Descriptor for Selecting the Best Detections

After matching the predicted and detected Hough circles in pixel coordinates, the next step is to determine the
corresponding world coordinates for those detections based on matching indices:

(1) Compute and store the absolute difference between the predicted and detected landmark.
(2) Compute and store the Euclidean norm between each of the landmarks.
(3) Find the closest match by finding the minimum value of the stored Euclidean norm between each landmark.
(4) Determine the index of the closest match: best match
(5) Store the pixels of the best match.
(6) Apply further pruning based on a predetermined radial pixel. tolerance value, Δ𝑝𝑟 .

(I) Compute and store the distance for each predicted and detected landmark in pixel coordinates.
(II) Find the shortest distance.

(III) If the shortest distance is within the predetermined radial pixel tolerance, then store the index.
(7) Finally, match the index with the index for the landmark in world coordinates. Using bipartite graphs provides a

visual representation of the pairing of the best matches with lines to show the connections between each pair.
The predictions and detections do not always perfectly align due to the small errors in the camera model. However,

as long as they are within the specified pixel radial tolerance, the matches will be adequate. Therefore, the feature
correspondence method is robust to false positives because it removes pixels outside the acceptable radial pixel range
or keeps the detections close enough to the predictions. In other words, the detections that are close enough to the
predicted landing lights may not necessarily be all detected landing lights. However, they will be considered since these
detections are close to the predicted landing lights. Figures 15-17a show detections close to the predictions, which are
false positives but close enough to be considered as landing lights.

VI. EKF Design
The EKF in this paper follows the EKF design in [18] with IMU measurements in the input vector, 𝒖, and COPOSIT

measurements in the measurement vector, 𝒛. The EKF runs at 100 Hz and has two possible paths depending on what
measurements are available, and Fig. 12 shows a high-level block diagram of the EKF structure for VAL. Ultimately,
there are two paths: one with only IMU measurements (dead reckoning, only prediction) and another with IMU and
COPOSIT measurements (prediction and correction steps). Its process noise covariance includes the IMU measurement
variances:

Q = 𝑑𝑖𝑎𝑔

[
𝜎2
𝑎𝑐𝑐,𝑥 𝜎2

𝑎𝑐𝑐,𝑦 𝜎2
𝑎𝑐𝑐,𝑧 𝜎2

𝑔𝑦𝑟𝑜,𝑥 𝜎2
𝑔𝑦𝑟𝑜,𝑦 𝜎2

𝑔𝑦𝑟𝑜,𝑧

]
. (12)
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Fig. 12 EKF Flowchart: 1) running the EKF without a correction step and only the prediction step (dead
reckoning) occurs since the Kalman gain, 𝐾𝑘 , and measurement innovation, 𝑣𝑘 , equal zero): �̂�𝑘 (+) = �̂�𝑘 (−); 2)
running the EKF with both prediction and correction steps has nonzero values for the Kalman gain, 𝐾𝑘 , and
measurement innovation, 𝑣𝑘: �̂�𝑘 (+) = �̂�𝑘 (−) + 𝐾𝑘𝑣𝑘

The measurement noise covariance utilizes the variances from the coplanar POSIT algorithm and differs from R in Ref.
[18] by including 𝜎2

𝑣𝐸
, 𝜎2

𝑣𝑁
, 𝜎2

𝑣𝑈
:

R = 𝑑𝑖𝑎𝑔

[
𝜎2
𝐸

𝜎2
𝑁

𝜎2
𝑈

𝜎2
𝑣𝐸

𝜎2
𝑣𝑁

𝜎2
𝑣𝑈

𝜎2
𝜙

𝜎2
\

𝜎2
𝜓

]
. (13)

The position and velocity measurements are not independent such that the COPOSIT velocity measurements depend on
the COPOSIT position measurements via finite difference:

𝒗𝑐𝑜𝑝𝑜𝑠𝑖𝑡 ,𝑖 =
𝒑𝑐𝑜𝑝𝑜𝑠𝑖𝑡 ,𝑖 − 𝒑𝑐𝑜𝑝𝑜𝑠𝑖𝑡 ,𝑖−1

𝑡𝑖 − 𝑡𝑖−1
. (14)

Preliminary tests and analysis showed divergence and highly inaccurate state estimation using the approach in Ref. [18]
without including COPOSIT velocity measurements.

An alternative EKF design applicable for AAM approach and landing utilizes overcorrection during measurement
updates. This EKF design has a prediction step independent of the available sensors, but the correction step occurs
whenever a sensor measurement becomes available. In the context of this paper, the IMU measurements operate at 100
Hz, so the correction step runs on the noisy IMU measurements with their corresponding measurement matrix, which
inevitably causes drift (dead reckoning). However, when COPOSIT measurements become available around 10-20 Hz,
the EKF overcorrects the IMU measurement by applying COPOSIT measurements with its corresponding measurement
matrix, which eliminates the drift. Overall, this adaptive EKF would work well for APNT AAM navigation whenever
onboard sensor measurements become available [33].
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VII. Simulation Results
This section shows the simulation results for the curved approach and landing trajectory at FMG (recall figure 9b).

A. VAL Image Processing
Figures 13 - 17 show preliminary results of the VAL image processing pipeline. Figure 13 shows the original and

grayscale versions of the first frame in the simulated FMG approach and landing trajectory. The X-Plane overlay is in
the top left corner. The most important information is the current UDP time, which needs to sync with the Reflection
data to align the frames to obtain COPOSIT measurements that match the simulated IMU measurements.

(a) Original X-Plane Image: 1st Frame (b) Grayscale Image: 1st Frame

Fig. 13 X-Plane 1st Frame: Original & Grayscale

For automated time synchronization between the simulated X-Plane images and the telemetry data, the OCR trainer
function in MATLAB can classify the timestamps on the static X-Plane overlay in the top left of each frame (see Fig.
14). Alternatively, manual time synchronization or an automated linear fit between the X-Plane and Reflection telemetry
timestamps syncs the two datasets to match the rendered images with the simulated onboard telemetry data by matching
their GPS coordinates.

Fig. 14 OCR Trainer: Read and Classify All of X-Plane’s Overlay
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Figure 15a shows the predicted landing lights with darkened areas in the image to weed out pixels that do not contain
landing lights. Figure 15b shows the results from applying Hough circle detection and the closest circles to the predicted
landing lights, while Fig. 16a shows a cleaner version of the closest detected Hough circles to the landing lights without
the other detected circles.

MHP Frame 1 without Mask: Predicted & Detected Lights
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(a) Blackened Image with Predicted Landmarks

MHP Frame 1 with Mask: Predicted & Detected Lights
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(b) Blackening and Mask with Detected Hough Circles

Fig. 15 Predicted and Detected Landing Lights

Fig. 16b shows the connections between the predicted and closest detected landing lights. Further pruning of
the closest matches occurs based on a predetermined radial pixel tolerance value, Δ𝑝𝑟 , set to 100 (recall the feature
correspondence procedure in subsection V.B).

MHP Frame 1 without Mask: Predicted & Detected Lights
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(a) Predictions and Detections with Blackening: 1st Frame

Bipartite Graph: Matching with X-Plane Image
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(b) Bipartite Graph: Closest Predictions and Detections

Fig. 16 Bipartite Graph Matching Between Predicted and Detected Landing Lights

Fig. 17 shows the best matches in pixel coordinates mapped to world coordinates based on matching indices between
the predicted and detected landmarks. There are only three detections in this frame, so the EKF would apply only a
prediction step without COPOSIT measurements for the correction step.

Figure 18 shows the number of detections throughout the simulated FMG approach and landing. Since there are at
least four detections (coplanar points) for most of the trajectory, many COPOSIT measurements will provide correction
steps in the EKF. More COPOSIT measurements ultimately lead to accurate state estimation due to more correction
steps.
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(a) Bipartite Graph: Closest Predictions and Detections
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(b) Best Matches in World Coordinates

Fig. 17 Best Matches: Bipartite Graph (pixel coordinates) & World Coordinates: 1st Frame
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Fig. 18 Number of Detections vs. Time: COPOSIT requires at least four coplanar points (detections), so the
times with less than four detections cause the state estimation to drift. However, there are short gaps between
COPOSIT measurements, which cause brief moments of drift.
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B. VAL EKF
The process and measurement noise covariances (Q,R) values are:

Q = 𝑑𝑖𝑎𝑔

[
11.56 16 25 0.00164 0.04 0.25

]
,

R = 𝑑𝑖𝑎𝑔

[
49 36 36 0.01 0.0999 0.0999 0.0001 0.0001 0.0001

]
.

(15)

The average EKF runtime is 2.3 milliseconds, while the feature detection and correspondence steps take about 5.5
seconds. For real-time implementation, VAL requires faster feature detection and correspondence steps to run in real
time, especially the Hough circle detection step, which takes approximately 5.1 seconds.

1. Error Covariance
Figures 19-20 show that the error covariance quickly converges due to COPOSIT measurements with some minor

spikes during brief moments without COPOSIT measurements, but the error covariances converge. Overall, the
convergence of the error covariances demonstrates high confidence and low uncertainty in the state estimation.

Error Covariance for Position
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(a) Error Covariance: Position

Error Covariance for Velocity
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(b) Error Covariance: Velocity

Fig. 19 Error Covariance: Position & Velocity

Error Covariance for Euler angles
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Fig. 20 Error Covariance: Euler Angles
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2. State Estimation
Figure 21-22 show the state estimates, which closely align with the nominal states. Minor fluctuations occur

due to the lack of COPOSIT measurements, but the estimates quickly return to the nominal states when COPOSIT
measurements become available.

State Estimation: Position
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Fig. 21 State Estimation: Position & Velocity

State Estimation: Euler angles
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Fig. 22 State Estimation: Euler Angles

Table 3 shows the error statistics for the state variables. Overall, frequent detections of at least four coplanar
distributed landmarks lead to higher accuracy for state estimation. The position estimation has submeter accuracy, so it
beats GPS accuracy, which ranges within a few meters.

Table 3 State Estimation Statistics of the Error

𝐸 (m) 𝑁 (m) 𝑈 (m) 𝑣𝐸 (m/s) 𝑣𝑁 (m/s) 𝑣𝑈 (m/s) 𝜙 (rad) \ (rad) 𝜓 (rad)
` 0.256 0.980 0.365 0.135 0.067 0.162 0.000856 0.00156 0.0116
𝜎 0.203 0.576 0.253 0.169 0.135 0.241 0.00115 0.00265 0.0151
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3. Bounded Error
Figures 23-24 show the position, velocity, and Euler angle errors with ±2, 3𝜎 (blue, red) centered around the mean

error. There are fluctuations throughout the trajectory, but the error remains bounded most of the time, demonstrating
confidence in the state estimation results.

Position error with +/- 2,3 sigma bounds
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Velocity Error with +/- 2,3 sigma bounds
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(b) Error with ±2, 3𝜎 Bounds: Velocity

Fig. 23 Error with ±2, 3𝜎 Bounds: Position & Velocity

Euler Angle Error with +/- 2,3 sigma bounds
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Fig. 24 Error with ±2, 3𝜎 Bounds: Euler Angles
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C. Distributed Cameras for Tracking
A ground-based distributed sensing framework yields a passive camera tracking navigation solution for incoming

AAM aircraft. Communication between the AAM aircraft and the ground-based distributed sensor network can increase
the certainty of the AAM aircraft’s state estimation. The ground-based distributed sensor network also acts as a failsafe
or backup navigation solution if the AAM aircraft experiences sensor impairments or malfunctions. Coincidentally, at
least four coplanar points and four ground-based sensors are good minimums to produce accurate estimates. Future
work may include distributed ground-based sensor degradation and the impacts on the tracking estimation. For more
details on the distributed camera EKF design, see Ref. [34].

Figure 25 shows a fixed-angled camera tracking test of rendered X-Plane images as a simulated aircraft flies within
the cameras’ views. When there are fewer than four independent cameras, the estimated error increases and gets noisier
when there are fewer than three independent cameras.
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(a) Ground-Based Distributed Camera Fit Error
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Fig. 25 X-Plane Static Camera Test: (b) occurs at a different time than (a); (b) shows a red circle and green x to
indicate the location of the tracked aircraft and has a black vertical line to indicate how close the tracked aircraft
is relative to the vertical center of the image

Ultimately, having a ground-based distributed sensor network can provide AAM pilots with a backup navigation
solution as an automitigation contingency plan during landing [35]. Normal operations can provide periodic checks to
ensure the onboard and ground-based position estimations agree.

Figure 26a compares the position magnitude error between the ground-based distributed cameras and the onboard
navigation solutions. The red line in Fig. 26a is the Euclidean norm of the black lines (ENU error) from Fig. 23a, while
the blue line is the Euclidean norm of the estimated position from the ground-based distributed cameras. The onboard
solution (red line) stops about 20 seconds earlier than the ground-based distributed camera navigation solution because
it does not include the landing phase. The AAM aircraft’s camera would lose the landing lights in its field of view as it
flies over the landing lights, which would cause the EKF to diverge due to a lack of COPOSIT measurements. However,
the distributed cameras would maintain visual coverage of the aircraft during these final moments (see Fig. 26b for
the distributed camera fields of views at the simulated FMG vertiport). Future work can investigate the divergence
associated with a lack of COPOSIT measurements towards the end of the approach and landing trajectory.

Overall, the onboard AAM aircraft estimation is more accurate because it has immediate information from the IMU
and COPOSIT measurements. The ground-based distributed cameras lack in situ information, so they are inherently
more inaccurate. Even though the backup plan with the ground-based distributed camera framework may not have the
best accuracy for estimating the AAM aircraft’s position, it is adequate and within a reasonable range for AAM position
estimation.
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Fig. 26 Position Magnitude Error Comparison and Distributed Camera Fields of View: a) the onboard AAM
aircraft navigation solution ends earlier than the ground-based distributed camera navigation solution because it
would lose landmarks in the onboard camera’s field of view; (b) the black cones show the visual coverage of the
cameras (red dots) along the trajectory

VIII. Conclusion
The simulated VAL system for PAL demonstrates promising results for AAM approach and landing scenarios.

Accurate state estimation, i.e., beats GPS with submeter position accuracy, through frequent COPOSIT measurements
provides several correction steps in the EKF to eliminate drift and divergence. Hough circle detection reliably yields at
least four detections of the distributed landing lights at the vertiport for most of the approach and landing. The feature
correspondence method demonstrates robustness to false positives, i.e., detections that are not landing lights if the
detections are close enough to the predictions. Including finite differenced velocity COPOSIT measurements based on
the COPOSIT position measurements provides accurate state estimation and convergence even though they are not
independent. Consistently detecting at least four coplanar points (distributed landing lights) generates several COPOSIT
measurements, which provide several correction steps for the EKF to yield accurate state estimation. VAL’s runtime is
around 5.5 seconds with the limiting factor being the feature detection and correspondence steps. Therefore, real-time
implementation requires faster feature detection and correspondence steps, so future work can consider improving the
runtime for the feature detection and correspondence steps.

Comparing the onboard and ground-based navigation solutions shows that the onboard position estimation is more
accurate than the ground-based position estimation due to in situ measurements. The ground-based navigation solution
is a viable backup plan if the AAM aircraft has any sensor degradation or malfunctions. Alternatively, the AAM
aircraft could send its in situ measurements to the ground-based distributed sensor framework to increase the accuracy
of the ground-based position estimation. Maintaining communication between the ground-based and airborne-based
navigation solutions increases the confidence in the state estimation, which helps ensure a safe approach and landing.

This initial vision-based PAL study has the potential to impact many areas. First, it delivers perception PALS
requirements and datasets to other NASA projects and industry partners for verification, validation, and characterization,
which also identifies gaps in current AAM perception technology. Second, AAM aircraft require safe and accurate
PALS to transport people and cargo successfully. Third, removing pilots with autonomous PALS increases efficiency
and payload capacity. Finally, this initial vision-based PAL study paves the way for new AAM PALS research activities
to enhance future AAM operations and research.
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